

9-86-12

А.А.Мальцев

КАЛИБРОВКА ИЗМЕРИТЕЛЕЙ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ ЭЛЕКТРОННЫХ КОЛЕЦ В АДГЕЗАТОРЕ НА ТЕПЛОВОМ СТЕНДЕ

Эффект синхротронного излучения широко используется на кольцевых ускорителях электронов для диагностики сгустков заряженных частиц без их разрушения $^{1,2'}$. На коллективном ускорителе тяжелых ионов /КУТИ/ СИЯИ с помощью синхротронного излучения измеряются различные параметры электронного кольца при его сжатии в адгезаторе /в том числе абсолютное число электронов в кольце N₈ /.

В формулу для вычисления N₂:

$$N_{e} = \frac{U}{K^{T}} \cdot f(E, R, G), \qquad /1/$$

измеряемого с помощью детекторов синхротронного излучения, входит калибровочная константа /интегральная чувствительность/ этих детекторов K^T . В /1/ U – величина сигнала на выходе измерительной системы, а функция f зависит от энергии электронов E, радиуса электронного кольца R и геометрии измерений G.

Для измерения абсолютного числа электронов необходимо, чтобы измерительный канал с приемником синхротронного излучения был прокалиброван на эталонном источнике с известной интенсивностью и спектральными характеристиками, желательно близкими спектральному распределению синхротронного излучения коллективного ускорителя. Таким эталонным источником может быть либо кольцевой электронный ускоритель, например синхротрон^{/3/}, с известной спектральной плотностью синхротронного излучения, либо тепловой источник, у которого, как известно, характер спектрального распределения близок характеру распределения синхротронного излучения.

В данной работе приводится описание методики калибровки измерительных систем, используемых на коллективном ускорителе для измерения абсолютного числа электронов в кольце, и схема устройства с эталонным тепловым источником, на котором эта калибровка осудествляется. При выборе эталонного источника учитывалась такая особенность, как подобие спектров синхротронного и теплового излучений. Для иллюстрации этого подобия на рис.1 приведены в относительных единицах спектр синхротронного излучения электронов и спектр теплового излучения вольфрама, в обоих случаях максимум спектрального распределения λ_m располагается на ~1 мкм.

Для синхротронного излучения максимум спектрального распределения приходится на длину волны λ_m^{cr} , определяемую из выражения

Рис.1. Спектральные распределения синхротронного /СИ/ и теплового /ТИ/ излучения.

$$\lambda_{\rm m}^{\rm CH} = 1.7 \cdot {\rm R}/\gamma^3, \qquad /2/$$

спектрального распределения находится по закону Вина из выражения

$$\lambda_{\rm m}^{\rm TM} = 2660 \cdot T^{-1} [\,{\rm MKM}],$$
 /3/

где Т - абсолютная температура излучателя, К. Из условия $\lambda_m^{cu} \simeq \lambda_m^{\tauu}$ /соответствие максимумов спектральных распределений теплового и синхротронного излучения/ можно определить температуру эталонного источника, которая соответствовала бы определенному радиусу и энергии электронного кольца:

$$T[K] = 1565 \cdot y^3 \cdot R^{-1} [MKM]$$
. (4/

При калибровке на светоизмерительной лампе с вольфрамовым излучателем для практических расчетов интенсивности используются законы излучения абсолютно черного тела, но вводится коэффициент "серости", зависящий от материала излучателя. Полная плотность потока теплового излучения Q(T) и спектральная плотность потока с единичной площадки излучателя могут быть представлены в следующем виде:

$$Q(T) = \epsilon(T) \cdot \sigma \cdot T^4$$
, /5/

$$q(\lambda, T) = \epsilon(\lambda, T) \cdot C_1 \cdot \lambda^{-5} \left(e^{\frac{C_2}{\lambda}T} - 1 \right)^{-1}, \qquad (6)$$

где $C_1 = 3,74 \cdot 10^{-12} \text{ Вт · см}^2$, $C_2 = 1,438 \cdot 10^4$ мкм.град, $\epsilon^{(\lambda,T)}$ - коэффициент излучения вольфрама, $\sigma = 5,67 \cdot 10^{-12} \text{ Вт/см}^2 \cdot град^4$ постоянная Стефана-Больцмана.

В случае калибровки с помощью пластинчатого излучателя мощность Q, падающая на приемник площадью s', величина возникающего на выходе измерительной системы сигнала U_T ,характеризующая отклик детектора на падающее излучение, и чувствительность детектора K^T (B.BT⁻¹) связаны соотношением

$$\mathbf{K}^{\mathrm{T}} = \frac{\pi \cdot \mathbf{L}^{2} \mathbf{U}_{\mathrm{T}} \cdot \mathbf{F}^{\mathrm{T}}}{\mathbf{Q} \cdot \mathbf{s}' \cdot \mathbf{s}''}, \qquad (77)$$

где в" – площадь излучателя, L – расстояние излучатель-приемник, а коэффициент F^T зависит от спектральной чувствительности приемника $\rho(\lambda)$ и равен

$$\mathbf{F}^{\mathbf{T}} = \int \mathbf{q}(\lambda) \, d\lambda / \int \mathbf{q}(\lambda) \, \rho(\lambda) \, d\lambda \, . \qquad /8/$$

Для проведения калибровки был рассчитан энергетический спектр излучения вольфрама при температурах 1270,1770 и 2680 К в диапазоне длин волн от 0,3 до 6 мкм. Выбор температурных значений определялся условием соответствия спектров теплового излучения вольфрама и синхротронного излучения электронов в адгезаторе на радиусах 4,42, 4,02 и 3,58 см. Расчет производился по методике, изложенной в^{/5/}, с использованием данных об излучательной способности вольфрама^{/6,7/}. Результаты расчетов спектрального распределения излучения при различных температурных значениях приведены в виде графиков на рис.2. Эталонный источник обеспечивал плотность потока излучения на стенде, близкую плотности потока синхротронного излучения электронного кольца в адгезаторе с числом частиц ~10¹² электронов.

Рис.2. Спектральные характеристики теплового излучения вольфрамовой ленты при температуре: 1 – 1270 К, 2 – 1770 К и 3 – 2680 К, соответствующей синхротронному излучению электронов в адгезаторе при радиусе кольца 4,42, 4,02 и 3,58 см,а также спектральная чувствительность приемников: 4 – неохлаж-

даемого фотосопротивления из селенида свинца, 5 – фотодиода из кремния:

Схема стенда с тепловым эталонным источником и калибруемым /поверяемым/ измерительным каналом с приемником синхротронного излучения показана на рис.3. Поток теплового излучения от температурного эталона 1, запитываемого от стабилизированного источника 2, ограничивается диафрагмой 3, модулируется механическим модулятором 4 и попадает на калибруемый приемник с предусилителем 5. По кабельной линии связи аналоговый сигнал попадает на блоки КАМАК, где усиливается в блоке 6 и проходит необходимую обработку в блоке 7, преобразующем аналоговый сигнал в цифровой код. Дальнейшая обработка сигнала производится на ЭВМ. Для обеспечения стабильности работы измерительного канала предусмотрена система синхронизации, состоящая из источника света 8 и фотоприемника с предусилителем 9.

Рис.3. Схема стенда для калибровки приемников по тепловому излучению.

В качестве источника теплового излучения /температурного эталона/ использовались светоизмерительные лампы СИ10-300у и СИРШБ-100 с ленточным вольфрамовым излучателем. Они являются хорошими температурными эталонами в оптической пирометрии с известным абсолютным и относительным распределением по спектру ^{/8/}. Светоизмерительные лампы выгодно отличаются от температурного эталона типа абсолютно черного тела удобными размерами, небольшой стоимостью и простотой в эксплуатации; рабочий спектральный диапазон простирается от видимой области до 3 мкм и определяется в основном прозрачностью колбы. При наличии в боковой части колбы окна из оптической керамики диапазон может быть расширен до 10 мкм.

В измерениях использованы два неохлаждаемых фотодетектора, существенно различающихся своими спектральными характеристиками и исполнением 797. Если один детектор - кремниевый фотодиод с чувствительной поверхностью Ø3 мм² - эффективно регистрирует кванты света в довольно узком спектральном диапазоне видимого и близкого к нему инфракрасного излучения /0,4÷1,2 мкм/, то второй - фотосопротивление на основе поликристаллического селенида свинца с чувствительной поверхностью 0,2х8 мм² - имеет широкую область чувствительности с максимумом в интервале 3:4 мкм. На рис.2 показана относительная спектральная чувствительность этих детекторов, а также спектры теплового излучения. Регистрация теплового излучения может вестись одновременно по обоим каналам либо по каждому каналу в отдельности. Кремниевый фотодетектор выполнен в одном корпусе с предусилителем по интегральной технологии. Минимизация электрических связей обеспечивает высокую помехоустойчивость детектора. Возможность изменения интенсивности теплового излучения на чувствительной поверхности калибруемого приемника с помощью отрезающих фильтров из германия, оптической керамики КО-1, КО-2, КО-6, бескиспородного стекла ИКС-29 и нейтральных поглотителей, а также с помощью изменения расстояния между источником и приемником позволяет вести регистрацию на линейном участке чувствительности измерительного канала.

Температура излучающей поверхности вольфрамовой ленты определялась с помощью пирометра 30П-66. Проведены исследования по определению характера зависимости температуры ленты по ее длине. Отмечено, что края ленты имеют температуру на 2÷3% ниже, чем центральная часть. Ширина вольфрамовой ленты памп ~2 мм. В центральной зоне рабочей части ленты температура постоянна

свинца; 2 - кремниевый фотодиод.

с точностью +0,3%. Диафрагма 3 /см. рис.3/, установленная перед лампой, ограничивает излучающую площадку в середине ленты размером 2x2 мм², где температура практически одинакова по всей поверхности.

При калибровке инфракрасных детекторов не учитывалось спектральное пропускание колбы. Это связано с тем, что на адгезаторе коллективного ускорителя для абсолютных измерений тока электронного кольца использовалось окно вывода синхротронного излучения, выполненное из кварца, спектральное пропускание которого соответствует пропусканию колбы СИРШ6-100. Проведены измерения спектрального пропускания кварцевого окна и колбы лампы, их результаты представлены на рис.4. Исследования, проведенные с поляроидными пленками, предназначенными для работы в видимой области оптического спектра, показали, что приемники, применяемые на ускорителе для измерения абсолютного числа электронов, поляризационными свойствами не обладают. Можно предположить, что эта особенность распространяется и на ту ИК-область синхротронного излучения, которая используется для измерений тока.

Результаты калибровок представлены на рис.5. Измерения интегральной чувствительности К^T двух детекторов синхротронного излучения, использованных на коллективном ускорителе для измерений

4

5

тока, выполнены при нескольких значениях температуры эталонного источника. Как видно из этого рисунка, интегральная чувствительность детекторов мало меняется в интервале температур 1000÷2500 °C, соответствующем $\lambda_m \sim 0.9$ ÷2 мкм.

Суммарная ошибка при определении чувствительности детектора $\Delta K^{T}/K^{T}$, 5.10⁻². Основной вклад в погрешность измерений при калибровке на эталонном тепловом источнике вносят: ошибка определения плотности излучения $\Delta Q/Q = 3\cdot10^{-2}$; ошибка определения площади излучателя $\Delta s^{\prime\prime}/s^{\prime\prime}=3\cdot10^{-2}$; ошибка измерительного канала $\Delta U/U < 2\cdot10^{-3}$; ошибка определения расстояния между приемником и излучателем $\Delta L/L = 4\cdot10^{-3}$ и погрешность определения коэффициента $\Delta F^{T}/F^{T} = 2\cdot10^{-2}$.

В результате проведенных исследований по калибровке детекторов синхротронного излучения на тепловом вольфрамовом источнике можно сделать вывод, что суммарная ошибка калибровки чувстви~ тельности не превышает 5%. Таким образом, метод калибровки измерителей тока электронного кольца на тепловом источнике позволил определить чувствительность измерителя при различных радиусах и энергиях электронов. Показано, что при радиусе электронной орбиты ~3,5 см и энергии электронов ~20 МэВ в рабочем спектраль~ ном диапазоне ~0,5÷3 мкм в качестве эталонного теплового источника могут быть использованы светоизмерительные лампы с вольфрамовым ленточным излучателем типа СИРШ6-100, максимальная температура которых составляет 2840 К. В результате сравнения полученных экспериментальных результатов по методам калибровок на тепловом источнике и на электронном кольцевом ускорителе с известными параметрами /3/ подтверждена правильность выбора методики калибровки на тепловом источнике.

В заключение автор выражает глубокую благодарность И.А.Голутвину, В.С.Панасюку, В.П.Саранцеву и В.А.Свиридову за интерес к работе и большую практическую помощь.

ЛИТЕРАТУРА

- 1. Кулипанов Г.Н., Скринский А.Н. УФН, 1977, 122, № 3, с.369.
- 2. Голутвин И.А. и др. ОИЯИ, Р9-81-245, Дубна, 1981.
- 3. Волков Ю.М. и др. ОИЯИ, Р9-81-157, Дубна, 1981.
- 4. Брамсон М.А. Инфракрасное излучение нагретых тел. "Наука", М., 1965.
- 5. Павлов А.В., Черников А.И. Приемники излучения автоматических оптико-электронных приборов. "Энергия", М., 1972.
- 6. Брамсон М.А. Справочные таблицы по инфракрасному излучению нагретых тел. "Наука", М., 1964, с.106.
- 7. Свет Д.Я. Температурные излучения металлов и некоторых веществ. "Металлургия", М., 1964, с.69.

8. Левиков С.И. ЖНиПФиК, 1964, т.9, № 3, с.218.

9. Лачинов В.М. и др. ОИЯИ, Р9-81-201, Дубна, 1981.

Рукопись поступила в издательский отдел

6

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

вы	можете	под	учит	ьп	о поч	те	перечис	сленные	ниже	книги
	e	сли	они	не	были	за	казаны	ранее.		

-

A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 p. 40 ĸ.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 p. 80 ĸ.
A2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	¹ р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
Д3,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2 p. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	бр. 55 к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84 - 63	Труды XI Международного симпозиума по ядерной электронике. Братислава, пехословакия, 1903.	4 р. 50 к.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 p. 30 ĸ.
Д1,2-84-599	Труды VII Международного семинара по проблемам Физики высоких энергий. Дубна, 1984.	5 р . 50 к .
A17-84-850	Труды Ш Международного симпозиуна по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 р. 75 к.
Д10,11-84-818	Труды V Международного совещания по про- Блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителян заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
Д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москвя, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Мальцев А.А.

9-86-12

Калибровка измерителей синхротронного излучения электронных колец в адгезаторе на тепловом стенде

Описана методика измерения интегральной чувствительности фотоприемников, используемых на коллективном ускорителе тяжелых ионов для определения тока электронных колец по интенсивности их синхротронного излучения в инфракрасной области спектра. Измерения проводились на стенде с тепловым излучателем, имитирующим синхротронное излучение с максимумом спектра в интервале 1 мкм < λ_m < 3 мкм (диапазон температур излучателя ~1000-2500°C). Приведены результаты измерений калибровочных констант неохлаждаемых фотоприемников двух типов (фотосопротивления из селенида свинца и кремниевого фотодиода), дан анализошибок.

Работа выполнена в Отделе новых методов ускорения ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Перевод Л.Н. Барабаш

Maltsev A.A. 9-86-12 Calibration of Photodetectors Used to Measure Synchrotron Radiation Power in the HICA Compressor on A Temperature Source

The calibration of photodetectors (PbSe and Si) used to measure synchrotron radiation power on the HICA compressor is described. The calibration has been performed over 1000-2500°C temperature range. The results of measuring calibration constants and the analysis of errors are presented.

The investigation has been performed at the Department of New Acceleration Methods, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986

4