90-64

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

-+-

A 131

9-90-64

В.М.Абазов, А.Н.Брагин, С.А.Густов, И.В.Мирохин, Г.В.Мицин, О.В.Савченко

ТРАНСПОРТИРОВКА ВЫВЕДЕННОГО ПРОТОННОГО ПУЧКА ФАЗОТРОНА К МИШЕНИ ШИРОКОУГОЛЬНОЙ ПИ-МЕЗОННОЙ ЛИНЗЫ

Канал транспортировки выведенного протонного пучка от вакуумной камеры фазотрона до мишени пи-мезонной линзы (тракт IX) отличается от канала XII лишь конечным участком. Этот участок (рис.1) состоит из вертикального (ВКМ) и горизонтального (ОМ-4) корректоров, двух линз типа МЛ-3 (Q7, Q8) и линзы 15К50 (Q9). служащих для удержания пучка и формирования на мезонообразующей мишени изображения оптимальных размеров. Работа общей части IX и XII каналов подробно описана в /1 /. При расчете режима работы конечного участка IX канала (рис.2) в качестве начальных условий использовались реальные фазовые и энергетические параметры пучка¹²¹, причем фазовые параметры были измерены в точке, соответствующей входу в этот участок (выход СП024), методом трех сечений с помощью полупроводникового профилометра¹³. Из рис.3 видно, что для реализованного режима размеры пучка на мишени - 2 см по вертикали и 5 см по горизонтали, а экспериментальные и расчетные значения совпадают с хорошей точностью. В таблице приведены значения коээфициентов прохождения пучка, измеренные в различных сечениях тракта (рис.1) с помощью системы магнитоиндукционных датчиков¹⁴¹ во время одного из сеансов на ускорителе. Следует отметить, что более тщательная настройка канала позволяет получить коэффициент прохождения 0.94. Анализ показаний системы дозиметрического контроля фазотрона /5 / свидетельствует о том, что при таком уровне и распределении потерь максимально возможная интенсивность протонного пучка на входе в IX канал - 2 мкА.

						Таблица
Номер монитора	1	2	3	4	5	6
Коэффициент прохождения	1,0	1,0	0,95	0,94	0,92	0,91
		667.07 115, 1	1			

Рис.1. Схема IX и XII канало

Рис 2. Огибающие пучка, соответствующие реализованной схеме питания и расположения линз конечного участка IX канала.

Рис.3. Экспериментальные (вверху) и расчетные огибающие пучка на мезоиообразующей мишени.

ВОЗМОЖНОСТИ МОДЕРНИЗАЦИИ ІХ КАНАЛА

Поскольку в широкоугольной пи-мезонной линзе¹⁶ мезоны отбираются под средним углом 90°, то для увеличения их выхода и уменьшения вклада электронной или позитронной компонент необходимо уменьшить вертикальный размер пучка на мишени¹⁷. Существующая в настоящий момент схема питания линз конечного участка (Q7, Q8)

3

2

Рис.4. Огибающие пучка, соответствующие предлагаемой схеме питания и расположения линз конечного участка IX канала.

и Q9 запитаны симметрично) и их геометрическое расположение (Q9 находится на расстоянии 2,7 метра от мезонной мишени) не позволяют в полной мере реализовать возможности линзы 15К50, так как сейчас ее апертура и фокусирующая способность используются не полностью

(рабочий ток составляет лишь около половины от максимально возможного). Несимметричное питание этих линз и сдвиг последней из них примерно на метр ближе к мишени дадут возможность реализовать режим работы (рис.4), позволяющий получить на мишени изображение, не превышающее по вертикали 0,7 см (на уровне 2σ). Создание вакуума на всем протяжении тракта позволит довести вертикальный размер пучка до 0,5 см и, как указано в^{/1}, уменьшить потери при транспортировке.

ЛИТЕРАТУРА

- 1. Абазов В.М. и др. ОИЯИ, 9-89-176, Дубна, 1989.
- 2. Абазов В.М. и др. ОИЯИ, 9-87-322, Дубиа, 1987.
- 3. Густов С.А. ОИЯИ, 9-87-667, Дубна, 1987.
- Мицын Г.В. ОИЯИ, 13-89-170, Дубна, 1989.
- 5. Громов В.О. и др. ОИЯИ, 10-84-687, Дубна, 1984.
- 6. Абазов В.М. и др. -- ОИЯИ, P13-80-707, Дубна, 1980.
- 7. Волченков В.А. и др. ЛИЯФ, 612, Л., 1980.

Рукопись поступила в издательский отдел 2 февраля 1990 года.