Calgerre 345g 2226/90 551-18-90-51

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

B1-18-90-51

ДЕПОНИРОВАННАЯ ПУБЛИКАЦИЯ

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблен

51-18-90-51

О.Б.Сарчанко

ПЕРСПЕКТИВЫ ПОЛУЧЕНИЯ ИНТЕНСИВНЫХ СЕПАРИРОВАННЫХ ПУЧКОВ ПИ- И МЮ-МЕЗОНОВ НА ФАЗОТРОНЕ ОНЯМ ДЛЯ МЕДИКО-БИОЛОГИЧЕСКИХ И ОМЗИЧЕСКИХ ИССЛЕДОВАНИЙ

25 01. H

Дубна, 1990

Перспективы получения интенсизных сепарированных пучков пи- и мю-мезонов на фазотроне ОИЯИ для медикобиологических и физических исследований

4,

О.В.Савченко

Аннотация

Рассмотрены различные варианты получения сепарированных мезонных пучков на фазотроне 0490 с помощью широкоугольных фокусирующих линз, промежуточного замедлителя и повторного магнитного анализа.

Показано, что при полученних несепарированных мезонных пучках с энергией до 80 МэВ и интенсивностях около 5 · 10⁷сек⁻¹ на I мкА падающего на мишень протонного пучка с энергией 660 МэВ имеется принципиальная возможность формирования сепарированных пучков пи-мезонов с интенсивностью до 10⁷сек⁻¹, мю-мезонных пучков – до 10⁶сев⁻¹ и пучков "поверхностных" мю-плюс мезонов с интенсивностью около 10⁵сек⁻¹ на I мкА протонного пучка.

§ I. BBEAEHNE

В Лаборатории ядерных проблэм ОИЯИ уже продолжительное время, начиная с I97I года, ведутся разработки нетрадиционных методов фокусировки мезонных пучнов, основанные на использовании широкоугольных магнитных систем с аксептансом по телесному углу, на один-два порядка большим по сравнению с обычными каналами частиц из квадрупольных линз и отклоняющих магнитов /I,2,3/.

В первом варианте такой широкоугольной фокусирующей системы, осуществленной в 1974 году ^{/2/} на основе соленоидальной линзы с неоднородным аксиально-симметричным магнитным полем, были получены интенсивные пи-мезонные пучки с энергией до 30 МэВ, на которых была выполнена серия радиобиологических экспериментов по определению относительной биологической эффективности и кислородного отношения ^{/4/}, а также цикл физических экспериментов по определению множествєнности нейтронов, возникающих при захвате отрицательных пи-мэзонов тяжелыми ядрами и по изучению эффекта образования высокоспиновых ядерных изомеров ^{/5,6/}.

В период реконструкции синхроциклотрона в сильноточный фазотрон был разработан и создан второй вариант широкоугольной магнитной линзы, показанной на рис. I ^{/7/}. Особенностью этого варианта является возможность фокусировки заряженных частиц за пределами железного ярма линзы, где магнитное поле не превышает 5-ID Э. В ходе экспериментов, выполненных на этой широкоугольной линзе после завершения реконструкции фазотрона, были получены детальные данные о глубинных дозных распределениях и составе мезонных пучков с энергией до 80 МэВ в зависимости от импульса, знака заряда и типа мишени ^{/8/}. Интенсивность пучков достигает величины 5°10⁷сек^{-I}, а пучки "поверхностных" мю-плюс мезонов – 5°10⁵сек^{-I} на I мкА падающего на мишень протонного пучка. Удачно выбранное расположение широкоугольной линзы, позволяющее отбирать и фокусировать заряженные частицы под средним углом 90° к протонному пучку, а также малый вертикальный размер протонного пучка на мезонной мишени (около IO мм) позволили значительно (до 3 раз) уменьшить примеси электронно-позитронной компоненты в мезонных пучках даже для таких мишеней, как медь и вольёрам.

В случае пи-мезонов с энергией 60-80 МэВ уровень примеси составляет всего около IO%, что для целей лучевой терапии является вполне удовлетворительной величиной. Однако при энергии пи-мезонов 20-30 МэВ этот уровень примеси возрастает до 50-60%, а для "поверхностных" мю-плюс мезонов соотношение е*/ / * составляет величину около 30. Такие величины примесей уже не являются удовлетворительными ни для лучевой терапии пучками отрицательных пи-мезонов, ни для целого ряда физических экспериментов, где надо регистрировать каждую входящую в установку частицу, и задача пространственного разделения частиц по массам приобретает актуальное значение. Из известных методов разделения частиц с одинаковым импульсом по массам метод разделения с помощью промежуточного замедлителя с последующим повторным магнитным анализом является достаточно простым и использовании широкоугольных фокусирующих эффективным при систем. В ЭТОМ случае потери мезонов при таком разделении из-за многократного кулоновского рассеяния будут не очень велики вследствие большого фазового объема падающего на про-

межуточный замедлитель мезонного п/чка.

Действительно, как видно из рис. I, расходимость пучка на выходе пи-мезонной линзы сосгавляет, примерно $\theta = 10$ -II° и уменьшение интенсивности мезонного пучка после подтормаживания характеризуется величиной $\eta = \pi \theta^2 / \pi \theta^2 + \pi < \theta^2 >_{\rm K} /^{7/}$, где $<\theta^2 >_{\rm K}$ - среднеквадратичный угол многократного кулоновского рассеяния. Для типичной сит/ации, когда толщина замедлителя составляет примерно половину первоначального пробега пучка частиц $\sqrt{<\theta^2} = 5^\circ$ и $\chi = 0, I/0, I+0, 025 = 0, 8.$ Целью настоящей работы явилось рассмотрение различных вариантов получения сепарированных мезонных пучков с помощью использования широкоугольных фокусирующих систем, промежуточного замедлителя и повторного магнитного анализа и оценки

заряда частиц.

§ 2. ВОЗМОЖНОСТИ ПОЛУЧЕНИЯ СЕПАРИРОВАННЫХ МЕЗОННЫХ ПУЧКОВ с помощью двух соленоидальных линз

ИНТЕНСИВНОСТИ ТАКИХ ПУЧКОВ В ЗАЕИСИМОСТИ ОТ ИМПУЛЬСА И ЗНАКА

Уже на первом этапе проектирования широкоугольной линзы для получения мезонных пучков на реконструированном фазотроне в качестве далекой перспективь предлагалось соленоидальную линзу с "теплыми" катушками возбуждения заменить двумя соленоидальными/линзами со сверхпроводящими обмотками, размещенными по вертикали таким образом, что фокус первой линзы является источником мезонов для второй линзы ^{/2,3/}. Если в этом фокусе разместить подходящий тормозитель, то появляется возможность разделения по массам частиц, составляющих пучок и получение тем самым чистых мезонных пучков, свободных от примесей электро-

нов или позитронов. Применение сверхпроводящих обмоток позвоуменьшить габариты всей магнитной системы, сравнительно ляет легко получить требуемый минимум поля на оси симметрии и тем самым в полной мере использовать эффект значительного уменьшесферической и хроматической аберраций такой системы. Общая ния схема такой магнитной системы гриведена на 37 работы рис. /I/. Однако из-за технологических трудностей применение сверхпроводимости ДЛЯ больших магнитных катушек И радиационных ограничений на сверхпроводящую обмотку при ее размещении вблизи мезонообразующей мишени этот вариант получения сепарированных мезонных пучков так и не был реализован до настоящего времени.

В 1980 году был предложен вариант широкоугольной линзы С "теплыми" катушками возбуждения, который допускает путем перераспределения тока в катушках и замены внутреннего сердечника линзы превращение ее в две соленойдальные линзы и получение как медицинских пучков отрицательных пи-мезонов с импульсом до I80 МэВ/с, так и сепарированных пучков пи- и мю-мезонов с импульсом от 20 до 60 МэВ/с /7/. Общий вид этого варианта линзы показан на рис. 2. При получении чистого пучка мю-мезонов из полиэтилена толщиной около I см. помещенный поглотитель в фокус первой линзы на расстоянии 190 см от мезонообразующей мишени, полностью тормозит все ги-мезоны, уменьшает при этом импульс мю-мезонов всего на I5-20% и практически не изменяет импульса электронов. Поэтому еторая соленоидальная линза, мю-мезонов, собирает затормсженных настроенная Нα импульс их во втором фокусе, отсекая практически полностью все электроны с незначительно измененным имгульсом, которые, как показано поглощаются в последней катушке и железном рис. 2 ярме Нα этой линзы.

Аналогичным образом, изменяя только толщину поглотителя в фокусе первой линзы, можно настроить вторую фокусирующую линзу на получение сепарированных пи-мезонов, уменьшив при торможении их импульс на 10450% по сравнению с импульсом мюмезонов. Таким образом, варианть широкоугольной фокусирующей линзы, изображенные на рис. I и 2, позволяют осуществить как получение пучка отрицательных пи-иезонов для медицинских целей с импульсом до I80 МэВ/с и пробэгом около 20 см H₂0, так и получение сепарированных пучков пи- и мю-мезонов с импульсом до 46 МэВ/с. При этом аксептанс по телесному углу составляет 0,35 и 0,72 ср соответственно в первом и втором случаях, что уменьшает потери пучка при сепарсции из-за многократного кулоновского рассеяния в промежуточном поглотителе до пренебрежимо малых значений.

Однако уже при монтаже варианта линзы, изображенного на рис. I, выяснилось, что устансвка сердечника линзы является весьма трудоемкой и длительной эперацией, требующей разборки всей верхней части линзы с последней катушкой возбуждения и разъема вакуумной камеры в труднодоступном месте. Кроме того вариант линзы, показанный га рис. 2, позволяет получать сепарированные мезонные пучки сравнительно малых энергий (до IO MэB), пригодные только для нексторых физических исследований, и потому в таком виде никак не решает проблемы получения чистых пучков отрицательных пи-мезонов для медицинских целей. Все это заставило отказаться и от этого варианта получения сепарированных мезонных пучков.

На рис. З представлен еще один вариант получения сепарированных мезонных пучков, в котором к уже действующей широкоугольной линзе добавлена для повторного магнитного анализа солено-

идальная линза, состоящая из двух катушек магнита МС-4, окруженных железным ярмом с профилированными наконечниками для "поджатия" области магнитного поля на оси линзы. Такую магнитную систему можно рассматривать как относительно "тонкую" магнитную линзу с апертурой 45 см и фокусным расстоянием определяемым выражением ^{/9/}:

 $f = 4 (Hp)^2 / \int H^2(z) dz$,

где $H \rho = \rho C/300$, $\rho C - \kappa m nynbc частиц в эВ, <math>H(z)$ распределение поля на оси линзы. Для бронированных катушек магнитное поле на оси линзы можно приближенно аппроксимировать кривой Гаусса с шириной на полувысоте ΔZ , равной суммарной толщине двух катушек. Для линзы, изображенной на рис. 3 при токе в катушках 900 А. $H_{max} \simeq 12000$ эрс., $\Delta Z_0 \simeq 75$ см и $\int H^2(z) dz \simeq H^2_{max} \Delta Z_0/\sqrt{z} \simeq 7,5\cdot 10^9$ эрс.²см.

Для пучка с расходимостью <u>+</u>IJ° расстояние от промежуточного замедлителя до середины второй соленоидальной линзы не должно превышать I2O см. В этом случае пучок свободно проходит через апертуру линзы 45 см и фокусное расстояние "тонкой" линзы при уменьшении изображения во втором фокусе в два раза должно равняться 40 см.

Отсюда можно найти, что максимальный импульс мезонов, который можно сфокусировать этой линзой, составит около 80 MэB/c, что совершенно недостаточно для медицинского применения пучка отрицательных пи-мезонов. Это обстоятельство не позволит использовать и такой сравнительно простой вариант получения сепарированных мезонных пучков.

§ 3. ВОЗМОЖНЫЕ ВАРИАНТЫ ПОЛУЧЕНИЯ СЕПАРИРОВАННЫХ МЕЗОННЫХ Пучков с помощью дополнительного поворотного магнита

разделения по массам мезонных пучков, получающихся Для нα выходе широкоугольной линзы. можно после подтормаживания пучка использовать отклонение частиц в поперечном магнитном поле специально подобранной конфигурации. На рис. 4 на примере магнита MC-4 с раздвинутыми катушками показано два варианта такого разделения, где используются поперечные магнитные поля с симметрией вращения вида H = H.(Z./Z)^{1/2}, обеспечивающи@и двойную фокусировку при повороте частиц на угол 90° и 270° /IО/. При повороте частиц на 90° можно также использовать поперечные магнитные поля, спадзющие по одной из координат в медианной плоскости как $H = H_{\circ}(\frac{y_{o}}{4})^{/II/}$.

В случае поля $H = H_{\circ}(Z_{\circ}/Z)^{1/2}$ движение частиц в медианной и аксиальной плоскостях магнита MC-4 описывается простыми уравнениями вида $P_{z} = P_{z} = A \sin S/VZ_{\circ}$, где S расстояние по круговой равновесной орбитэ радиуса Z_{\circ} отсчитывается от источника частиц /IO/. При повороте частиц на угол 90° с помощью магнитной дорожки сектосного типа двойная фокусировка обеспечивается при одинаковом расстоянии **а** от источника или изображения до эффективной границы поля, равно**й**:

$$\alpha = \sqrt{2} \, z_0 \, tg \, \frac{\pi}{2} \left(1 - \frac{1}{2\sqrt{2}} \right) \simeq 2,24 \, z_0$$

При радиусе кривизны **С**_о = 50 см расстояние **a** = II2 см, что не выходит за пределы габаритов магнита типа MC-4. Однако при расходимости пучка из широкоугольной линзы <u>+</u>IO° апертура

секторной магнитной дорожки должна быть около 2А ≃ 2. = 50 см. При таком зазоре между полюсами магнита протяженность рассеянного магнитного поля с двух сторон «магнитной дорожки будет иметь величину, сравнимую с эффективной длиной самой дорожки. 2.π/2 🖉 28 см, что полностью исключает практическую равной реализацию этого варианта. Аналогично по этим причинам не представляется возможным и создать магнитную дорожку с полем вида Н = H_o(Y_o / Y). Трудности с рассеянными полями магнитной дорожки можно обойти во втором вазианте, когда поворот осуществляется на угол 270°, что возможно только для поля H = H. (Z. /Z.)^{I/2}. Однако в этом варианте двойная фокусировка с промежуточным фокусом при угле поворота I35° обеспечивается при одинаковом расстоянии а от источника или изображения до эффективной границы равном:

$$a = \sqrt{2} 2 \cdot tg \frac{\pi}{2} \left(2 - \frac{3}{2\sqrt{2}}\right) \simeq 14,42$$

При **Z**_o = 50 см величина **a** будет составлять около 7 м, что для пучка с расходимостью <u>+</u>IO° делает совершенно неприемлемым и этот вариант разделения частиц в поперечном магнитном поле.

Можно несколько увеличить угол поворота частиц с 270° до 280-290°, т.е. сделать пучок наклонным на IO-20° по отношению к горизонтальной плоскости. В этом случае величина **a** уменьшается до 8,9 **2**, ÷ 6,2 **?**, (4,5 ÷ 3,I м), что все равно еще очень далеко до приемлемой величины **a**, равной I,0 – I,5 метра.

Наиболее удовлетворительным вариантом разделения частиц по массам представляется вариант отклонения частиц на угол 90° в поперечном однородном магнитном поле, изображенный на рис. 5.

В магните MC-4 катушки возбуждения раздвигаются на дополнительную величину 80 см. В образовавшийся промежуток вставляется вакуумная камера с зазором 25-20 см и с круглыми крышками из железа диаметром около 80 см, еплотную примыкающих к катушкам магнита. Мезонный пучок на выходе широкоугольной линзы подтормаживается в ее фокусе и затем проходит через одну секцию магнитной квадрупольной линзы с апертурсй 20-30 см, которая фокусирует пучок в аксиальной плоскости магнита МС-4 и дефокусирует его в медианной плоскости этого магнита. При отклонении пучка на 90° происходит широкоугольная фокусировка пучка в медианной плоскости и вторая секция магнитной квадрупольной линзы, поставсимметрично на выходе пучка из магнита, окончательно ленная **формирует** изображение отклоненного пучка Нα расстоянии 0 T центра магнита MC-4, равном расстоянию от центра этого магнита до промежуточного фокуса пучка, где происходит его подтормаживание. В такой симметричной системе, радиус кривизны в магнитном равняется радиусу эффективной границы магнитного поле ς. и фокусирующее действие однородного магнитного поля поля B медианной плоскости будет эквивслентно действию тонкой линзы с фокусным расстоянием f = 💈 . Траектории частиц в линейном приближении в рассматриваемой мігнитной системе показаны нα рис. 6. Обеспечивается двойная фокусировка отбираемых частиц линейная и угловая диспэрсии всей магнитной системы причем равны соответственно 🧐 = Z. и 🔊 = + I, что приводит к ширине изображения пучка, равной $\Delta X = 27.\Delta P/P$, т.е. при A X = I CM Ha I% AP/P. Это позволяет **Z**₀ = 50 CM при ширине входной диафрагмы около 5 см, АР/Р = 0,05 и выходном коллиматоре диаметром около 7 см получить примерно

такой же импульсный разброс отобрснных по массе частиц. В рассмат-

риваемой широкоугольной магнитной системе необходимо уменьшить сферические аберрации при фокусирсвке частиц в медианной плоскости магнита МС-4. Это может быть достигнуто путем создания слабого градиента магнитного поля в вертикальном направлении. Верхние траектории частиц должны проходить область более слабого магнитного поля, чем нижние траектории. Необходимый градиент магнитного поля можно будет создать увеличением зазора камеры по направлениям снизу-вверх или подходящим шиммированием магнитного поля в зазоре камеры.

§ 4. ОЦЕНКИ ИНТЕНСИВНОСТЕЙ СЕПАРИРОВАННЫХ МЕЗОННЫХ ПУЧКОВ

Для варианта изображенного на рис. 5, на основании экспериментальных данных, полученных для несепарированных мезонных пучков на широкоугольной линзе, были выполнены оценки интенсивностей, плотностей потока и плотностей остановок сепарированных При проведении этих мезонных пучков. расчетов учитывались потери частиц из-за многократного кулоновского рассеяния (до 20%), увеличение фазового объема пучка в импульсном пространстве при его подтормаживании (до 50%). ограничение размеров пучка коллиматором (до 30%), распад пи-мезонов налету на длине поворотной магнитной системы 2,3 м.

Результаты выполненных оценок в расчете на І мкА падающего таблице. на мишень протонного пучка приведены в прилагаемой для сравнения приведены данные ДЛЯ мезонных пучков, Там же получаемых в других физических центрах. Как следует из этой таблицы, применение широкоугольных фокусирующих систем позволяет токах протонного пучка интенсивности получить при одинаковых сепарированных мю-мезонных пучков примерно на порядок больше, использовании обычных каналов пучков, составленных чем при

ΙO

ИЗ КВАДРУПОЛЬНЫХ ЛИНЗ И ОТКЛОНЯЮЩИХ МАГНИТОВ.

Кроме того магнитная система,изображенная на рис. 5, в случае несимметричного варианта позволяет уменьшать изображение источника в I,5-2 раза и тел самым увеличивать плотность потока, а следовательно и мощность дозы сепарированных пучков в 2-3 раза.

§ 5. ЗАКЛЮЧЕНИЕ

Рассмотрены различные варианты получения сепарированных мезонных пучков на фазотроне ОУЯИ с помощью широкоугольных фокусирующих линз, промежуточного замедлителя и последующего магнитного анализа.

Наиболее перспективным является вариант, изображенный на рис. 5, в котором разделение частиц по массам осуществляется путем отклонения частиц на угол 90° в поперечном однородном магнитном поле. Такой вариант можно осуществить на базе магнита типа MC-4 и трех магнитных квадрупольных линз с апертурой 20 см. Преимущество этого варианта заключается в использовании готового магнита и линз, простоте конструкции вакуумной камеры и полюсных накладок, а также возможность перехода с режима работы "на медицину" в режим работы "на физику" без всяких механических перемещений путем только переключения токов в элементах магнитной системы.

Реализация этого варианта позволит увеличить примерно на один порядок интенсивности сепарированных мезонных пучков и тем самым повысить статус фазотрона ОИЯИ до уровня малых мезонных фабрик с эквивалентным током выведенного протонного пучка около 20 мкА.

ΙI

ПАРАМЕТРЫ СЕПАРИРОВАННЫХ МЕЗОННЫХ ПУЧКОВ

Мишень W (5 см по пучку) Или Са (5 см по пучку) **△**р/р = 6%, коллиматор 6×10 см², ток протонов I мкА

,

м- ульс астиц Р эВ/с	Интенсив- ность Д (<i>π</i> -) сек-1	Плотнос потокс ј(т-) сек ^{-I} ск	сть Плотн. останов. (т) л ⁻² г ^{-I} Н ₂ 0	Интенсив- ность I (<i>м</i>-) сек ^{-I}	- Плотнос потоко сек ^{-I} сп	сть Плотн. остано м ⁻² г ⁻¹ Н ₂ 0	Интенси в. ность I (π+) сек ^{-I}	в- Плотнос потокс ј(т†) сек ^{-I} сп	сть Интенсив ность J (µ+) и ⁻² сек ^{-I}	- Плотность потока ј(µ+) сек ⁻¹ см ⁻²	Плотн. остано n()) г ^{-I} Н ₂ 0	в. _М ше
оверх- остные о-плюс эзоны 28	-	γ							I,3'IO ⁵	2,2°I0 ³	I,I'IO	5 Cu
95	2.106	3•I0 ⁴	4•I0 ⁴	4,5°I0 ⁵	7'I0 ³	5•I0 ³	6'I0 ⁶	9·I0 ⁴	I ,1 .106	I,7ºI0 ⁴	I,2°IO	4 W
I23	4·10 ⁶	6•I0 ⁴	3•I0 ⁴	3·10 ⁵	4.I03	I,5ºI0 ³	1.10,	I,7ºI0 ⁵	9•10 ⁵	I,3ºI0 ⁴	5'I0 ³	W
165	4·10 ⁶	6'I0 ⁴ :	I,5°I0 ⁴	· · · · -		 .	8,5°I0 ⁶	I,3'IO ⁵	_			W
				Cpai	знение с	пучками д	ругих цент	POB				
	Цёнтр _{ЛИЯФ} /12/ Интенсивность поверхностных 3·10 ⁴ мю-плюс мезонов (не сепар.) сек мкА		RAL /13/		LAMPF	LAMPF ^{/14/} TRIUM		SIN /16/	ляп/17/ (до рёконст	p.)		
			3•I0 ⁴ (не сепар.	3ºIO ⁴ (cenap.)		2'10 ⁴ (cenap.)	2°IO ⁴ .) (не сепар.)		8•10 ⁴ (не сепар.)			
•	Интенси сепарир мю-мину IIO М сек ^{-I} м	вность ованных с мезоно эВ/с кА ^{-I}	_{DB} 5,3°IO ⁴		······································	I,4°I0 ⁴			2•I0 ⁵	3,3°IO ⁴		

Литература

- I. Савченко О.В. Депонированнная публикация ОИЯИ, БІ-ІЗ-6255, Дубна, І97І.
- 2. Абазов В.М. и др. Сообщение ОИЯЛ, РІЗ-8079, Дубна, 1974.
- 3. Абазов В.М., Савченко О.В. Депочированная публикация ОИЯИ, БІ-ІЗ-9782, Дубна, І976.
- 4. Ярмоненко С.П. и др. Медрадиология № 2, 70, 1975.
- 5. Бутцев В.С. и др. Препринт ОИЯИ, Р6-854I, Дубна, 1975.
- 6. Butsev V.S. et al. Preprint JINR E6-8535, Dubna, 1975.
- 7. Абазов В.М. и др. Сообщение ОИЯ4, РІЗ-80-707, Дубна, І980.
- Абазов В.М. и др. Тезисы докладов симпозиума "Радиационная аппаратура для лучевой терапии" (Москва, 23-26 мая 1989 г.), стр. 29, Москва, 1989 г.
- 9. Грошев Л.В., Шапиро И.С. Спектрэскопия атомных ядер, стр. 107 Москва, 1952.
- IO. Кельман В.М., Явор С.Я. Электронная оптика, стр. 380, Ленинград, 1968 г.
- II. Burgov N.A. et al. Nucl.Instr.and Meth., 12, Nº 2, 316, 1961
- I2. Волченков В.А. и др. Препринт ЛИПФ-6I7, Л., I980 Абросимов Н.К. и др. Препринт ЛИЯФ-622, Л., I980
- 13. Eaton G.H. et al. Nucl.Instr.and Meth., A269, 483, 1988.
- I4. Lisenko W.P. et al. IEEE Trans. NS-22, № 3, p.I593, I975. Badertscher A. et al. Nucl.Instr. and Meth., A238, 200, I985.
- I5. Al-Qazzar N.M.M. et al. Nucl.Instr.and Meth., 174, 35, 1980

I6. SIN Jahresbericht. P. 1319, 1975.

SIN Jahresbericht. P. **B**8, 1978

I7. Роганов В.С. ОИЯИ, БІ-9-4707, Дубна, I969.

Подписи к рисункам

- Рис. І. Действующая широкоугольная линза для получения пучков несепарированных мезонов. Интервал углов захвата Ө = (I0,45°-2I,77°). Аксептанс по телесному углу - 0,34 ср. Угловая расходимость пучка на выходе линзы <u>+</u>I0°.
- Рис. 2. Вариант широкоугольной линзы для получения пучков сепарированных пи- и мю-мезонов. Первоначальный импульс мезонов 55 МэВ/с. Допустимый разброс по импульсу – <u>+</u>I MəB/c. Интервал углов захвата – Ө = (36°-46°). Аксептанс по телесному углу – 0,72 ср. Положение первого фокуса – I90 см, второго – 380 см.
- Рис. З. Вариант получения сепарированных мезонных пучков с помощью дополнительной соленоидальной короткой магнитной линзы, состоящей из двух катушек от магнита MC-4, окруженных железным экраном. Пояснения в тексте.
- Рис. 4. Вариант получения сепарированных мезонных пучков путем отклонения в поперечном неоднородном магнитном поле. Пояснения в тексте.
- Рис. 5. Вариант получения сепарированных мезонных пучков путем отклонения в поперечном однородном магнитном поле. Пояснения в тексте.
- Рис. 6. Траектории частиц в магнитной системе, изображенной на рис. 5.

T/R••2=. 035 1/CM••2 P=183. 6 MEV/C TETA= (10. 45. 21. 77) T-ANGLE=. 344 Z-CROS=405 CM R-CROS=3. 14 CM

Рис. 2.

1. 1. 1

MC-4

Раектории частиц в линейном приближении медианной пласкости магнита MC-4

MA-29 MC-4 MA-29

Траектории частиц в линейном приближении 3 аксиальной плоскости магнита MC-4

Рис. 6