

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ЯДЕРНЫХ РЕАКЦИЙ

ų.

И.Брандштетр, В.В.Волков, В.А.Ермаков, Т.С.Зварова, М.Крживанек, Я. Малы, Су Хун-гуй

990

ИЗУЧЕНИЕ ПРОДУКТОВ РЕАКЦИЙ ТЯЖЕЛЫХ ЭЛЕМЕНТОВ С МНОГОЗАРЯДНЫМИ ИОНАМИ. 11.

Выход некоторых изотопов калифорния и фермия при облучении тория и урана ионами 0¹⁶, 0¹⁸ и Ne²² Радио жилие, 1963, 75, 66, с 706-711.

И.Брандштетр, В.В.Волков, В.А.Ермаков, Т.С.Зварова, М.Крживанек, Я.Малы, Су Хун-гуй

990

ИЗУЧЕНИЕ ПРОДУКТОВ РЕАКЦИЙ ТЯЖЕЛЫХ ЭЛЕМЕНТОВ С МНОГОЗАРЯДНЫМИ ИОНАМИ. 11.

Выход некоторых изотопов калифорния и фермия при облучении тория и урана ионами О¹⁶, О¹⁸ и Ne²²

Дубна 1962 год

жненный институт Стримх исследования БИБЛИОТЕКА

np- 44 83/5

Аннотация

246 Cf В работе определен выход изотопов возникаю-И ионами 016, 018 щих при облучении U 238 Th 232 И Ne 22 за счет реакций (4n) и (а 4n). Дано подробное описание радиохимической методики выделения фермия и кали--активных продуктов. форния в условиях образования большого числа мешающих a На основании полученных и опубликованных данных проведено сравнение сечения образои Cf²⁴⁶ для различных комбинаций мишени и бомбардирующей частицы. Fm 250 вания

I. Brandstetr, V.V. Volkov, V.A. Yermakov, T.S. Zvarova, M. Krivanek, J. Maly, Shu Hung-guei A STUDY OF REACTION PRODUCTS OF HEAVY ELEMENTS WITH MULTI-CHARGED IONS II

Yield of Some Cf and Tm Isotopes from Bombardment of Thorium and Uranium with 0¹⁶, 0¹⁸, and Ne²²Ions

Abstract

The yields of Cf , Fm, and Fm isotopes arising in the bombardment of U^{238} and Th^{235} with 0^{16} , 0^{18} , Ne^{22} ions due to the reactions (4n) and (a 4n) have been determined.

A detailed description is given of the radiochemical separation of fermium and californium from a great number of a -active by - products. On the basis of our and published data, the cross sections for Fm^{250} and Cf^{246} production have been compared for different combinations of a target and a bombarding particle. В работах по синтезу новых трансурановых элементов с помощью тяжелых ионов экспериментатору приходится сталкиваться с большими трудностями, обусловленными малым сечением реакций. Из-за низкого порога деления подавляющее большинство возбужденных компаунд-ядер, образующихся при слиянии налетающего иона и ядра-мишени, испытывает деление и лишь в ничтожной части случаев остается в виде ядер нового элемента. Поскольку новый элемент может быть получен комбинацией различных мишеней и бомбардирующих частиц, большой интерес представляет изучение зависимости выхода от характеристик бомбардирующей частицы, ядра-мишени и типа ядерной реакции.

В настоящей работе изучался выход Cf^{246} , Fm^{250} и Fm^{252} при облучении мишеней из U^{238} и Th^{232} ионами O^{16} , O^{18} и Ne^{22} в следующих реакциях:

$Th^{232} + 0^{18} \longrightarrow Cf^{246} + 4n$	I
$U^{238} + O^{16} \longrightarrow Fm^{230} + 4n$	II
$Th^{232} + Ne^{22} - F\pi^{230} + 4\pi$	III
$U^{238} + O^{16} - Cf^{246} + a4n$	IY
$U^{238} + Ne^{22} \longrightarrow Fm^{232} + a4n$	Y

Полученные результаты сопоставляются с данными ранее опубликованных работ , в которых эти же изотопы были синтезированы при других комбинациях мишеней и частиц.

Такое сопоставление позволяет сделать некоторые выводы относительно закономерностей образования далеких трансурановых элементов при облучении тяжелыми ионами.

В работе использовались толстые мишени, выделение и идентификация продуктов ядерных реакций осуществлялись радиохимическим способом.

Методика эксперимента

Металлические фольги из тория или урана толщиной 15-20 микрон, закрепленные на специальном пробнике, облучались от 1-го до 6-ти часов на внутреннем пучке циклотрона тяжелых ионов ОИЯИ ионами O^{16} , O^{18} и Ne^{22} . Интенсивность пучка, прошедшего через мишень, измерялась интегратором тока и составляла в среднем 0,4 μ (в случае облучения тория неоном ток был равен ~ 1,5 μ A), дальнейшее повышение интенсивности вызывало обычно разрушение мишени. При синтезе Fm^{250} облучение продолжалось около часа, при этом каждые пять минут записывалась величина заряда, попавшего на мишень. Это позволяло учесть колебания интенсивности пучка во время облучения. Энергия ионов выбиралась с таким расчетом, чтобы существенно перекрыть область энергий, соответствующих вылету 4-х нейтронов. После облучения фольги поступали на радиохимическую обработку с целью выделения интересующих нас продуктов.

Основная трудность, с которой пришлось столкнуться при радиохимическом выделении калифорния и особенно фермия, заключалась в том, что кроме них при облучении за счет реакций передачи и в результате распада возникают изотопы Ac, Th, Pa, U, Np, Pu и Ra⁷⁷. Некоторые из этих радиоактивных изотопов или их дочерних продуктов дают а излучение, которое по своим свойствам (энергия а-частиц и период полураспада) весьма близко к излучению исследуемых изотопов фермия и калифорния. Это обстоятельство иллюстрируется таблицей 1.

Как показали первые эксперименты, сечения образования "мешающих" изотопов оказались во много раз больше сечений образования трансурановых элементов. (Так, например, при облучении тория неоном Ac²²⁶ получался в 10³ раз большем количестве, чем Fm²⁸⁰ и Fm²⁸² /7/

В связи с этим для их надежного отделения потребовалось разработать специальную химическую методику. Обычно трансурановые элементы выделяются путем осаждения фторидов из азотнокислого раствора облученной мишени в присутствии La^{3+} в качестве носителя. Дальнейшее разделение трансурановых элементов проводится хроматографически на катионите лактатом или *а* -оксиизобутиратом аммония. Однако в этом случае осадок фторидов будет содержать весь *Ac*, *Th*, *Pu*, большую часть *Pa*, часть *Ra* вместе с соответствующими *а* -активными дочерними продуктами. При дальнейшем разделении этой смеси на катионите лактатом или *а* - оксиизобутиратом аммония из колонки непрерывно вымывается *Th*²²⁶, который образуется за счет распада Ac²²⁶ долго удерживаемого колонкой ^{/7,8/}.

После ряда экспериментов было найдено, что действенным способом очистки фермия от "мешающих" элементов является предварительное хроматографическое разделение на катионите соляной кислотой. При таком разделении удается избавиться от *Pb* и *Bi* (вытекают в первых каплях), Ac (вытекает после всех лантанидов и актинидов), *Th* (остается на колонке)⁷⁷⁷. *Ra* отделяется таким способом не полностью (вытекает после лантанидов, перед актинием). При этой операции нет необходимости тщательно разделять актиниды и лантаниды, так как β -пик изотопов иттрия при последующем хроматографическом разделении лактатом или *а* -оксиизобутиратом аммония является удобным указателем для определения положения пиков разделенных трансурановых элементов. Однако при сильном облучении мишени отделение большей части лантанидов необходимо, так как создаваемый ими интенсивный β -фон ухудшает разрешение ионизационной камеры.

Основная часть протактиния удаляется перед осаждением фторидов добавлением циркония в качестве антиносителя. При разделении на катионите 6 н.соляной кислотой Ра выходит в области актинидов, при последующем разделении фракции актинидов лактатом или a -оксиизобутиратом аммония на смоле Ра элюируется сразу за свободным объемом колонки довольно широким пиком с растянутым хвостом, тянущимся до области Fm и Cf. Вследствие этого во фракциях тяжелых актинидов всегда содержится небольшое количество изотопов протактиния. 38-минутный Pa^{227} дает Fr^{219} , который испускает a частицы с энергией, близкой к Fm²⁵⁰ ($T_{1/4} = 30$ мин, Ea = 7,43 Мэв).

 $Pa^{227} \xrightarrow{a6,46 \text{ M} \rightarrow \text{B}}_{38,3 \text{ M}\text{H}} Ac^{223} \xrightarrow{a6,64 \text{ M} \rightarrow \text{B}}_{2,2 \text{ M}\text{H}} Fr^{219} \xrightarrow{a7,30 \text{ M} \rightarrow \text{B}}_{0,02 \text{ cek}} At^{215} \xrightarrow{a8,0 \text{ M} \rightarrow \text{B}}_{10} Bi^{211} \xrightarrow{a,6,62 \text{ M} \rightarrow \text{B}}_{2 \text{ M}\text{H}} T1^{207}_{2 \text{ M}\text{H}}$

Поскольку обе группы a -частиц разделить было трудно, при оце …е выхода Fm^{250} вносилась поправка на вклад от Fr^{219} . Поправка рассчитывалась по выходу At^{215} и не превышала 30% общего числа импульсов. Радий, который частично соосаждается с фторидом лантана, в основном отделяется добавлением Ba^{2+} перед осаждением гидроокиси актинидов и лантанидов после растворения выделенных фторидов. Его отделение на катионите 6 н.соляной кислотой происходит только частично, так как он вымывается из колонки сразу за фракцией редких земель. При дальнейшем вымывании лактатом или a - оксиизобутиратом аммония могут вымываться продукты распада Ra (например, Pb^{211} , который вытекает в области $Ce^{-(8/2)}$), так как сам Ra этим влюентом вымывается очень поздно.

На основании всех этих данных мы применили следующий порядок химической обработки облученных мишеней: урановая фольга толшиной ~ 17μ растворялась при нагревании в 1 мл концентрированной HNO_3 в присутствии 400 мкг La⁺³, определенного количества Am^{241} для определения химического выхода и ~ 5 мг Zr⁴⁺ в качестве антиносителя для протактиния. После добавления HF выделялись фториды лантанидов и актинидов, которые потом растворялись в смеси $H_3 BO_3 + HNO_3$. Затем добавлялось ~ 5 мг Ba⁺² и осаждалась гидроокись лантана небольшим избытком аммиака, не содержащего ионов CO_3^{2-} . После промывания гидроокиси растворялись в 2 н. HC1. Далее проводилось двукратное разделение на катионите. Для первого разделения использовалась колонка с катионитом дауэкс-50x12 размером 2 x 30 мм. Элюированием 2 н. IIC1 вымывался сначала свинец и висмут, при последующем элюировании 6 н. IIC1 вымывались актиниды, затем лантаниды вместе с остатком протактиния, далее радий и, наконец, актиний $^{/8/}$. Торий оставался на смоле. Таким образом отделялись все мещающие элементы, приведенные в таблице 1, за исключением плутония и части протактиния.

Фракция актинидов вместе с началом фракции лантанидов упаривалась досуха в в 0,5 н. *НС1* наносилась на колонку размером 2x100 мм с катионитом дауэкс-50x12. В качестве элюента использовался лактат или а -оксиизобутират аммония. При этом мешающий *Pu*²³² вымывался за *Cf*, т.е. далеко от *Fm*, *Pa* перед *Fm* (сразу за свободным объемом), а остаток *Ra* оставался на колонке.

При выделении Fm^{250} и Cf^{246} мы иногда применяли только второе разделение на дауэкс-50, т.е. делили выделенную смесь лантанидов и актинидов лактатом или *а* -оксиизобутиратом аммония. При этом хорошо отделяются все мешающие элементы, приведенные в таблице 1; торий вытекает сразу за свободным объемом колонки перед калифорнием и фермием, а актиний вытекает далеко за всеми трансурановыми элементами (10), радий вымывается после актиния. Наблюдалось, что Th^{226} попадает во все фракции актинидов, однако, он имеет получасовой период полураспада, так что измерения Cf^{246} и Fm^{252} можно было начинать после распада Th^{226} .

Выделенные фракции элюента после высушивания и прокаливания предварительно измерялись на *α* -эктивность сцинтилляционным счетчиком с фотоумножителем и на β -активность - с помощью торцевого счетчика типа МСТ-17.

Далее фракции, содержащие интересующие нас трансурановые элементы, помещались в ионизационную камеру, импульсы от которой подавались на 100-канальный анализатор "Радуга". Измерения на камере продолжались в течение времени, соответствующего нескольким периодом полураспада. Таким образом идентификация изотопа проводилась по химическим свойствам, энергии а -частиц и периоду полураспада.

Следует подчеркнуть, что большой выход различных *а* -активных изотопов, наблюдавшихся при облучении тория и урана тяжелыми ионами, указывает на серьезную опасность которая подстерегает экспериментатора при синтезе новых трансурановых элементов, в случае, когда детектирование осуществляется по *а* -частицам.

Результаты и их обсуждение

На рис. 1 (А,Б,В) показаны кривые распада а -активности Cf²⁴⁶, Fm²⁵⁰ и Fm²⁵² и соответствующие а -спектры. Из этих рисунков видно, что нужные изотопы выделяются достаточно надежно. Некоторые трудности представляло лишь выделение Fm²⁵⁰ в реакции 111 из-за малого эффективного сечения реакции.

Период полураспада Fm^{252} , определенный в наших экспериментах составляет 27 <u>+</u>2 час. В опубликованной литературе имеются две работы, в которых период полураспада Fm^{252} определен в 30 ч.⁹ и 22 ч.¹⁰.

Полученные результаты для выхода реакций 1-У, усредненные по нескольким экспериментам, представлены в таблице 2.

Как уже указывалось во Введении, большой интерес представляет сравнение эффективных сечений образования одного и того же изотопа при различных комбинациях мишени и бомбардирующей частицы. Для того, чтобы по выходу рассчитать максимальное эффективное сечение реакций, необходимо знать форму кривой $\sigma(E)$. Для этих целей мы воспользовались в случае реакций 1-111 данными, опубликованными в работах $^{1,2,4,5/}$; следу ет, однако, иметь в виду, что переход к другой частице несколько деформирует вид кривой $\sigma(E)$. Нам представляется, что связанная с этим ошибка не будет слишком большой. В случае реакции 1У и У имеющиеся данные $^{3,4/}$ менее определенны, поэтому полученные для этих реакций сечения необходимо рассматривать как оценочные. Рассчитанные таким образом величины сечений приведены в таблице 3. Там же указаны данные, полученные для этих реакций в других работах. Точность полученных нами данных не выше 20-30%, а в случае облучения тория неоном - 40%.

Эффективное сечение образования Fm²⁴⁰ за счет реакции 4n при облучении плутония углеродом и урана кислородом было измерено в работах /1-4/. Для Ci²⁴⁶ такие же данные были получены в работах^{/6,7/}. В таблице 3 также сделано сопоставление полученных результатов с нашими.

Это сопоставление позволяет сделать вывод, что наибольшее сечение получается при комбинации тяжелой мишени и легкой бомбардирующей частицы.

Сопоставление выхода Сб ионами О , образующегося при облучении U с выходом Fm²⁸⁰ показывает, что подавляющая часть Cf²⁴⁶ образуется за счет реакций (a4n). В этом отношении наши данные подтверждают результаты, полученные в работе Тарантина Н.И. и других^{/3/}. Нам представляется, что основная часть Fm²⁸², возионами Ne²² также связана с реакцией (а4п) U 238 никающего при облучении при облучении урана ионами углерода, кислорорис. 2 приведены сечения реакции (a4n) да и неона. Мы видим, что как и в случае реакции типа (4n), наблюдается падение сечения по мере перехода к большему значению 2 синтезируемого трансуранового элемента. Cm²⁴², Cf.246 H Fm²⁵² и Fm²⁵⁰ Сравнение сечения образования в реакциях (.4n) и (а4п) показывает, что реакция (а4п) не дает увеличения сечения по сравнению с реакцией (4n).

В заключение авторы приносят глубокую благодарность члену-корреспонденту АН СССР Г.Н.Флерову за интерес к работе, группе эксплуатации циклотрона, особенно т.Оганесяну Ю.Ц., Ю.В. Лобанову, Б.Н. Маркову, В.А. Щеголеву, а также Е.Д.Донцу, Г.Кумпфу – за любезное предоставление ионизационной камеры с сеткой и помощь при а -измерениях.

Литература

- 1. В.П. Перелыгин, Е.Д. Донец, Г.Н. Флеров. ЖЭТФ, <u>37</u>,1558 (1959).
- В.В.Волков, Л.И. Гусева, Б.Ф. Мясоедов, Н.И. Тарантин, К.В. Филипнова. ЖЭТФ, <u>37</u>, 1207 (1959).
- 3. Н.И. Тарантин. Диссертация, 1960 г.
- 4. Sikkeland T., Thompson S.G., Ghiorso A., Phys. Rev. 112. 543 (1958).
- 5. В.В.Волков, Л.И. Гусева, А.С. Пасюк, Н.И. Тарантин, К.В. Филиппова. ЖЭТФ, <u>36</u>, 762 (1959).
- 6. Л.И.Гусева, Б.Ф. Мясоедов, Н.И. Тарантин, К.В. Филиппова. ЖЭТФ, 37, 973 (1959).
- 7. И.Брандштетр, М.Крживанек, Я.Малы, Су Хун-гуй, Препринт ОИЯИ № 978, Дубна, 1962.
- 8. И.Брандштетр, Т.С. Зварова, М. Крживанек, Я. Малы, Препринт ОИЯИ № 906, Дубна 1962.
- Amiel S. et al., University of California Radiation Laboratory, Report UCRL 3610 (1956);
 "Трансурановые элементы", И.Хайд и Г.Сиборг. Москва, 1959.
- 10. Friedman A.M. et al., Phys. Rev. 102, 585 (1956).
- 11. Е.Д. Донец, В.А.Карнаухов, Г.Кумпф, Б.А. Гвоздев, Ю.Т. Чубурков. Преприит ОИЯИ, Р-896, Дубна, 1962 г.

Рукопись поступила в издательский отдел 24 мая 1962 года.

Изучаемые трансурановые элементы		Мешающие элементы				
Изотоп	Е (Мэв)	T _{1/2}	Изотоп	Е (Мэв.)	Материнский из определяющий цепочки	отоп, Т _{1/2}
Cf 246	6,75	36 час	Ро ²¹⁶	6,78	224 Ra	3,6 дня
			At 218	6,70	Rn 222	3,8 дня
			Rn ²¹⁹	6,81	Ra 223 Th 227	11 дней 18 дней
Fm ²⁸⁰	7,43	30 мин	P0 ²¹⁴	7,68	Th. 226	30,9 мин.
	·		Ra ²²⁰	7,45	Pu ²³²	36 мин.
			Fr 219	7,30	Pa ²²⁷	38 мин.
			Po 211	7,43	Pb 211	36 мин (из Ra²²³)
Fm ²⁵²	7,04	27 час	Rn 218	7,13	Ac 226	29 час
			At 217	7,02	Ac 228	10 дней
					Ra 228	14 дней

Таблица 2

Nº	Реакция	Входная энергия частицы (Мэв)	Выход на 1 частицу
I.	$Th^{232}(0^{18}, 4n) Cf^{246}$	97,5	8,6.10-11
п.	$U^{238}(0^{16}, 4n) Fm^{280}$	105	1,5.10-11
III	$Th^{232}(Ne^{22}, 4n) Fm^{230}$	130	3,1.10 ⁻¹²
IY.	$U^{238}(O^{16}, a4n) Ci^{246}$	105	2,4.10-10
Υ.	$U^{238}(Ne^{22}, a.4n)Fm^{252}$	136	7,4.10-12
		149	9,0.10-12

D			
Реакция	(cm ²)	Работа	
282 22 250	3.10-31	*	
Th (Ne, 4n) Fm	2,5.10-31	/11/	
** 238 16	1.10 ⁻³⁰	/1,2/	
0 (0,4n)rm	1.10-30	*	
Pu ²⁴² (C ¹² , 4n) Fm ²⁸⁰	9.10-30	/4/	
	8.10-30	/2/	
Pu^{241} (C ¹³ , 4n) Fm ²⁵⁰	6.10-30	/3/	
Th 232 (D 18, 4n) Cf 246	7.10-30	*	
U ²³⁸ (C ¹² , 4n)Cf ²⁴⁶	3.10-29	/4/	
	6.10-29	/5/	
U^{238} (C^{12} , a 4n) Cm ²⁴²	~ 10 ⁻²⁸	/4/	
U ²³⁸ (0 ¹⁶ , a 4n)Cf ²⁴⁶	~ 10 ⁻²⁹	/3/	
	8.10-30	*	
U ²³⁸ (Ne ²² , a 4n) Fm ²⁵²	2.10-31	*	

Таблица З

*: Наши данные.

Рис. 2. Сечения реакции (a4n) при облучении урана ионами углерода, кислорода и неона в зависимости от Z бомбардирующей частицы.

() 制作信服用品口	ннститу
на вссле	Дование
БИБЛИОТ	EKA