90-107

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

6 399

9-90-107

Ю.Д.Безногих, Б.В.Василишин, А.И.Говоров, И.И.Куликов, В.А.Михайлов, В.А.Мончинский, В.В.Селезнев

РАСЧЕТ КАНАЛА ИНЖЕКЦИИ ОТ ЛУ-20 В НУКЛОТРОН

1990

Канал инжекции пучка от ЛУ-20 в нуклотрон ^{/1/} должен быть совместим с ныне существующим каналом инжекции в синхрофазотрон. Так как медианная плоскость нуклотрона опущена по отношению к оси ЛУ-20 на 3760 мм, а ввод пучка в нуклотрон осуществляется по вертикали, то система инжекции должна обеспечивать по вертикали ахроматический перевод пучка в медианную плоскость нуклотрона и посадку на орбиту, а по горизонтали - совмещение оси пучка с продольной осью соответствующего прямолинейного промежутка нуклотрона и согласование пучка по дисперсии. Кроме того, оптическая система канала инжекции осуществляет согласование фазовых характеристик пучка и нуклотрона в обеих плоскостях.

Расчет канала производился по интерактивной программе TRANSP на 3BM СМ-4'2'. Начальные условия на входе в канал /выход ЛУ-20/ принимались следующими: горизонтальный и вертикальный эмиттансы составляют $\epsilon_{\bf x} = \epsilon_{\bf z}$ = 45 л мм·мрад, импульсный разброс $\Delta p/p_0 = \pm 0,0016$, горизонтальный и вертикальный размеры пучка $\Delta X = \Delta Z = 10$ мм, ($B\rho$) = 0,649 Тл·м. Предполагалось, что в обеих плоскостях фазовый эллипс имеет канонический вид. На входе в нуклотрон /вход в линзу Д, расположенную в середине прамолинейного промежутка/ условия согласования следующие: дисперсия и ее производная $D_{\bf x} = -1,746$ м, $D'_{\bf x} = -0,259$, $D_{\bf z} = D'_{\bf z} = 0$; параметры фазового эллипса $\beta_{\bf x} = 3,245$ м, $a_{\bf x} = 0,586$, $\beta_{\bf z} = 12,08$ м, $a_{\bf x} \approx -1,959$.

1

Начальный участок канала является общим как при инжекции в СФТ, так и в нуклотрон. В состав этого участка входит ныне существующий триплет квадрупольных лина, одна дополнительная линза и дипольный магнит /М1/, осуществляющий поворот по вертикали на 15,6°. При инжекции в синхрофазотрон этот магнит отключается. Дисперсия пучка на начальном участке равна нулю. Расчет канала выполнен так, чтобы градиент в дополнительной линзе равнялся нулю, однако эта линза должна быть предусмотрена, так как для согласования фазовых характеристик пучка /без дисперсии/ с ускорителем в обеих плоскостях требуется четыре независимых параметра, роль которых играют Градиенты четырех квадрупольных линз этого участка.

Второй участок состоит из двух дублетов квадрупольных линз и дипольного магнита M2. Этот участок характеризуется наличием вертикальной дисперсии в результате поворота пучка в M1.

1

Ось пучка на этом участке составляет угол 15,6° к медианной плоскости нуклотрона. В результате отклонения в магните M2 вертикальная плоскость, содержащая ось пучка, совмещается с вертикальной плоскостью, проходящей через продольную ось прямолинейного промежутка нуклотрона. Так как магнит M2 осуществляет поворот в наклонной плоскости, то имеет место не только горизонтальное, но и вертикальное отклонение пучка, в результате чего угол оси пучка с медианной плоскостью нуклотрона уменьшается на 6,5° и составляет 9,1° на выходе магнита M2. Угол поворот в медианной плоскости этого магнита составляет 54,1°, а его проекция на горизонтальную плоскость равна 55.1°.

Третий участок состоит из четырех квадрупольных линз и вертикального септум-магнита, в котором угол пучка с медианной плоскостью нуклотрона уменьшается до нуля. Окончательная посадка пучка в медианную плоскость нуклотрона происходит в инфлекторных пластинах, расположенных во второй половине промежутка инжекции. Режим квадрупольных линз этого участка рассчитан так, чтобы горизонтальная дисперсия пучка и ее производная, возникшие в результате поворота в магните М2, приняли на входе в структурную линзу Д промежутка инжекции нуклотрона требуемые из условий согласования значения.В результате посадки пучка в медианную плоскость нуклотрона вертикальная дисперсия и ее производная становятся равными нулю, что обеспечивается соответствующей настройкой режима квадрупольных линз второго участка, что, в свою очередь, не влияет на горизонтальную дисперсию, которая равна нулю на втором участке. Аналогично, операция согласования фазовых характеристик инжекти~ руемого пучка с нуклотроном производится квадрупольными линзами первого участка, и это не влияет на дисперсионные характеристики пучка в канале.

Длительность импульса тока пучка от ЛУ-20 превышает длительность инжекции в нуклотрон. Режимы эксплуатации элементов сверхпроводящего кольца ускорителя требуют сведения к минимуму потерь пучка на этих элементах. С этой целью в канале инжекции устанавливаются дефлекторные электростатические пластины, отклоняющие неиспользованную часть пучка на поглотитель, установленный также в канале инжекции за пределами огибающей пучка. Длина дефлекторных пластин составляет 1000 мм, ширина - 100 мм, расстояние между пластинами - 80 мм. Номинальная напряженность создаваемого поля равна 3 кВ/см.

Основные параметры элементов канала приведены в табл.1. Для квадрупольных линз приведены значения градиентов в Тл/м, а для дипольных магнитов величина поля в теслах. Расстояние от центра вертикального септум-магнита до входа в структурную линзу Д промужутка инжекции нуклотрона составляет 2495,5 мм.

2

Тлблица 1

)

n

Номер элемента	Тип элемента	Граднент, Тл/м /поле, Тл/	Эффект. длина, мм
1	Своб. пром.		1131
2	Линза Д	2,7763	244
3	Своб. пром.		360
4	Линза Ф	2,3215	444
5	своб. пром.		360
6	Линза Д	3,214	244
7	Своб. пром.		519
8	Линза Ф	0	244
9	Своб. пром.		380
10	Вертикальный магнит /МТ/	0,17865	1000
11	Сноб. пром.		1158
12	Линза Ф	0,6975	400
13	Сноб. пром.	.	100
14	Дефлек, пластт.	3 кВ/см *	1000
15	Своб. пром.		100
16	Линза Д	1,3444	400
17	Своб. пром.		1900
18	Линза Ф	1,6132	400
19	Своб. пром.		400
20	Линза Д	1,5612	400
21	Своб. пром.		450
22	"Наклонный" магнит /М2/	0,25533	2400
23	Своб. пром.	•	300
24	Линза Д	0,9087	400
25	Своб. пром.		1100
26	Линза Ф	2,5125	400
27	Своб. пром.		650
28	Линэа Д	2,1989	400
29	Своб. пром.		450
30	Линза Ф	2,1577	400
31	Своб. пром.		3513,5
32	Вертикальный септум-магнит	0,24526	425

* Напряженность электростатического поля.

,

. 7 1

іюмер элемента	Тип элемента о	`оризонт. машение, м	Горизонт. огибаюшоя, ЛХ/2, мм	Вертикальное смещение , мм	Вертикальная огибающая, ΔZ/ 2, мм
:6	Линза Д	4,5	15,8	4,5	34,1
: 7	Своб. пром.	8,5	15,5	6,7	34,3
18	Линза Ф	32,8	26,5	11,9	7,6
19	Сноб. пром.	31,3	23,7	15,6	4,6*
20	Линза Д	23,2	15,8	22,0	5,9*
21	Сноб. пром.	19,2	10,6	23,9	8,0*
22	Наклон.магнит	19,1	7,7*	20,9	9,6*
23	Своб, пром.	9,0	15,7	4,1	23,3
24	Линза Д	6,9	17,8	1,9	25,1
25	Своб. дром.	4,7	22,8	-1,1	24,7
26	Линза Ф	0,4	43,0	-9,3	16,1
27	Своб. пром.	-1,1	37,0	-15,6	18,0
28	Линза Д	~3,3	6,6	-32,3	29,6
29	Своб. пром.	-5,7	12,3	-33,4	28,4
30	Лияза Ф	-9,8	35,0	-24,0	18,0
31	Своб. пром.	-10,7	44,6	-21,5	12,9
32	Берт. септум-магчит	7,2	28,0	-49,9	13,4*

*Возможные точки для установки поглотителей.

-

В табл.2 приведены величины смещения центра пучка протонов в различных точках канала инжекции, при условии, что между дефлекторными пластинами создается напряженность электростатического поля 3 кВ. Рассмотрены варианты, когда пластины отклоняются по горизонтали и по вертикали, и приводятся соответствующие величины смещений в обеих плоскостях на входе каждого элемента канала, а также значения огибающей /полуразмера/ пучка в этих точках. Поглотитель можно ставить в любой точке, где смещение центра пучка превышает его полный размер /в таблице эти точки помечены/. Из таблицы видно, что целесообразнее использовать вертикально отклоняющие дефлекторные пластины. При ускорении пучка ядер смещение пучка в электростатическом поле увеличивается по сравнению с протонным пучком из-за меньшей скорости частиц.

Схема канала инжекции приведена на рис.1.

Огибающие пучка в обеих плоскостях вдоль канала инжекции показаны на рис.2. Вход в фокусирующую линзу отмечен буквой F, дефокусирующую – D, вертикальный поворот показан буквой V, а горизонтальный – H. Магнит M2 длиной 2400 мм, осуществляющий поворот в наклонной плоскости, показан в виде эквивалентной последовательности горизонтальных и вертикального поворотов /H-V-H/.

Этот расчет лег в основу проектирования канала инжекции от ЛУ-20 в нуклотрон.

магнит побскоп ный 15.6 пастедние трибил дочного пол нуклотрона нуклотоон Conmun - Heznum ñ n ក៏កំព័ត៌ 📇 п Рис.1. Схема канала инжекции из ЛУ-20 в нуклотрон.

гист. Схема канала инжекции из лл-20 в нуклотрон. В верхней части показана фронтальная проекция канала, а в нижней - изображение канала в плане.

Рис.2. Огибающие пучки вдоль канала инжекции: 1 - горизонтальные огибающие без учета дисперсии; 2 - горизонтальная огибающая с учетом дисперсионного уширения; 3 и 4 - вертикальные огибающие пучки без учета и с учетом дисперсионного уширения, соответственно.

Авторы выражают благодарность Л.А.Ефимовой и Г.М.Сальниковой за подготовку материалов к публикации.

ЛИТЕРАТУРА

- 1. Василишин Б.В. и др. ОИЯИ, 9-86-512, Дубна, 1986.
- Василишин Б.В., Волков В.И., Куликов И.И. О́ИЯИ, 9-87-768, Дубна, 1987.

Рукопись поступила в издательский отдел 14 февраля 1990 года.