

2301/79

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Б1-1-12325

V.

ДЕПОНИРОВАННАЯ ПУБЛИКАЦИЯ

Дубна 1979

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория высоких энергий

51-1-12325

УЧЕТ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ НА ПЛЕНКЕ С УСТАНОВКИ "ЛЮДМИЛА". МОДИФИКАЦИН ПРОГРАММЫ ТН RESH

И.М.Граменицкий, Н.Б.Дашьян, Р.Ледницки, В.И.Молоствова, Л.А.Тихонова, Т.П.Топурия.

TON! г.Дубна, 1978 год.

Изучаются нелинейные искажения на пленке с установки "Людмила". Ложная кривизна, связанная с этими искажениями, существенно зависит от номера пленки и сравнима с эффектом многократного рассеяния для антипротонов с импульсом 22.4 ГэВ/с ($\mathcal{R} \approx 5$ км).

Описана модификация программы *THRESH*, учитывающая такие искажения.

В программе ТИRESH геометрического восстановления событий делается переход от коогдинат ХМ, УМ, измеренных на пленке точек в реперную систєму, жестко связанную с детектором частиц, с помощью 6-параметрического линейного преобразования

$$XT = a_1 + a_3 XM + a_5 YM$$

$$YT = a_2 + a_4 XM + a_6 YM$$
(I)

Это преобразование учитывает сдвиг, поворот, линейное изменение масштабов и возможную неперпендикулярность координатных осей.

Заметим, что в случае простого поворота с общим изменением масштаба имеем $a_3 = a_6 = \lambda \cos \varphi$, $a_5 = -a_4 = \lambda \sin \varphi$.

При изучении взаимодействий частиц высоких энергий может возникнуть необходимость учета нелинейных искажений в процессе измерения /І - 3/. Особенно это касается искажений вдоль направления движения энергичных частиц, т.е., как правило вдоль оси Х (для энергичных частиц обычно улол $\gamma \approx 0$). Такие искажения могут вносить существенный вклад в кривизну соответствующих треков. С другой стороны, использование автоматических приборов позволяет увеличить число измеряемых реперных меток, чтобы иметь достаточное количество степеней свободы для определения лишних параметров (для определения 6 параметров в преобразовании (I) нужно измерять, как минимум, З реперных метки). В работе /1/ была использована простейшая возможность устранения линейных искажений вдоль оси Х, а именно, к УТ из (I) был добавлен квадратичный по XM член, т.е. УТ→ УТ+а, XM². При использовании 5 реперных меток (З степени свободы) эта процедура привела к существенному сдвигу первичного импульса в сторону известного значения (19 ГэВ/с)/1/.

Мы применили аналогичную процедуру при обработке измерений на автомате НРД pp-взаимодействий при 22.4 ГэВ/с; измерялось IO реперных меток (I3 степеней свободы). Анализ проводился на пленках №№ 302, 333, 286, 304 (заливка 205).

I. В Таблице I приведены средние значения параметра а₇, дисперсия а₇ и радиус кривизны для трех проекций, используемых при пространственной реконструкции ^{*)}.

№ пленки (число кадров)	Проекция	^ā 7 (10 ⁶ см)-І	Ø _{а,} (10 ⁶ см) ^{−2}	R=-1/2az (KM)
302 (53)	I	-2.I±0.3	4.2	2.4
	П Ш	-2.2±0.2 -1.4±0.2	2.4 2.2	2.3 3.6
286 (43)	I	0.7±0.2	2.6	-7.I
	Π	-2.3±0.2	2.2	2.2
	Ш	-0.5±0.2	I.8	10.0
304 (93)	I	-I.5±0.2	3.6	3.3
	П	-0.9±0.2	4.4	5.5
	Ш	-I.5±0.2	2.9	3.3
333 (82)	I	0.0±0.2	2.6	~
	П	-0.I±0.2	2.5	50.0
	Ш	-0.6±0.2	I.4	8.3

Таблица І. Параметры нелинейных искажений на пленке

¥)

Все эти величины вычисляются в рабочей плоскости, которая в программе THRESH примерно совпадает с нижней плоскостых камерного стекла.

- 2 -

Отметим существенную зависимость \bar{a}_{7} от номера пленки и от номера проекции. Отсюда можно сделать вывод, что обнаруженное нами нелинейное искажени не связано с оптическими константами установки "Людмила".

2. На основании данных Таблицы I следует ожидать заметного систематического сдвига импульсов бистрых частиц после учета искажений. Например, если принять, что соответствующая ложная кривизна на пленке № 302 составляет *R* ≈ + 3 км , то первичный импульс (p = 23 ГэВ/с, *R* = + 30 м) увеличится на I%, т.е. *P*₇-*P*₆ = 230 МэВ/с. Результать, приведенные в Табл.2, подтверждают этот вывод, а именно, *P*₇-*P*₆ = 0.268 ± 0.061 ГэВ/с. Отметим далее

Таблица 2. Средние характеристики пучковых треков на пленке № 302 (L_{TP} > 50 см, $\sigma_P < 0.5$ ГэВ/с).

Условие (N _{тр} =30)	р ГэВ/с	Д _р (ГэВ/с) ²	<u>р</u> — р _о ГэВ/с
$a_7 = 0$	22.064±0.136	0.539	-0.536±0.136
a ₇ ≠ 0	22.332±0.127	0.472	-0.268±0.127

уменьшение дисперсии \mathcal{D}_{ρ} после учета искажений.Кроме того, \overline{p}_{7} приблизилось к значению $p_{0}=22.6$ ГэВ/с, измеренному посредством счетчиковых приборов на канале сепарированных частиц.Остающуюся разницу -0.268±0.127 ГэВ/с можно объяснить влиянием неоднородного движения жидкости в камере (для заливки 205 соответствующая ложная кривизна $\mathcal{K} = 2 \div 3$ км в первой половине камеры).

3. Исследовалось также влияние нелинейных искажений на качество реконструкции пучковых треков. Анализ, проделанный на I26 пучковых треках пленок № 286,302 показал, что среднеквадратичный разброс измеренных точек относительно проекций траектории частицы на плоскости стереоснимков (*RESIDUAL*), после учета искажений, уменьшился на 7%, см.рис. I.

Таким образом, обработка измерений пленки с камеры "Людмила" на автомате НРД выявила наличие зиметных нелинейных искажений. Эти искажения не связаны ни с координатным устройством НРД^{/3/}, ни с оптическими константами установки "Людмила". Возможным их источником может быть неоднородное натяжение пленки в лентопротяжных механизмах установки "Людмила" или автомата НРД.

Что касается нелинейной деформации, она сравнима с эффектом многократного рассеяния (R_{M.p.} ≈ 5 км для пучковых треков длиной I м, р = 23 ГэВ/с) и немного меньше эффекта неоднородности движения жидкости в камере (K ≈ I - 3 км).

Приложение

Проведенный анализ показал целесообразность введения в программу THRESH 7-параметрического нелинейного преобразования; уже все параметры заливок 205 и 206, а также вся заливка 207 обсчитывались с учетом квадратичной поправки $a_7 X^2$.

Ниже описаны соответствующие изменения в программе" *THRESH* ", т.е. в ее подпрограммах *OPTAX* и *TRAFI*. Подпрограмма *OPTAX* осуществляет преобразование *XM*, *YM* \rightarrow *XT*, *YT* с заданными параметрами $a_i = TRCOE(i)$, $a_7 = TRCOE7$ и подпрограмма *TRAFI* определяет эти параметры, используя заданные и измеренные координаты реперных меток. Учет квадратичного искажения осуществляется добавлением карты

С+TRCOE7*ABK1 (ICD+IX)**2 везде после вычисления УТ -косрдинаты. Перенос параметров ТРСОЕ7 и IX из TRAF! в ОРТАХ осуществляется с помощью оператора EQUIVALENCE (KEEP(68), TRCOF7), (KEEP(69), IX) IX = I для НРД, IX = 2 для измерительного микроскопа ПУОС (х↔ у). Кроме того, в TRAF! определен массив TR7(4) для хранения

4 –

значений параметров а₇/ λ^2 :

DIMENSION TR7(4) Этот массив чистится в начале цикла D0 I5 N = I, NC : TR7(N)=0и его содержимое печатается после окончания этого цикла:

PRINT 995, (TR7(N7), N7=1,4)

```
995 FORMAT (/10x,4HTR7=,4E10.2,5x,6H(1/CM))
```

```
Перед началом цикла D0 6 J=1, NF добавлены операторы
```

```
IF(L.GT.3)GOTO 64
TRCOE7=.0
```

первый из которых переводит счет к следующим операциям (в случае, когда число реперных меток $L \ge 4$), расположенным перед оператором с меткой I2:

```
DO 62 J5=1,2
64
      LL=0 $ J3=3 $ IF (J5.EQ.2) J3=4
      DO 61 J=1,NF
       IFD=LFD+ILFD*(J-1)
      KFD=IFD+N
       IF(IBK1(KFD+2).LE.O)GOTO 61
       M=IBK1 (KFD+2)
       Il=NOX+J3¥LL
       I2=N1X+LL
       F(II) = 1.
       ICD=LXY+ILC*(M-1)
       F(II+1) = ABK1(ICD+1)
       F(I1+2) = ABK1 (ICD+2) $ IF (J5.EQ.2) F (I1+3) = ABK1 (ICD+IX) ** 2*.0001
       LL=LL+1
       F(12) = XAFM(LL) \neq IF(J5 \cdot EQ \cdot 2) F(12) = YAFM(LL)
       CONTINUE
61
       CALL MCNEW(1, J3, L, NOX)
       DO 63 J4=1,3 $ L4=J5+2*(J4-1)
       TRCOE (L4) = F(N3X+J4-1)
63
       IF(J5.EQ.2) TRCOE7=F(N3X+3)*.0001
       CONTINUE
62
```

5 –

Именно эта группа операций находит значени. параметров a_i из условия максимума функционала $\chi_X^2 = \sum_{i=4}^{L} [XR_i - XT_i(a_i a_i a_j)]^2$, (J5 = I) или функционала $\chi_Y^2 = \sum_{i=4}^{L} [YR_i - YT_i(a_i a_i a_j)]^2$, (J5 = 2) Соответствующие системы уравнений решаются с помощью подпрограмми $M \in N \in W$ (I, J3, L, $N \otimes X$), где J3 -число определяемых параметров (J3 = 3 или 4), $N \otimes X$ – адрес в рабочем массиве F, с которого расположены производные по параметрам $\Im XT_i / \Im a_1 = I$, $\Im XT_i / \Im a_3 = X M_i$, $\Im XT_i / \Im a_7 = YM_i$ · или $\Im T_i / \Im a_2 = 4$, $\Im YT_i / \Im a_4 = XM_i$, $\Im YT_i / \Im a_6 = YM_i$, $\Im YT_i / \Im a_7 = XM_i^2$, i = 4, L. При этом, заданные координаты реперных меток XR_i (или YR_i) располагаются, начиная с адреса $N \pm X$ и результат, т.е. параметры a_ℓ , заносятся в массив F, начиная с адреса $N \pm X$.

Заметим, что умножение χM_i^2 на коэффициент 0.0001 устраняет ошибку "переполнение $A \chi$ ", связанную с появлением больших чисел ~ $\sum_{i} \chi M_i^{4}$ при вычислении параметра a_7 (уже сами χM_i представляют собой большие числа). Заметим далее, что на печать выводится значение параметра a_7/λ^2 (см⁻¹), где $\lambda^2 = a_3^2 + a_4^2$.

A. Lubii J' Monerty Vuxouoba tought lls-Daw

ЛИТЕРАТУРА

- I. V.Karimaki and P.Nummi, Scandinavian Collaboration Internal Report, Helsinki, April 23, 1971.
- 2. G.Ekspong, L.Voyvodic and J.Zoll, A Study of Systematic and Random Errors of the CERN 2m HBC, CERN 73-14/1973/.
- Н.Д.Дикусар, В.П.Мороз. Матерлалы второго Всесоюзного семинара по обработке физической информации, стр. 244, Ереван, 1978. Сообщение ОИЯИ, РІО-ІО798, Дубна, 1977.

