Ахроров, О. ид.Р. Б1-1-8927. С 343 Д. А-956

3009/4

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Б1-1-8924

ДЕПОНИРОВАННАЯ ПУБЛИКАЦИЯ

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Лаборатория высоких энергий

E1-1-8924

О.Ахроров, А.К.Попова, Дж.А.Саломов, К.Д.Толстов, Г.С.Шабратова

Полное разрушение ядер Асі, Вг и Рв. -частицами с импульсом I7 ГэВ/с.

8 uneg ys: Сленненный институт LEOPHLIX BCCRCAOBGHNE **ENE UNOTER**

Дубна, 1975 г.

Полное разрушение ядер $\mathcal{H}_{\mathcal{I}}, \mathcal{B}_{\mathcal{L}}$ под действием протонов с импульсами 9,6 и 70 ГэВ/с было обосновано в работе /I/. К этому явлению были отнесены взаимодействия с вылетом $\mathcal{M}_{\mathcal{I}} \ge 28$, а распределение \mathcal{B} -частиц по зарядам показало, что нет ядра остатка и вылетают преимущественно отдельные нуклоны. Следовательно, происходит полное разрушение ядер $\mathcal{H}_{\mathcal{I}}, \mathcal{B}_{\mathcal{L}}$.

В таблице I приведены вероятности полного разрушения ядер му, в при столкновении с быстрыми протонами и легкими ядрами. Таблица I.

Первичная частица	Импульс ГэВ/с	Вероятность полного разрушения %	Ссылки
Р	6.2	2.1 ± 0.5	2
	9,6	3,I <u>+</u> 0,6	Ĩ
-"-	22,5	3,I <u>+</u> •0,8	3
-"-	69	3,0 <u>+</u> 0,8	I
"	200	$2,2 \pm 0,5$	4
d	9,4	2,5 <u>+</u> 0,5	5
X .	17	6,4 <u>+</u> I,0	6
3 ミ そく 5	9,3 <u>+</u> 2,9		
6 - 2 - 9	7,8 <u>+</u> I,5		7
I0 ≤ £ ≤ I5	II,7 <u>+</u> 3,3		•
$I6 \leq \mathcal{Z} \leq 26$	I3,0 <u>+</u> 5,3		

В исследованиях полного разрушения ядер Ag, Bz и Pb под действием \measuredangle -частиц с импульсом I7 ГэВ/с использовались фотоэмульсии Госнимхимфотопроекта ЕР-2 (тип I) и П-, которые изготовлялись в ЛВЭ, используя жидкую эмульсию типа Р-2. В последнюю непосредственно перед изготовлением слоев фотоэмульсии вводилось соединение свинца. Свинец равномерно распределялся в жидкой эмульсии. Размеры кристаллов соли свинца в готовых слоях фотоэмульсии были соизмеримы с размерами кристаллов бромистого серебра (~ 0,3+0,5 мк). Толщина готовых слоев составляла ~ 500 мк.

Таблица 2

		Число	ядер в	I см ³ х I	22		
ФОТО- ЭМУЛЬСИЯ	H	С	N	0	Br	ty	PB
I	3,15	I,4I	0,395	0,956	I,03I	I,036	-
Π	3,65	I,48	0,28	1,516	0,723	0,725	0,121

Фотоэмульсии облучались на синхрофазотроне ОИЯИ ∝ -частицами с импульсом I6,8 ГэВ/с с плотностью потока (I+3).10⁴ ч/см². На следах вторичных релятивистских частий плотность сгустков на IOO мк следа в эмульсии I составляла ~ 30 и в П ~ 28.

К случаям полного разрушения здер $\mathcal{M}_{\mathcal{I}}$ $\mathcal{B}_{\mathcal{L}}$ в эмульсии I были отнесены звезды с числом h -частиц ≥ 28 , а в эмульсии к случаям полного разрушения ядер ρb отнесены звезды с полным числом заряженных частиц $(f+h) = \geq 50$. Поиск звезд производился в эмульсии I вдоль следа, было найдено 27 звезд с $\mathcal{M}_h \geq 28$ и по площади было найдено - 23 таких звезд. В эмульсии II в наблюдениях по площади было найдено 50 звезд с $\mathcal{M} \geq 50$, причем имелся случай с вылетом 60 h -частиц. В найденных звездах производилось разделение частиц на $f_{\mathcal{I}}g$ и "в" по обычным критериям, затем были измерены углы вылета этих частиц по отношению к первичному пучку.

В таблице 3 даны средние множественности при полном разрушении ядер

Таблица З.

Ядра	<hs></hs>	<ng></ng>	<he>></he>	
ty, Br	7,32 <u>+</u> 0,50	17,92 <u>+</u> 0,68	15,0 <u>+</u> 0,64	
PB	8,90 <u>+</u> 0,50	25,6 <u>+</u> 0,75	22,02 <u>+</u> 0,70	

На рис. I,2 и 3 дано соответственно угловое распределение S, J и "в" частиц при полном разрушении ядер *fl* -сплошные линии и ядер *Ag*, *B* 2 -пунктирные.

Обращает на себя внимание близость этих угловых распределений в особенности для у и в -частиц.

11. Macerief. Talas

ЛИТЕРАТУ РА

- I. К.Д.Толстов, Р.А.Хошмухамедов Сообщения ОИЯИ PI-6897 (1973)
- 2. H.Wenzeler. Nuovo Cimento 27, 6 (1963)
- 3. H.Wenzeler. Nucl. Phys. 69, 661 (1965)
- 4. Barcelona-Batavia-Belgrade-Bucharest-Lund-Lyon-Montreal-Nancy-Ottawa-Rome-Strasburg-Valencia -Collaboration
- 5. J.A.Galstyan et.al. Nucl. Phys. A 20', 626 (1973)
- 6. К.Д.Толстов, М.Тотова и др. Сообщения ОИЯИ PI-8313 (1974)
- 7. B.Jakobsson, R.Kulberg, J.Otterlund

Pion and Proton emission in inter . induced by relativistic heavy nuclei with $z \ge 12$, Lund (1974)

