<u>с 342в</u> Бразевич Э. и др. 51-18-82-96. 2420/82

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Б1-18-82-96

et'

ДЕПОНИРОВАННАЯ ПУБЛИКАЦИЯ

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Лаборатория нейтронной физики

51-18-82-96

Э.Бразевич, Я.Бразевич, Лю Зай Ик, Г.М.Осетинский, Э.Бразевич, Я.Бразевич, Лю Зай Ик, Г.М.Осетинский, Э.Бразевич, Я.Бразевич, Лю Зай Ик, Г.М.Осетинский,

ТАБЛИЦЫ ПОЛНЫХ МАССОВЫХ КОЭФФИЦИЕНТОВ ОСЛАБЛЕНИЯ ХАРАКТЕРИ-СТИЧЕСКОГО РЕНТГЕНОВСКОГО ИЗЛ/ЧЕНИЯ К – И L – СЕРИИ В ВОЗД/ХЕ

. 08. 02. 82

Oreconstantial retry ter a ser a se 5N5ANDTEKA Дубна, 198] г.

Аннотация

Настоящие таблицы содержат расчетные значения полных массовых коэффициентов ослабления в воздухе при прохождении через него характеристического рентгеновского K_d - и K_β - излучения от элементов с порядковым номером z, находящим-ся в интервале II $\leq z \leq 50$ и L_d , L_{ρ} , L_{γ} - излучений от элементов 37 $\leq z \leq 94$.

Введение

При детектировании характеристического рентгеновского излучения, образуемого при возбуждении исследуемой мишени пучком ускоренных ионов, довольно частс это излучение ослабляется слоем воздуха на пути от мишени до детектора. Для учета этого явления необходимо знание массовых коэффициентов ослабления (μ_{g}) в воздухе для различных снергий. В настоящий момент данные по μ_{g} в воздухе известны лишь для K_{d} излучений от элементов, находящихся в интервеле Z: $22 \le Z \le 50$, что для ряда задач, связанных с определением элементного состава, явно недостаточно. Настоящая работа устраняет этот пробел. В работе приводятся расчетные значения пслных массовых коэффициентов ослабления характеристического гентгеновского излучения в воздухе при прохождении K_{d} , K_{β} , L_{d} , L_{β} , L_{γ} излучений от элементов с порядковым номером 2, находящимся в интервале II $\le Z \le 94$. Данные представлены в виде таблиц и графика.

Расчет полных массовых коэ́ц́фициентов ослабления в воздухе проводился с использованием формулы вида

$$\mu_{g}(\varepsilon) = \sum_{i=1}^{n} \mu_{gi}(\varepsilon) P_{i}$$
 (I)

где μ_{gi} - массовый коэффициент ослабления элемента, входящего в состав воздуха. При расчетах принимался состав, указанный в таблице I. P_i - массовая концентрация элемента і входящего в состав воздуха, при влажности 0%^{/2/}, ξ - энергия рентгеновского излучения.

- I -

Расчет величины \mathcal{M}_{S} проведился по следующей схеме. Из работы^{/3/} взяты значения \mathcal{M}_{Si} при 45 значениях энергии характеристического рентгеновского излучения в интервале энергий I-3I КэВ. Для каждого из элементов, входящих в состав воздуха, и для каждой из взятых энергий го формуле (I) рассчитывались значения \mathcal{M}_{S} (\mathcal{E}) в воздухе. Переход от полученных значений \mathcal{M}_{S} (\mathcal{E}) в воздухе к значениям коэффициентов ослабления для энергий излучения, соответствующим излучению К⁻, L⁻ серий от элементов с Z, находящимся в интервале II < Z < 94, проводился аппроксимацией полученных значений \mathcal{M}_{S}

$$\ln\left[\mu_{g}(\varepsilon)\right] = \sum_{k=1}^{m} A_{k} \varepsilon^{k-1}$$
(2)

где А_к – коэффициенты полинома (k-1) степени, m – число параметров.

Аппроксимация проводилась на ЭВМ СДС-6500 по стандартной программе ОИЯИ FUMILI /4/.

Таким методом были получень значения \mathcal{M}_{g} для K_{a} -, K_{p} излучений от Na до Sn , а для L_{a} , L_{b} , L_{r} излучений – от Rb до Pv .

Энергия K_{a} – серии определялась как средне-взвешенное значение энергии для K_{a_1} , K_{a_2} переходов с учетом вероятности этих переходов. Аналогично энергия K_{β} переходов – как средневзвешенное значение K_{β_1} , K_{β_2} , K_{β_3} переходов, L_{a_4} – как средневзвешенное значение L_{a_1} , L_{a_2} переходов. Причем принимается $L_{\beta} = L_{\beta}$, $L_{\gamma} = L_{\gamma}$, $\frac{15,6}{2}$.

Результаты расчета представлены в таблице П, где в первом столбце приведен порядковый номер элемента, излучающего характеристическое рентгеновское излучение с энергией Е. Значения

- 2 -

этой энергии приведены в 4-м стслоце таблицы. В 5-м столоце приведены полные массовые коэффициенты ослабления в воздухе в см²/г. На графике рисунка I приведены результаты расчета (круглые точки). На оси абсцисс рисунка – энергия рентгеновского излучения (кэВ). На оси ординат – величина μ_g . Сплошная кривая – результат экстраполяции этих значений полиномом уравнения (2). На этом же рисунке, гля сравнения, приведены (в виде треугольников) экспериментальные данные μ_g , взятые из работы^{/I/}. Видно, что в интервалах ξ , где можно проводить сравнение, данные в пределах ошибок (3-5%) хорошо согласуются между собой.

Отметим, что при составлении таблиц влажность воздуха не учитывалась. Проведенная оценка изменения величины μ_g в предположении 100% влажности для загедомо завышенной длины пути рентгеновского излучения в воздухе (100 мм) показала, что при этих предположениях, μ_g , изменяется на величину, в несколько раз меньшую ошибки в определении самой величины.

My St. Brosen

- 3 -

Компо-	Содержание		Компо-	Содержание	
Heht	% (00.)	% (масс.)	нент	% (00.)	% (масс)
N ₂	78,09	75,50	K₩	I,I4·I0 ⁻⁴	3.10-4
02	20,95	23,15	H ₂	5•10 ⁻⁵	8·10 ⁻⁵
Ar	0,933	I,292	N ₂ O	5•10 ⁻⁵	8·10 ⁻⁵
co2	0,03	0,046	Xe	8,6•10 ⁻⁶	4·10 ⁻⁷
Ne	I,8·10 ⁻³	I,4·I0 ⁻³	03	3.10-7+3.10-6	5·10 ⁻⁷ +
			U .		÷5•10 ^{−6}
He	4,6.10-4	6,4·10 ⁻⁵	Rn	6•10 ⁻¹⁸	4,5.10-17
CH4	1,52.10-4	8,4·10 ⁻⁵			

Таблица I

Литература

- I. R.H.Miller and J.R.Greening. J. of Phys. B, 1974, v. 7, No 17, p. 2332.
- 2. В.А.Рабинович, З.Я.Хавин. Краткий химический справочник, издат. "Химия", Ленинградское объединение, 1978 г.
- Н.П.Комяк. Таблицы полных массовых коэффициентов ослабления характеристического рентиеновского излучения, ЛНПО "Буревестник", Ленинград, 1978 г.
- 4. И.Н.Силин. ОИЯИ, II-3362, Дусна, I963 г.
- 5. E.C.Montenegro et al. Atomic Data and Nuclear Data Tables, 1978, v. 22, p. 131.
- 6. Э.Бразевич и др. ОИЯИ, БІ-І8-8І-ЗІ9, Дубна, І98І г.

No Zour UM. CA

Подписи к рисункам

Рис. I. График полных массовых воэффициентов ослабления в воздухе – $\mu = f(Z)$. Круглые точки – результат расчета. Треугольные точки – экспериментальные данные работы /I/. Сплошная кривая – результаты апроксимации экспер. точек по формуле (2).

Ζ	ΕL	X-RAY	E(KEV)	MAC(CMSQ/G)
11	NA	K-AL PHA K-BETHA	1.041 1.067	.32579E+04 .27647E+04
12	MG	K-AL PHA K-BETHA	1.255 1.295	• 19378E+04 • 18138E+04
13	AL	K-AL PHA K-BETHA	1.487 1.553	.12361E+04 .10802E+04
14	SI	K-AL PHA K-BETHA	1.739 1.838	•76275E+03 •64741E+03
13	Ρ	K-AL PHA K-BETHA	2.015 2.142	•49773E+D3 •41986E+D3
15	S	K-AL PHA K-BETHA	2.317 2.468	.34243E+03 .28485E+03
17	βL	K-AL PHA K-BETHA	2.622 2.817	•24154E+03 •19852E+03
13	AR	K-AL PHA K- BE THA	2.957 3.191	•17397E+03 •14121E+03
19	к	K- AL PHA K- BE THA	3.312 3.589	• 12749E+03 • 10217E+03
2)	CA	K-AL PHA K-BE THA	3.690 4.012	.94612E+02 .74965E+02
21	SC	K-AL PHA K-BETHA	4•688 4•459	•71132E+92 •55791E+92
22	ΓI	K-ALPHA K-BETHA	4.528 4.931	•54003E+02 •41810E+02
23	v	K-AL PHA K-BETHA	4•949 5•427	.41374E+02 .31686E+02
2+) R	K-AL PHA K-BETHA	5.411 5.947	• 31 959 E+02 • 24 229 E+02
25	MIN	K-ALPHA K-BETHA	5.895 6.492	.24865E+02 .18682E+02

Z	ΕL	X-RAY	E(KEV)	MAC (C4 SQ/G)
25	FΞ	K-AL PHA K-BETHA	6.400 7.059	•19493E+02 •14544E+02
27	00	K-AL PHA K-BE THA	6.925 7.649	• 15404E+02 • 11427E+02
23	NI	K-AL PHA K-BETHA	7.472 8.265	• 1226) E+02 • 93515E+01
29	CU	K-AL PHA K-BE THA	8.041 8.907	•98314E+01 •72308E+01
31	ZN	K-ALPHA K-BETHA	8.631 9.572	•79466E+01 •58322E+01
31	G A	K-ALPHA K-BETHA	9.243 10.263	.64728E+01 .47449E+01
32	GE	K-AL PHA K-BE THA	9.876 10.983	.53153E+01 .38910E+01
33	AS	K-AL PHA K-BE THA	10.532 11.729	•43976E+01 •32189E+01
3+	Sē	K-ALPHA K-BETHA	11.210 12.532	•366682+01 •268542+01
3 5	BR	K-AL PHA K-BETHA	11.907 13.299	.30833E+01 .22604E+01
35	KR	K-ALPHA K-BÈTHA	12.630 14.126	.26096E+01 .19159E+01
37	RB	K-AL PH A K-BE THA	13.375 14.979	•22252E+01 •16387E+01
33	SR	K-ALPHA K-BETHA	14.142 15.859	.19113E+01 .14115E+01
39	Y	K-ALPHA K-BETHA	14.933 16.766	•16521E+01 •12247E+01
43	ZR	K-AL PHA K-BE THA	15.746 17.706	•14379E+01 •10701E+01

Z	ΕL	X-RAY	E(KEV)	MAC (CMSQ/G)
41	NB	K-AL PHA K-BE TH A	16.584 18.660	.12590 E+01 .94 141 E+00
42	MO	K-AL PHA K-BETHA	17.443 19.648	• 11094E+01 • 83337E+00
43	τC	K-ALPHA K-BETHA	18.327 20.663	• 98308E+00 • 74221E+00
4+	RU	K-AL PHA K-BETHA	19.234 21.705	•87603E+00 •66483E+00
45	RH	K-AL PHA K-BETHA	20•167 22•778	•78455E+00 •59856E+00
45	PD	K-AL PHA K-BETHA	21.122 23.876	•70633E+00 •54181E+00
47	A G	K-AL PHA K-BETHA	22.113 25.017	.63884E+)J .49263E+0J
¥8	CD	K-AL PHA K-BE THA	23.108 26.165	.58045E+00 .45002E+00
49	IN	K-AL PHA K-BETHA	24 .138 27 .3 53	.52966E+00 .41285E+00
51	SN	K-AL PHA K-BE THA	25.192 28.570	•48534E+00 •38030E+00

Z	EL	X-RAY	E(KEV)	MAC(CMSQ/G)
37	RB	L-AL PHA L-BETHA L-GAMMA	1.694 1.752	.82567E+03 .74590E+03
33	SR	L – AL PHA L – BE T HA L – GA MMA	1.806 1.871	.68162E+03 .61477E+03
39	Y	L-AL PHA L-BETHA L-GAMMA	1.922 1.995	.56902E+03 .51190E+03
43	ZR	L-AL PHA L-BETHA L-GAMMA	2.042 2.124 2.302	•47951E+03 •42977E+03 •34447E+03
41	NB	L – AL PHA L – BETHA L – GAMMA	2.166 2.257 2.461	• 40 71 4 E + 0 3 • 36 36 0 E + 0 3 • 28 70 5 E + 0 3
42	40	L-AL PHA L-BETHA L-GAMMA	2•293 2•394 2 •58 3	.34818E+03 .30950E+03 . 34428 E+03
43	TC	L-ALPHA L-BETHA L-GAMMA	2•424 2•536 2•792	.29917E+03 .26451E+03 .20351E+03
44	RU	L-AL PHA L-BETHA L-GAMMA	2•558 2•683 2•964	25836E+03 22685E+03 17285E+03
45	RH	L-AL PHA L-BE THA L-GAMMA	2.696 2.834 3.143	•22389E+03 •19538E+03 •14721E+03
45	ΡD	L-AL PHA L-BETHA L-GAMMA	2•838 2•990 3•327	•19463E+03 •16877E+03 •12592E+03
47	AG	L-AL PHA L-BETHA L-GAM4A	2•983 3•151 3•519	. 16985E+03 . 14618E+03 . 10788E+03
43	CD	L-AL PHA L-BETHA L-GAMMA	3.132 3.317 3.718	• 14 863E+03 • 12696E+03 • 92650E+02

Z	EL	X-RAY	E(KEV)	MAC (CMSQ/G)
49	IN	L-ALPHA L-BETHA L-GAMMA	3.286 3.487 3.922	• 13028E+03 • 11063E+03 • 79865E+02
5]	SN	L – AL PHA L – BETHA L – GAMMA	3.443 3.663 4.132	• 11458E+03 • 96555E+02 • 69030E+02
51	SB	L – AL PH A L – BE THA L – GA MMA	3.603 3.844 4.350	.10107E+03 .84459E+02 .59737E+02
52	ΤE	L-ALPHA L-BETHA L-GAMMA	3.768 4.029 4.572	•89278E+02 •74384E+02 •51885E+02
53	I	L-AL PHA L-BETHA L-GAMMA	3•937 4•219 4•862	•79019E+02 •65108E+02 •45111E+02
54	хĒ	L-AL PHA L-BETHA L-GAMMA	4.109 4.416 5.039	•70118E+02 •57250E+02 •39283E+02
55	CS	L-AL PHA L-BETHA L-GAMMA	4.285 4.620 5.281	• 62 325 E+02 • 5 3 67 E + 02 • 3 4 3 0 0 E + 02
ōò	ВА	L-AL PHA L-BETHA L-GAMMA	4.466 4.829 5.531	•55455E+02 •44392E+02 •29979E+02
57	LA	L-ALPHA L-BETHA L-GAMMA	4 • 650 5 • 0 43 5 • 7 92	•49448E+02 •39193E+02 •26189E+02
53	CE	L-ALPHA L-BETHA L-GAMMA	4•838 5•263 6•059	•44156E+D2 •34642E+D2 •2293DE+D2
53	PR	L-ALPHA L-BETHA L-GAMMA	5.031 5.489 6.328	• 39463E+02 • 30653E+02 • 20160E+02
ô]	ND	L-AL PHA L-BETHA L-GAMMA	5.228 5.721 6.615	.35318E+02 .27156E+02 .17745E+02

Z	ΞL	X-RAY	E(KEV)	MAC (CASQ/G)
51	PM	L-AL PHA L-BETHA L-GAMMA	5.429 5.961 6.891	•31652E+02 •24062E+02 •15632E+02
ô2	SM	L-AL PHA L-BETHA L-GAMMA	5.635 6.206 7.185	•28389E+02 •21359E+02 •13792E+02
<u>5</u> 3	ΕU	L-AL PHA L-BETHA L-GAMMA	5 • 8 4 3 6 • 4 5 7 7 • 4 84	.25522E+02 .18985E+02 .12201E+02
54	GD	L-AL PHA L-BETHA L-GAMMA	6.055 6.713 7.790	•22975E+02 •16903E+02 •10816E+02
57	ŢΒ	L-AL PHA L-BETHA L-GAMMA	6.269 6.978 8.104	• 20728E+02 •15056E+02 •96032E+01
65	DY	L-ALPHA L-BETHA L-GAMMA	6.491 7.248 8.424	•18690E+02 •13435E+02 •85476E+01
57	HO	L-ALPHA L-BETHA L-GAMMA	6.717 7.526 8.753	•16875E+02 •11998E+02 •76189E+01
53	ER	L-ALPHA L-BETHA L-GAMMA	6.945 7.811 9.088	•15271E+02 •10728E+02 •68083E+01
ćθ	ΤM	L-AL PHA L-BETHA L-GAMMA	7 • 1 75 8 • 1 û 2 9 • 4 3 0	• 13850E+02 • 96 103E+01 • 60975E+01
73	ΥB	L-AL PHA L-BETHA L-GAMMA	7 • 41 0 8 • 48 1 9 • 7 80	•12571E+02 •86181E+01 •54714E+01
71	LU	L – AL PHA L – BE T H A L – GA MMA	7.649 8.7ü8 10.139	• <u>11</u> 427E+02 •77376E+01 •49180E+01
72	ΗF	L-AL PHA L-BETHA L-GAMMA	7.893 9.023 10.515	. 10397E+02 .69561E+01 .44185E+01

Ζ	EL	X-RAY	E(KEV)	MAC(CHSQ/G)
73	ΤA	L – AL PHA L – BE THA L – GA MMA	8.139 9.343 10.896	•94795E+01 •62683E+01 •39821E+01
74	W	L – AL PHA L – BE THA L – GAM ₱A	8.389 9.670 11.285	•86552E+01 •56582E+01 •35968E+01
75	RE	L-AL PHA L-BETHA L-GAMMA	8.664 10.007 11.684	78561E+01 .5112JE+01 .32545E+01
75	0 S	L-ALPHA L-BETHA L-GAMMA	8.904 10.354 12.094	•72381E+01 •46233E+01 •29495E+01
77	IR	L-AL PHA L-BETHA L-GAMMA	9.167 10.708 12.513	•66344E+01 •41894E+01 •26783E+01
73	ΡŢ	L-ALPHA L-BETHA L-GAMMA	9.434 11.071 12.942	.60 898E+01 .38018E+01 .24375E+01
73	AU	L – AL PHA L – BE T H A L – GA M MA	9.764 11.443 13.381	•55996E+J1 •34554E+J1 •22224E+J1
8)	НG	L-ALPHA L-BETHA L-GAMMA	9.979 11.824 13.829	•51546E+01 •31455E+01 •20307E+01
81	ΤL	L-ALPHA L-BETHA L-GAMMA	10.257 12.212 14.290	•47531E+01 •28694E+01 •18581E+01
32	ΡB	L – AL PHA L – BETHA L – GAMMA	10.541 12.614 14.765	•43366E+01 •26189E+01 •17024E+01
3 3	ВI	L - AL PHA L - BE T HA L - G A M 4 A	10.828 13.025 15.250	•40554E+01 •23946E+01 •15631E+01
3+	PO	L-AL PHA L-BETHA L-GAMMA	11.119 13.446 15.746	• 37544E+01 • 21930E+01 • 14379E+01

N

Z	EL	X-RAY	E(KEV)	MAC(CMSQ/G)
85	ΑT	L-ALPHA L-BETHA L-GAMMA	11.415 13.876 16.252	•34798E+01 •20120E+01 •13255E+01
85	RN	L – AL PH A L – BE T HA L – GA MMA	11.714 14.315 16.769	• 32307E+01 • 18494E+01 • 12242E+01
37	FR	L-A_PHA L-BETHA L-GAMMA	12.016 14.768 17.301	.30043E+01 .17015E+01 .11321E+01
88	RA	L – AL PHA L – BETHA L – GAMMA	12.322 15.231 17.846	•27975E+01 •15682E+01 •10488E+01
89	AC	L – AL PHA L – BE TH A L – GA MMA	12.635 15.712 18.4ŭ8	•26037E+01 •14459E+01 •97258E+00
9)	TH	L-AL PHA L-BETHA L-GAMMA	12.952 16.203 18.980	•24323E+01 •13357E+01 •90402E+00
əL	PA	L-AL PHA L-BETHA L-GAMMA	13.274 16.705 19.568	• 22722E+01 • 12360E+01 • 84134E+00
3 2	U	L-AL PHA L-BETHA L-GAMMA	13.602 17.220 20.168	• 21 246E+01 • 11 454E+01 • 78447E+00
93	NP	L-AL PHA L-BETHA L-GAMMA	13.930 17.750 20.784	• 19909E+01 • 10627E+01 • 73246E+00
) +	ΡIJ	L-AL PHA L-BETHA L-GAMMA	14.265 18.297 21.421	• 18669E+01 • 98698E+00 • 68492E+00