

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

C343 22 + C346, 5a + C346a

234/86

Б 1-1-85-796

+

ДЕПОНИРОВАННАЯ ПУБЛИКАЦИЯ

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЯ

Лаборатория высоких энергий

М.Газдзицкий, Э.Оконое

51-1-85-796

ПОИСК ЭФФЕКТОВ ОБРАЗОВАНИЯ КЕАРК-ГЛЮОННОЙ ПЛАЗМЫ В ЦЕНТРАЛЬНЫХ ВЗАИМОДЕЙСТВИЯХ ЯДЕР С РОЖДЕНИЕМ СТРАННЫХ ЧАСТИЦ

Дубна,1985 г.

Рассматривается постановка эксперимента на установке ГИЕС по поиску эффектов образования кварк-глюнной плазмы, которые могут проявиться при рождении нейтральных странных частиц в центральных столкновениях ядер; проводится обоснование важности и перспективности такого направления исследований. На основании полученных на СКМ-200 экспериментальных данных и проведенных расчетов дается оценка количественно и качественно новых результатов, ожидаемых после первых облучений установки в пучках ядер M_{2} и St на статистике регистрируемых Λ и К⁰частиц в 100 раз превышающей ту, которая существует в настоящее время.

Для дальнейшего развития этих исследований предлагается применить выборочную регистрацию распадов \bigwedge и К^О – частиц с использованием проволочных камер гибридного спектрометра ГИЕС, что может увеличить скорость набора статистики еще на один – два порядка.

реферат составил:

Orand

АННОТАЦИЯ

Рассматривается постановка эксперимента на установке ГИЕС по поиску эффектов образования кварк-глюонной плазмы, которые могут проявиться при рождении нейтральных странных частиц в центральных столкновениях ядер; приводится обоснование важности и перспективности такого направления исследований. На основании полученных на СКМ-200 экспериментальных данных и проведенных расчетов дается оценка количественно и качественно новых результатов, ожидаемых после первых облучений установки в пучках ядер/М_д. Si на статистике регистрируемых Λ и K° - частиц в IO раз превышающей ту, которая существует в настоящее время.

Для дальнейшего развития этих исследований предлагается применить выборочную регистрацию распадов Λ и \ltimes° - частиц с использованием проволочных камер гибридного спектрометра ГИБС, что может увеличить скорость набора статистики на один-два порядка.

I. Введение.

Ядро-ядерные (АА) – взаимодействия при релятивистских энергиях предоставляют физикам возможность изучать ядерное вещество в необычных ("экстремальных") условиях больших плотностей (*g*) и эффективных температур (T_o).

При осуществлении подобных условий исключительный интерес вызывает поиск возможных фазовых переходов в аномальные состояния адронной материи и особенно в кварк-глюонную плазму. Расчеты с использованием квантовой хромодинамики позволяют оценить условия, необходимые для образования кварк-глюонного (q,q) – вещества в $A_P A_T$ – столкновениях. В ряде работ [I+I0] предсказывается возможность перехода в q, q – фазу уже при энергиях дубненского синхрофазотрона ($E_P \approx 2*4$ ГэВ/А).

На рис.І представлена зависимость вероятности образования $q_g - "сгустка" (\lambda_q)$ от Ер, рассчитанная в рамках модели [5]. Из этого рисунка видно, что значения λ_q существенным образом зависят от характера используемого в расчетах уравнения состояния – его зависимости от плотности адронного вещества (q), от величины эффективной константы кварк-глюонной связи (\mathcal{L}_c).

При такой неопределенности теоретических предсказаний они могут служить лишь ориентиром при планировании экспериментов.

Решающим аргументом здесь должны явиться экспериментальные исследования центральных АА – взаимодействий (ЦВ), которые необходимы для получения максимальных плотностей энергии (см. например [22])

$$\varepsilon \simeq \frac{2A \cdot M \cdot \mathcal{T}}{V/\mathcal{T}} = 2 \mathcal{G}_{\circ} M \cdot \mathcal{T}^{2}$$

где \mathcal{M} - масса нуклона, $\mathcal{V}_{\mathcal{J}}$ - объем взаимодействия с учетом релятивистского фактора (\mathcal{J}), а $\mathcal{G}_{\circ} = 0,17$ фм⁻³ плотность нуклонов в ядрах при нормальных условиях. Как видно из рис.2, на котором изображена зависимость \mathcal{E} от E_{p} , при энергиях дубненского синхрофазотрона можно получить $\mathcal{E} \simeq I \ \Gamma \ni B/\phi M^{3 \times 3}$, что равно или превышает значения $\mathcal{E}_{\pi} \simeq 0,4$ +I $\Gamma \ni B/\phi M^{3}$, пороговое для переходов в кварк-глюонную фазу по оценкам ряда теоретических работ [II+23].

2. Изучение странных частиц как метод поиска кварк-глюонной плазмы.

Выбор Λ , Λ и К^о – частиц для поиска аномальных эффектов, связанных с образованием qg – плазмы в АА – взаимодействиях, обусловлен соображениями теоретического и экспериментально-методического характера:

а) Ряд теоретических моделей [4+10, 15+22] предсказывает, что адранизация равновесной Q 3 – плазмы, образовавшейся при сильном возбуждении адронного зещества, приведет к аномально большому выходу странных частиц (в т.ч. Л и К^O) преимущественно в области больших поперечных импульсов (Р_т)

б) Предсказывается также заметное подпороговое рождение антигеперонов (⁶⊼/6,≃ 10⁻³+10⁻¹ в зависимости от условий эксперимента.

6) Оценки вероятности рождения в q g – плазме пар странных кварков (S, \overline{S}) показывают [7], что учет диаграмм как $\overline{q} q$ – так и g g – взаимодействий (см. рис.3), приводит к временам установления равновесия, которые сравнимы с ядерным, при этом концентрация S(\overline{S}) – кварков (по отношению к барионному числу N_B) может достигать значений $N_{B} = 0, I+0, 6$ в зависимости от величины T_0 (см. рис.4).

- 3 -

^{*)} По мнению некоторых теоретиков (см., например, [19,20,23]) величина Е будет существенно большей за счет дополнительного динамического сжатия.

Г) Благодаря сохранения странности общее число рожденных странных частиц практически не уменьшается в результате их последующих взаимодействий в ядре, поэтому выход Λ (К) – частиц дает информацию о первых наиболее "горячих" стадиях развития процесса A A – взаимодействия (как и выход прямых \mathcal{T} – квантов и пар μ_{μ} однако, вероятность рождения Λ (К) \sim в 10³ раз больше и при их регистрации не возникает таких (как для μ_{μ} и \mathcal{T}) тяжелых проблем с фоном, связанным с процессом Дрелла-Яна [24], распадами

ω(η)-μμ Т° [25] и особенно с распадами вторичных пионов

А) Внутриядерные пробеги у К и Λ – частиц больше, чем у пионов и нуклонов, так что их спектральные характеристики отражают более ранние этапы возможного процесса образования и адронизации q, q – плазмы.

е) Обнаруженную поляризацию Λ – частиц, рожденных при взаимодействии адронов с ядрами, связывают с проявлением кварковых степеней свободы [26,27], поэтому изучение этой проблемы при AA – взаимодействиях также представляет значительный интерес.

*) Исследование поляризации Λ - гиперонов (\mathcal{G}_{Λ}) в пучке поляризованных дейтронов позволяет провести для Λ - частиц полный поляризационный эксперимент, в котором по измерениям \mathcal{T}_{Λ} и асимметрии "лево-право" можно определить все параметры поляризации включая анализирующую способность и деполяризующий фактор, что дает возможность изучить структуру взаимодействий для преимущественно центральных и периферических $d^{\dagger} \Lambda$ - соударений, разделяемых по характеру фрагментации [28].

3. Существующие экспериментальные данные.

Экспериментальное изучение образования странных частиц в ядро-ядерных взаимодействиях только начинается. Данные по рождения **Л** и К^о – частиц в центральных столкновениях ядер (ЦВ) получены с помощью стримерных камер в Беркли, при Е_р = I,8 ГэВ/А для ' взаимодействий $A_r + KCL$ (63 Λ) [29] в Дубне (СКМ-200) при $E_p = 3,7$ ГэВ/А для различных пар взаимодействующих ядер, разделенных на 3 группы: I) СС, СNe, ONe ; 2) ССи, СZ, ; 3) СРь, ОРь (общая статистика – 336 Λ и 84 К^O) [28,30+35]. Кроме того имеются данные для неупругих АА – взаимодействий, полученные в Дубне на СКМ-200 [36] и пропановой камере [36+38] (с общей статистикой ~ 200 Λ и 60 К^O), которые могут служить объектом сравнения для поиска "коллективных" эффектов в ЦВ.

Основная информация о том, что известно сейчас о характеристиках Л и К^о – частиц рожденных в ЦВ (сокращенно "Л", и "К^о"), получена на установке СКМ-200.

При этом проводилось сравнение с соответствующими характерис тиками $\Lambda_{H}^{\prime\prime}$ ($K_{H}^{0\prime}$) – частиц, образовавшихся в неупругом HeL: – взаи модействии, которое можно рассматривать как суперпозицию независи мых NN – взаимодействий, усредненных по заряду и Ферми – импуль су.

В результате изучения выхода странных частиц не было обнаружено выходящих за предели ошибок (15%-20%) превышений относительных множественностей $R_{ij} = \frac{\langle n_{A_i} \rangle \langle n_{A_i} \rangle}{\langle n_{A_i} \rangle}$ по сравнению с величиной R_{ii} и однозначно идентифицируемых Λ - гиперонов среди 336 Λ^{ii} , что устанавливает верхний предел $\frac{\langle n_{A_i} \rangle}{\langle n_{A_i} \rangle} \leq 10^{-2}$ (с уровнем достоверности 90%) в то же время Λ_{ij} - гиперонов с $P_T > I$ ГэВ/с в центральных взаимодействиях рождается существенно больше, чем в неупругих: $n_{P_T} > 1 r_{P_T} >$ В пользу такой интерпретации говорит также тот факт, что в распределениях Λ_4 - гиперонов по различным параметрам:

- поперечному импульсу (P_T), быстроте (g) энергии (T*) и углу вылета (Cos θ^*)*) были выявлены важные особенности по сравнению с соответствующими характеристиками для Λ_{H} - частиц:
- существенная часть Λ_y имет значения $P_T > I \Gamma B/c$, что лежит за пределами кинематики – взаимодействий ($9\% \pm 2\%$ по сравнению $1.5 \pm 1.5\%$ que Λ_H .
- аналогичный характер имеет и Т* (см. рис.5) интервал Т*0,6 Гэ содержит 5% Л₄ - гиперонов и ни одного Л_н;
- в отличие от равномерного у- распределения для Λ_{H} (см.рис.б) соответствующие распределения для Λ_{G} имеют максимум либо в центральной области у (для легких ядер - группа I), либо при малых у (большие A_{T} - группа 3), что обусловлено вторичными процессами в тяжелых мишенях (перерассеяние, $TN - \Lambda K$

∑N→∧N ит.д.);

- соответствующие распределения по Cos 8* (см. рис.7) числа

 Λ_{4} - частиц группы I и их энергии имеют изотропный ("термализованный") характер, в противоположность распределению по $C_{05} \oplus \pi$ для Λ_{H} , которое сохраняет особенности рождения в NN – взаимодействиях (пики вперед и назад); - оценки эффективной температуры (T_{0}) для " Λ_{4} ", полученные в результате фитирования распределения $d^{3} = \Delta_{1} = \frac{1}{2} \exp(-\frac{T}{T_{0}})$ и значений ρ_{7} [40] дают величину $T_{0} = 150$ МэВ, наибольшую для частиц

рожденных (см рис. 5) в АА - взаимодействиях.

) Величины Т^{} и Сос В^{*} расчитывались в системе центра масс NN - взаимодействий, для которого T^{*} = 0,4 год/с
 ж*)Часто используемый метод определения Т_о по фитированию инвари- антных сечений Е <u>dog</u> exp(-<u>T</u>) не является строгим и приводит к завышенным значения Т_о.
 Таким образом полученные на СКМ-200 данные подтверждают перспектив ность использования Λ и К⁰-частиц для поиска бозможных переходов в $qg - - \phi$ азу, указывают на возможность получения разогретой адронной плазмы (газа) с локальным сгустком квагмы, который является источником частиц с большим ρ_{τ} . Такое кварк-глюонное зерно при доста точно большой плотности энергии может стать катализатором процесса образования протяженной равновесной квагмы со значительной концентрацией S-кварков.

Как показывает опыт работы на СКМ-200, предлагаемые эксперименты должны проводиться в цучках ядер с наибольшим значением A_p , но с использованием не слишком тяжелых мишеней ($A_T \leq 60$), чтобы уменьшить "фон" вторичных процессов (перерассеяние, $\pi N - \Lambda \ltimes$ и др.). Наиболее привлекательным является вариант $A_p - A_T$, при котором существенно облегчается анализ и интерпретация результатов (благодаря симметрии быстротных распределений) и увеличивается жесткость отбора центральных соударений ядер.

Особенный интерес для поиска возможных эффектов образования квагмн, а также для изучения проявлений кварковой структуры в поляризации Λ - гиперона, представляет процесс рождения $P_T > I ГэВ/с, в котором как было показано в [34] - мезоны также обла$ $дают большими <math>P_T$ и оказываются изотропно распределенными, что является указанием на каталитическое действие возможного сильно возбужденного кваркового сгустка.

4. Постановка эксперимента и ожидаемые результаты

Постановка эксперимента на первом этапе предлагаемых исследований практически не отличается от той, которая была осуществлена в последних облучениях установки СКМ-200 (см.рис.8)

Пучковая часть тригтерной системы, которая осуществляет запуск стримерной камеры ГИЕС (сцинтилляционные счетчики S₄ + S₄) предназначена для отбора цучковых ядер с нужным значением $Z(A_p)$, проходящих через мищень.

-7-

Центральные столконовения ядер, в которых взаимодействуют практически все нуклоны налетающего ядра, отбираются с помощью включенных на антисовпадения счетчиков заряженных фрагментов (S_{eh}) и нейтронов – спектраторов (S_n). Последний представляет собой "сэндвич" из 5 сцинтилляторов (40 см х 40 см х 2 см) и 5 железных блоков (40 см х 40 см \pm 10 см) и обладает эффективностью регистрации одного нейтрона – спектатора ~ 0,8+0,9. Жесткость отбора (избирательность) разработанной на СКМ-200 триггерной системы, можно характеризовать отношением сечения ЦВ ($G_{u,u}$) к сечения неупругого взаимодействия ядер $G_{u,u}$, составляющим, например, для С N_E – взаимодействия величину $G_{u,u} \simeq 8 \cdot 10^{-3}$

При работе в пучках ядер с большим значением A_p жесткость отбора такой системы будет еще большей.

Ожидаемая статистика (N_{Λ} и N_{κ}) была оценена экстраполяцией выхода Λ и K^O – частиц, полученного на СКМ-200 для центральных взаимодействий примерно симметричных ядер (рис. 9). Используя эту оценку для центральных столкновений ядер S₂ S₂ и S₂ C₀, а также полученные из эксперимента эффективность отбора взаимодействий, эффективность триггера (0,5); эффективность регистрации Λ и K^O частиц (0,3 и 0,15)^{*)} и с учетсм невидимых мод распада (0,64 и 0,34) получаем для 400-часового эффективного облучения установки ГИБС $N_{\Lambda} \sim 4 \cdot 10^3$ и $N_{\kappa} \approx 2 \cdot 10^3$.

 х) Эта величина связана с размером зоны плохого разрешения
 вблизи точки взаимодействия: эффективность наблюдения √° -собнтий и следовательно статистика могут быть увеличены в 2-3 раза, есло на установке ГИЕС будут осуществлены соответствующие условия.

- 8 -

Фон также может быть оценен на основании полученных экспериментальных данных; он обусловлен в основном недостаточно полным разделением Λ и К⁰ частиц и составляет: для Λ – 3% и для К⁰ – 7%.

Для иллюстрации достигнутой надежности выделения распадов \land и K^O – частиц на рис.10,11 приведены их массовые распределения, а на рис.12 – полученное при фитировании распределение по χ^2 в сравнении с теоретическим (см.^[-;1]).

На основании анализа случаев рождения нейтральных странных частиц, которые будут зарегистрированы за 400-часовой сеанс облучения установки ГИЕС-I в пучке ядер Mg и Sc можно получить следующие результаты:

а) На статистике, превышающей в 40 \pm 80 раз ту, которая сущест вует в настоящее время, проверить и изучить особенности образования Λ и К^о-частиц в центральных столкновениях ядер, обнаруженные на СКМ-200 (см. раздел 3).

б) Провести поиск ожидаемых проявлений кварк-глюонной плазмы при центральных взаимодействиях более тяжелых, чем на СКМ-200, ядер ($A_p > 25$), обеспечив при этом чувствительность к возможным относительным величинам эффектов на уровне: (2+3)·10⁻² – по выходу Λ и К⁰ и ~10⁻³ по выходу $\overline{\Lambda}$ и $\overline{\Sigma}^{9}$.

в) Исследовать поляризацию Л – гиперонов, рожденных в АА – взаимодействиях, и ее зависимость от Р_т с точностью 2:3% для измерений величины Я.

г) Изучить характеристики "кумулятивных» / ,-гиперонов с P_T > I ГэВ/с (их выход, спектры, поляризацию), которые несут наиболее важную информацию о возможном процессе образования кварк-глюонной плазмы. При анализе и интерпретации наблюденных эффектов целесообразно использовать для сравнения соответствующие характеристики взаимодействий малонуклонных систем (например He Li, как на СКМ-200 а также NA и dA – взаимодействий.

Предполагаемые исследования особенностей образования нейтральных странных частиц в ЦВ с целью поиска возможных проявлений Q — плазмы, в настоящее время не имеют серьезной конкуренции и не будут ее иметь по крайней мере в ближайшие 2 года.

Уже полученные на СКМ-200 результаты превосходят аналогичные данные, полученные с помощью стриммерного спектрометра на Бэвалаке (США), не только по статистической обеспеченности (в 5+6 раз), но и по полноте и важности результатов проведенного анализа.

Это преимущество обусловлено большей энергией ядер и более совершенной (более жесткой) триггерной системой отбора $ЦB^{*})$, что позволило получить наибольшую достигнутую в ядерных пучках энергия возбуждения (T_0), и которая близка к пороговой, необходимой для образования Q_0^{*} – плазмы или даже превышает ее (по оценкам ряда теоретических работ).

Первые облучения установки ГИБС-I в пучках ядер с $A_p > 25$ позволят получить количественно и качественно новые результаты (см. а,б,в),которые должны значительно увеличить имеющееся преи-мущество.

^{*)} Если характеризовать жесткость отбора центральных взаимодействий отношением их сечения к неупругому, то она на СКМ-200, примерно, в IO раз лучше, чем на аналогичной установке Бэвалака.

5. Возможности дальнейшего развития предлагаемых исследований.

- II -

Возможности дальнейшего развития предлагаемых исследований связаны с последующим этапом проекта ГИБС – с созданием гибридного спектрометра нового типа^{*)}, отличительной особенностью которог является возможность совместного анализа взаимно дополняющей информации, получаемой одновременно с помощью стриммерной и проволочных камер, а также с помощью других детекторов, которые могут быть использованы для идентификации регистрируемых частиц. В тако спектрометре обеспечивается достаточно хорошая точность трековых измерений как для частиц средних энергий (по фотографиям стримерной камеры), так и для очень жестких частиц, летящих вперед и регистрируемых системой проволочных камер, которые посредством микропроцессоров могут быть включены в триггер.

По своим временным разрешениям пропорциональные и дрейфовые камеры уступают обычным сцинтилляционным годоскопом, но имеют лучшие пространственные разрешения и обладают рядом свойств, облегчающих их включение в триглерную систему:

- малая чувствительность к магнитному полю;
- небольшая (по количеству вещества) толщина камер, что позволяет включать в триггер частицы с малой проникающей способностью, проходящих через несколько камер;
- возможность произвольно и оперативно менять размеры и конфигура цию чувствительных плоскостей.
- к) Гибридный спектрометр такого типа, создание которого было предложено и обосновано в 197% году [42] в настоящее время успешно используется в эксперименте [43].

Достаточно большое регулирсь: е время памяти стримерной камеры (IHIO мкс) позволяют с помощью быстрых процессоров обработать сигналы с проволочных камер и осуществить различные логические схемы отбора вилок – распадов нейтральных странных частиц и гиперядер. Были рассмотрены и просчитаны две такие логические **схемы** (в геометрии экспериментов, приведенных на рис.I3,I4): - по восстановлению вершины вилки в распадном объеме (за мишенью) - по разнице числа искр (числа регистрируемых частиц) в 2-х камерах, между которыми произошел распад.

Выполненные расчеты (моделярование) показали, что с помощью подобных триггерных систем выход регистрируемых Λ и К^О – частиц может быть увеличен более чем на порядок.

Возможна постановка экспериментов, в которых бесфильмовая часть гибридного спектрометра ГЛЕС работает в автономном режиме. Моделирование одного из таких экспериментов (см. рис.IЗ) в котором для триггера предполагается использовать разработанную в рамках проекта ГИЕС мажоритарную схему [44] дает для геометрической эффективности регистрации распадов Λ - гиперонов величину (I-4).IO (в зависимости от геометрии эксперимента). По расчетам, основанным на экстраполяции данных СКМ-200, через "триггерные" камеры C_{I}^{I} и $C_{2,3}^{I}$, перекрывающие апертуру установки, будут проходить в среднем ~/5 фоновых частиц (из которых ~/10 заряженные). Фоновые запуски, связанные с взаимодействием частиц в камере C_{I}^{I} и распадном объеме, будут составлять 5-IO% от числа рабочих запусков и легко могут быть дискриминированы после реконструкции и обсчета событий.

- 12 -

^{*)} Такая триггерная система будет рассмотрена подробно в связи с регистрацией релятивистских гиперядер.

При такой постановке эксперимента скорость набора статистики может быть увеличена еще в IO+IOO раз благодаря большему быстродействию проволочных камер и возможности работы с пучками большей интенсивности (до IO⁶ ядер за цикл). При этом желательно сформировать достаточно узкий пучок (до IO мм в диаметре), пропустив его по ионопроводу мимо детекторов распадных частиц.

Авторы выражают благодарность Ю.Лукстыню и Э.Скжипчак, просмотревшим работу и сделавшим полезные замечания, а также всем сотрудникам, принимавших участие в обсуждении рассмотренных вопросов.

ЛИТЕРАТУРА

1.	Hoffman J. et al. Nouv.Cim., 1976, 33A, p.343.
2.	Kapusta J. Nucl. Phys., 1978, B148, p.461.
3.	Chin S. Phys.Lett., 1978, 78B, p.552.
4.	Rafelski J., Hagedorn R. Phys.Lett., 1980, 97B, p.180.
5.	Stocker H. et al. Phys.Lett., 1980, 95B, p.192.
6.	Biro T., Zimanayi J. Nuclear Phys., 1981, A395, p.525.
	Proc. 6th Balaton Conf. on Nucl. Phys., 1983, p.495.
7.	Rafelski J. Nucl. Phys., 1982, A374, p.489.
8.	Kampfer B. Journ. Phys., 1983, G9, p.1487.
9.	Barz H. et al. Prep. KF KI-1984-35.
10.	Patak S., Barma N. Prep. Bhuban-751-005, 1984.
11.	Baym J., Chin S. Phys.Rev., 1976, 62B, p.241.
12.	Freedman B., McLerran L. Phys.Rev., 1977, D16, p.1169.
13.	Калашников О., Климов В. Phys.Lett., 1979, 88B, p.328.
14.	Morley P., Kislinger M. Phys.Rep. 1979, 51, p.63.
15.	Шуряк Э. Phys.Lett., 1979, 81B, p.65; Phys.Rep., 1980, 61,
	p.71.
16.	Jacob M. Phys.Rep., 1982, 88, p.325.
17.	Rafelski J. Phys.Rep., 1982, 88, p.331.
18.	Willis W. Elementary Hadronic Processes and Heavy Ions
	Interactions, 1982, v.II, p.571.
19.	Gyulassy M. Proc. 6th Balaton Conf. on Nucl. Phys., 1983,
	p.489.
20.	Stocker H. et al. Progr. in Part.Nucl.Phys., 1980, 3, p.133.
21.	Hagedorn R., CERN-TH-3014, 1981.

22. Горенштейн М., Зиновьев Г. ОЛЯИ, Д-2-82-568, с.179, Дубна 1982.

23. Gyulassy M., Matsui T. Phys.Rev. 1984, D29, p.419.
24. Drell S., Yan T., Ann. Phys. 1971, 66, p.578.
25. Bunnell K. et al. Phys.Rev.Lett., 1978, 40, p.136.
26. Anderson B. Phys.Lett., 1979. 85B, p.417.
27. Heller K. et al. Phys.Rev.Lett., 1978, 41, p.
28. Оконов Э. ОИЯИ Д-2-82-568, с.166, Дубна, 1982.
29. Harris W. et al. PhysRev.Lett., 41, p.607.
30. Anikina M. et al. Proc. of Intern.Conf. on NuclNucl.
Collision Michigan, 1982, p.182.
31. Anikina M. et al. ОИЯИ E-I-83-52I, Дубна, 1983.
32. Anikina M. et al. Phys.Rev.Lett., 1983, 50, p.1971.
33. Anikina M. et al. Proc. 6th Balaton Conf. on Nucl. Phys., 1983.
34. Anikina M. et al. ОИЯИ E-I-84-376, Дубна, 1984.
35. Anikina M. et al. Zeit. fur Phys., 1984, C25, p.1.
36. Аникина М. и др. ОИЯИ Р-І-82-333, Дубна, 1982.
37. Ахабабян Н. и др. ОИЯИ Д-1-82-445, Дубна, 1982.
38. Аракелян С. и др. ОИЯИ Р-1-83-354, Дубна, 1983.
39. Иовчев К. и др. ОИЯИ Р-1-84-279, Дубна, 1984.
40. Hagedorn R. CERN-TH-3684, 1983.
41. Gazdzicki M. et al. ОИЯИ Е-I-84-444, Дубша, 1984.
42. Оконов Э. ОИЯИ I3-9483, Дубна, 1976; ОИЯИ-8309, стр.104,
Дубна, 1974.
43. Haber B. et al. Phys.Rev. 1980, D22, p.2107.
44. Калинников В., Никитюк Н. ОИЛИ Р-І-84-570, Дубна, 1984.

•

.

· · ·

•

٠

Рис. I. Вероятность образования (λ_Q) кварк-глюонного сгустка в зависимости от энергии ядер (Е) для 3-х вариантов модели с разной зависимостью уравнения состояния от ρ и \mathcal{L}_c (см. mekct)

Рис. 2. Плотность энергии \mathcal{E} , достижимая при энергии ускоренных ядер $E_{\rm D}$ и относительной нуклонной плотности $1/\rho_{\circ}$: Стрелжами обозначены $E_{\rm P}$ существующих в проектируемых ядерных ускорителей "Сатурна" (SAT), "Бэвалака" (BEV), дубненского синхрофазотрона (DUB), нуклотрона (NUC), "Венус-2" (VEN) и IIC ЦЕРНа (PS).

Рис. 3. Диаграммы $S\overline{S}$ -образования: a) $\overline{q}q$ - $S\overline{S}$ и в) qq - $S\overline{S}$

- 18 -

Рис. 7.

"неупругий"триггер= s1 × s2 × s3 × s4 × 55 × 56 "центральный"триггер= s1 × s2 × s3 × s4 × 5n × 5ch

Рис. 8. Схема эксперимента на установке СКМ-200 (невмасштабе): I – магнит СП-4I, 2 – стримерная камера, 3 – стереофотоаппарат, 4 – ионопровод, 5 – мишень, 6 – пучок, S₁ – сцинтиляционные счетчики (объяснения в тексте).

Рис. 12.

Рис. 13.

