

Баранова Л.Г. Б1-4116. ОБЪЕДИНЕННЫЙ ИНСТИТУГ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория высожих энергий

51-1116

БАРАНОВА Л.Г.

<u>C 344.1e</u> 5-241

ВЛИЯНИЕ КИСЛОТНООСНОВНОЙ БУФЕРНОЙ ЁМКОСТИ (β) ПРОЯВИТЕЛЯ НА ПРОЯВЛЕНИЕ ТОЛСТОСЛОЙНЫХ ЯДЕРНЫХ ФОТОЭМУЛЬСИЙ.

объеденеенный институт вдерена исследований виблиютека

г.Дубна,1968 год.

При обработке эмульсионных слоёв ядерных фотоэмульсий толщиной 400 и более микрон с предварительным наклеиванием на стекло не удается достичь равномерного проявления их по всей толщине. Возможно, что одной из причин, вызывающих более интенсивное проявление поверхностных участков слоя по сравнению с глубинными является более высокое значение ρH проявителя в них. Поэтому ряд авторов рекомендует применять проявители с повышенной кислотно-основной буферной емкостью (β) [1,2].

В настоящей работе проведено исследование влияния проявителя на проявление наклеенных слоёв эмульсии НИКФИ БР-2 толщиной 400 мк.

Использовались проявители с различными проявляющими веществами (амидол, фенидон, КФ-38, метол, *п*-аминофенол, глицин, пирокатехин, гидрохинон, *n*-фенилендиамин) при величине рH от . Концентрация проявляющих веществ составляла 5 до I2 0,015 моля/литр, сульфита натрия безводного - 0,1 моля/литр. Желаемая величина рН проявляющих растворов обеспечивалась приготовлением их на цитратных, боратных, карбонатных и фосфатных буферных растворах. Изменяя концентрацию последних, получали проявители с различным значением . Если после добавлеβ ния проявляющего вещества изменялось значение рН буферных растворов, то по мере надобности в проявители добавлялся NaOH. Определение В производилось титрованием проявителей серной кислотой, а измерение рН при помощи стеклянного электрода. Эмульсионные слои обучались на ускорителях ОИЯИ параллельным пучком релятивистских частиц и обрабатывались по общепринятому температурному циклу с сухой типлой стадией проявления [3]

- 2 -

На обработанных эмульсионны: слоях определялась плотность следов на различных глубина: (№/100 мк – число сгустков на 100 мк длины следа). Каждая точка на графиках получена при подсчёте 1500 – 2000 сгустков на трех эмульсионных слоях. Проведённые опыты показали, что проявляющие вещества, способные проявлять следы релятивистских частиц в данных условиях при величине рН ниже 10, прсявляют их всегда по всей толщине слоя. К таким проявляющим веществам относятся амидол, фенидон, КФ-38 (I – фенил-3 метил – 4 аминопиразолон /5/), метол. С увеличением β до 0,030-0,040 плотность следов возрастает по всей толщине эмульсионного слоя. Равномерность проявления при этом остается неизменной.

При дальнейшем увеличении β плотность следов очень мала и поэтому её трудно определить. Но и в этих случаях следы имеются по всей толщине слоя также как и зёрна вуали. В качестве примера на рисунке I помещены плотности следов на различных глубинах слоя для амидола, фенидона и метола при различных значениях f. Низкое значение β (<0,040) для проявителей, имеющих pH= 6 - 7, при используемой концентрации сульфита натрия получить невозможно из-за большой буферной емкости системы сульфит-бисульфит. Обычно применяемый при обработке эмульсионных камер амидоловый проявитель с лимонной кислотой имеет $\beta \approx 0,040$.

Для проявляющих веществ, работающих при pH > IO, с увеличением возрастает плотность следов и улучшается равномерность проявления (рис. 2-5). В малозабуференных проявителях в глубинных зонах слоя отсутствуют не только следы - 3 -

релятивистких частиц, но и следы менее энергичных частиц и зёрна вуали (нет изображения). Влияние $\,\beta\,$ проявляющего раствора на равномерность проявления в зависимости от рН проявителя вероятно связано с кислотноосновными свойствами желатины эмульсивнного слоя [4,5] • Изображение только в поверхностных зонах слоя возникает в том случае, когда при диффузии проявителя в эмульсию наступает резкое изменение рН желатины (рН) эмульсии перед поливом составляет 4,7 - 4,9). Это происходит при рН проявляющих растворов выше IO. По мере увеличения β проявителя граница резкого повышения рН желатины приближается к подложке слоя, что и приводит к улучшению равномерности проявления. Оптимальная равномерность проявления наступает при различной величине в зависимости от проявляющего вещества и рН проявителя. С этой точки зрения в ряду проявляющих веществ - метол, л-аминофенол, глицин, пирокатехин, гидрохинон наилучшим является метол, а наихудшим значением pH проявителя величина II,5. П - фенилендиамин действует аналогично проявляющим веществам, работающим при низких значениях рН, хотя и проявляет следы релятивистских частиц при рН > ІО. А именно - проявление всегда идет по всей толщине слоя независимо от β проявителя (рис.5).

По-видимому, на степень равномерности проявления по глубине эмульсионного слоя оказывает влияние продолжительность индукционного периода фотографического проявления, которая зависит от числа и расположения отрицательных зарядов активных групп проявляющего вещества [6,7]. С увеличением индукционного периода равномерность проявления ухудшается.

выводы

I) Показано, что влияни кислотноосновной буферной емкости проявителя (В) на проявление эмульсионного слоя зависит от величины pH проявителя.

2) Для проявителей, именщих значение pH ниже IO с увеличением β растет плотность следов, а равномерность проявления по всей толщине эмульсионного слоя остается неизменной.

3) Для проявителей с величиной pH выше IO при увеличении растёт плотность следов и улучшается равномерность проявления, достигая уровня проявителей, имеющих более низкое значение pH.

4) Так как общепринятые проявители для ядерных фотоэмульсий, чувствительных к частицам минимальной ионизации имеют pH около 6,5, то невозможно дос::ичь улучшения равномерности проявл ния за счет увеличения β проявителя.

В заключение автор выражает (лагодарность Е.В.Ракитской за многочисленные измерения под микроскопом и сотрудникам фотоэмульсионной группы ОИЯИ за помощь в работе.

Tapanola

13-5 3/X-68r.

HOLINCH K PHCYIRAN

- Puc.I. a Amagon, pH = $6_{1}93$ X $0_{2}1243$ $0_{2}0883$ 0- $0_{2}0643$ a - $0_{2}040_{a}$ b - $0_{2}040_{a}$ c - $0_{2}080_{a}$ pH - $8_{1}93$ x - $0_{2}0843$ - $0_{2}060_{3}$ c - $0_{2}0323$ 0 - $0_{2}016_{a}$ b) - Heron, pH - $9_{1}73$ x - $0_{2}0763$ - $0_{2}0363$ c - $0_{2}0283$ 0 - $0_{2}0203$ $\Delta - 0_{2}0123$ $\Delta - 0_{2}002_{a}$

Puc. 2.
$$pH = 10,5$$

2 - MeTOX, $x = 0,1643 = 0,0803 = 0,0523 = 0,024$
 $\Delta = 0,004.$
5 - 12 - emilledenta, $x = 0,1443 = 0,0923$
 $-0,0603 = 0,0283 = \Delta = 0,004.$
5 - FAMILINE, $x = 0,1723 = 0,0803 = 0,0443$
 $0 = 0,0243 = \Delta = 0,004.$
F - FAMILINE, $x = 0,1723 = 0,0923 = 0,0403$
 $0 = 0,0283 = \Delta = 0,008.$
Puc.3. $pH = 11$
2 - MeTOX, $x = 0,2043 = 0,1003 = 0,0523$
 $d = 0,0283 = \Delta = 0,005.$
 $6 1/2 = metoX, $x = 0,2043 = 0,1003 = 0,0523$
 $0 = 0,0283 = \Delta = 0,005.$
 $6 1/2 = metoX, $x = 0,1403 = 0,0963 = 0,0483$
 $0 = 0,0283 = \Delta = 0,006.$
B - FAMILINE, $X = 0,1603 = 0,0883 = 0,0523$
 $0 = 0,0323 = \Delta = 0,007.$$$

$B = \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}$

P - **Phypogenetics** , $\mathbf{x} = (\frac{152}{9} - 0, 084) - 0, 048)$ (**D** - 0, 028) $\Delta = 0, 000$

- a = Mexcap x = 0,080g 4=0,064g 0 = 0,028g (B=0,020) $<math>\Delta = 0,008$
- б П- выязвоёснол, е 0,072; 0-0,044; (0 0,028; ∆ - 0,008
- B IInponescons, x = 0,092, $\Phi = 0,036$, Q = 0,024, $\Phi = 0,016$, $\triangle = 0,004$.
- $r = \Gamma_{maximum} + \pi = 0,148 = 0,050 = 0.044 = 0.020 = 0.020 = 0.020 = 0.004$

Pac.5. pli 12.

- $a = \text{Imposerverse}_{g} x = 0, \text{IOG} 0, 080g 0 0, 056g \\ (-0, 028g \land 0, 008.)$
- $d = T_{\text{RHIPHE}} + x = 0,104 + 0 = 0,080 + 0 = 0,052 + 0,028 + 0.028 + 0.00$

<u>HHTEPATYPA</u>

1. И.И. Трухин. Успехи научн. фотогр. 12,115 (1966).

2 .A. I. Herz, J. Scient. Instr. 29,60 (1952)

З. Л.Г.Баранова, Препринт (МУШ 1022 (1962).

- 4. К. Миз, Теория фотографического процесса. 56, N (1949)
- 5. И.Б.Б. номберг, Технология обработки фотокиноматериалов, 121, М. "Искусство" (1957).
- 6. Т. Джеймс, Дж. Хигтинс, Основн теории фотографического процесса, 117, ИЛ (1954)
- 7. В.А.Вейденбах, П.И.Левина, К. научн. и прикл. фотогр. и кинематограф: 9,248 (1964).

