

Б.Н.Гикал, И.В.Колесов, А.С.Пасюк, Ю.А.Быковский, В.П.Гусев, Ю.П.Козырев, В Д.Пекленков, Д.А.Узиенко

ИССЛЕДОВАНИЕ ПРОЦЕССА УСКОРЕНИЯ ТЯЖЕЛЫХ ИОНОВ ИЗ ЛАЗЕРНОЙ ПЛАЗМЫ НА ШИКЛОТРОНЕ У-200

Направлено в журнал "Атомная энергия"

Ускоренные пучки тяжелых ионов широко используются для решения ядерно-физических и прикладных задач <sup>/1,2/</sup>. Вместе с тем рамки научно-технических программ определяются возможностями ускорителя, а именно - энергией, интенсивностью и видом ускоряемых частиц, что, в свою очередь, зависит от ионного источника или инжектора.

Особые требования предъявляются к ионному источнику на циклотроне, где наряду с высокой интенсивностью требуется высокая зарядность ионных пучков. До последнего времени на циклотроне применялись дуговые ионные источники. Дальнейший прогресс ускорения ионов на циклотронах может быть связан с использованием источников новых типов, таких, как ECR /источник, использующий механизм нагрева электронов на частоте электронно-циклотронного резонанса/, EBIS /электронно-лучевой источник/, а также лазерный источник, которые активно развиваются в настоящее время <sup>/3,4/</sup>. Впервые ядра азота из ECR-источника были ускорены в Карлсруэ <sup>/5/</sup>. На циклотроне МИФИ осуществлено ускорение дейтронов из лазерного источника <sup>/6/</sup>.

Исследования, проведенные на стенде ионных источников ЛЯР, позволили разработать конструкцию лазерного источника много-зарядных ионов для циклотрона  $^{/7-9/}$ 

Проблема ускорения ионов из лазерной плазмы, как известно, связана с большими плотностями эмиссионного тока из лазерной плазмы /более 10 А/см<sup>2</sup>/ и малыми длительностями ионного пакета /~1 мкс/. Данная работа посвящена исследованию процесса захвата и ускорения тяжелых ионов из лазерной плазмы на изохронном циклотроне ЛЯР ОИЯИ У-200.

#### ОПИСАНИЕ СХЕМЫ И УСЛОВИЙ ЭКСПЕРИМЕНТА

Изохронный циклотрон У-200 может ускорять ионы с  $\frac{A}{Z} = 2,8 + 5,0$ /А - массовое число, Z - заряд иона/ до энергии  $E = 145 \frac{Z^2}{A}$  МэВ.

Диаметр полюса – 200 см, конечный радиус ускорения – 87 см, среднее магнитное поле в зазоре – около 20 кГс, напряжение на дуантах –  $55 \div 75$  кВ  $^{/10, 11/}$ .

Лазерный источник конструктивно выполнен таким образом, что при его установке не требуется замены каких-либо узлов ускорителя, остается неизменной и центральная область циклотрона.

Схема расположения лазерного источника на циклотроне приведена на рис.1. Применяемый  $\mathrm{CO}_{2}$  -лазер имел частоту повторения

1



Рис.1. Схема расположения лазерного источника ионов на циклотроне у-200. 1 – CO<sub>2</sub> -лазер, 2 – механизм юстировки зеркала, 3 – зеркало, 4 – вакуумный насос, 5 – окно в штоке источника, 6 – шибер шлюза циклотрона, 7 – шток источника, 8 – дуанты, 9 – луч лазера, 10 – юстировочный лазер.

импульсов не более 1 Гц. Луч с энергией 0,4 Дж поворачивался зеркалом /3/ на угол 90°, фокусирующая линза, расположенная в штоке источника, создавала плотность мощности лазерного излучения на мишени  $10^9$  Вт/см<sup>2</sup>. В качестве ми-

шени использовалась углеродная пластинка. Изолированная сетка прозрачностью 30%, установленная на эмиссионной щели, позволяла контролировать ионный ток на выходе из источника.

Особое внимание было уделено вопросам согласования работы лазера, циклотрона и измерительной аппаратуры. Главное требование заключалось в том, чтобы "выстрел" лазера происходил во время установившегося ВЧ-напряжения на дуантах, а аппаратура была готова к регистрации ионов. Это достигалось следующим образом: ВЧ-генератор циклотрона работал в обычном режиме с длительностью импульса - 1,5 мс, частотой следования 150 Гц. После появления сигнала "Пуск" от переднего фронта генератором импульсов Г5-15 регулировалась задержка между лазерным импульсом и запуском запоминающего осциллографа С8-2, которым регистрировались ионный ток на выходе из источника, сигналы с внутреннего или внешнего пробников циклотрона и ВЧ-напряжение на дуантах /рис.2/. Конструкция пробника позволила при исследовании высокочастотных сигналов уменьшить сигнал наводки в 5-10 раз по отношению к импульсу тока пучка.

#### УСКОРЕНИЕ ИОНОВ

Исходя из возможностей лазера и условий ускорения были выбраны ионы  $C_{12}^{3+}$ , ускоряемые на второй гармонике при частоте ВЧ-генератора 15,1 МГц.

Из-за малой частоты работы лазерного источника / ~ 1 Гц/ режим ускорения ионов  $C_{12}^{3+}$  отлаживался на обычном дуговом источнике, который затем заменялся лазерным.

В лазерном источнике, в отличие от дугового, не требуется напускать газ в разрядную камеру, поэтому удалось получить рабочий вакуум в циклотроне, равный  $4\cdot 10^{-7}$  Тор. Таким образом,



Рис.2. Блок-схема системы согласования циклотрона, лазера и измерительной аппаратуры.



потерями частиц из-за обдирки на остаточном газе можно было пренебречь <sup>/12/</sup>.

Интенсивность ускоренных ионов, измеренная внутренним пробником на радиусе 30 см., составила 4,5·10<sup>9</sup> част./имп., длительность импульса по основанию – 2,5 мкс /1,5 мкс на полувысоте/, в результате средний ток в импульсе составил 860 мкА. Потери частиц в процессе ускорения соответствовали обычным потерям на У-200 /рис.3/. Вывод ускоренных ионов производился методом перезарядки ( $C_{12}^{3+} \rightarrow C_{12}^{6+}$ ) и составил около 70%.









Рис.4. Осциллограммы импульсов ускоренного пучка на различных радиусах циклотрона. Первый пик -

30 40 50 60 70 80 R (CM)

Рис.5. Зависимость времени ускорения от радиуса при напряжении на дуантах 55,6 кВ. Сплошная линия – расчет, точки – измерение.





Рис.6. Огибающая ВЧ-напряжения на дуанте в случае пробоя.

Выведенный пучок был получен интенсивностью 2·10<sup>9</sup> частиц/имп. Измеренная полупроводниковым детектором энергия ионов равнялась 108 МэВ, что соответствует энергии трехзарядного углерода при ускорении с хорошей центровкой орбит.



Рис.7. Осциллограммы импульсов ускоренного пучка и напряжения на дуантах в случае пробоя вытягивающего промежутка. Верхний луч: первый пик - импульс общего тока лазерной плазмы, второй пик - импульс ускоренного пучка ионов, нижний луч - огибающая ВЧ-напряжения на дуантах.



ка на пробнике циклотрона. Измерения с высокой точностью совпадают с расчетом, приведенным по формуле

$$E = \frac{E}{4 f Ze V_0 Sin \phi}$$
, где  $f$  – частота вращения ионов,

E - энергия ионов, Z - заряд ионов,  $V_0^{}$  - напряжение на дуантах,  $\phi$  - Фаза прохождения ионов ускоряющего промежутка.

Как уже отмечалось в работе <sup>/9/</sup>, головную часть импульса лазерной плазмы в основном составляют ионы высокой зарядности /рис.4,5/. В процессе эксперимента наблюдались случаи пробоя с дуантов /рис.6/. На циклотроне пробой с дуантов развивается с задержкой 3-4 мкс по отношению к импульсу лазера, и вызван в основном низкозарядной и нейтральной компонентами плазмы. Длительность пробоя составляла 20-30 мкс. Исследования показали, что в этом случае также возможно ускорение ионов до конечного радиуса /рис.7/, однако процесс сопровождается дополнительными потерями частиц, основная часть которых теряется на радиусах между 30 и 40 см, а также увеличением времени ускорения в циклотроне /рис.8/. Пробой с дуантов нужно рассматривать скорее как исключение, поскольку может быть достигнут режим, при котором он не наблюдается.

#### ЗАКЛЮЧЕНИЕ

В эксперименте на циклотроне удалось впервые ускорить ионы из лазерной плазмы, плотность ионного тока из которой на порядок выше по сравнению с дуговым источником, а также исследовать процесс ускорения плотного сгустка ионов длительностью в несколько микросекунд.

Установлено, что при интенсивности в импульсе около 1 мА может быть реализован режим работы циклотрона, исключающий пробой и понижение ВЧ-напряжения на дуантах, и осуществлено ускорение ионов с обычными для У-200 потерями.

Повышение рабочего вакуума в циклотроне при работе с лазерным источником особенно перспективно при ускорении высокозарядных ионов, так как в этом случае существенно снижаются потери частиц из-за обдирки.

Использование малых количеств рабочего вещества в лазерном источнике позволяет ускорять редкие изотопы.

Дальнейшие перспективы развития лазерного источника для циклотронов связаны с повышением мощности и частоты срабатывания лазера, с оптимизацией конструкции ионного истончика.

В заключение авторы выражают благодарность Г.Н.Флерову за постоянный интерес к работе и полезные дискуссии, Р.Ц.Оганесяну, Г.Г.Гульбекяну - за участие в обсуждении результатов эксперимента, Е.А.Корчагину - за техническую помощь в подготовке установки.

## ЛИТЕРАТУРА

- 1. Флеров Г.Н. и др. Труды VII Всесоюзного совещания по ускорителям заряженных частиц. ОИЯИ, Дубна, 1981.
- 2. Оганесян Ю.Ц. ОИЯИ, Р9-12843, Дубна, 1979.
- 3. Кутнер В.Б. ОИЯИ, Р9-81-139, Дубна, 1981.
- 4. Веников Н.И. Препринт ИАЭ-3217, М., 1979.
- 5. Bechtold et al. Proc. IX Inter.Conf. on Cycl. and their Aplication, Caen, France, 1981, p. 321.

6. Ананьин О.Б. и др. Письма в ЖЭТФ, 1973, 17, с. 460.

- 7. Ананъин О.Б. и др. ОИЯИ, Р9-80-832, Дубна, 1980.
- 8. Ананьин О.Б. и др. ОИЯИ, Р9-81-632, Дубна, 1981; ЖТФ, 1972, 52, с. 1472.
- 9. Ананьин О.Б. и др. ОИЯИ, Р9-81-639, Дубна, 1981; ЖТФ, 1983. 53, с. 94.
- 10. Шелаев И.А. и др. ОИЯИ, 9-3988, Дубна, 1968.
- 11. Шелаев И.А. и др. ОИЯИ, Р9-4233, Дубна, 1968.
- 12. Шелаев И.А. и др. ОИЯИ, Р9-548, Дубна, 1970.

Рукопись поступила в издательский отдел 28 июня 1983 года.

# НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

## Вы можете получить по почте перечисленные ниже книги,

### если они не были заказаны ранее.

.

| Д3-11787             | Труды III Международной школы по нейтронной физике.<br>Алушта, 1978.                                                                                 | 3 | р. | 00         | к. |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|------------|----|
| Д13-11807            | Труды III Международного совещания по пропорциональ-<br>ным и дрейфовым камерам. Дубна, 1978.                                                        | 6 | р. | <b>0</b> 0 | к. |
|                      | Труды VI Всесоюзного совещания по ускорителям заря-<br>женных частиц. Дубна, 1978 /2 тома/                                                           | 7 | р. | 40         | к. |
| Д1,2-12036           | Труды V Международного семинара по проблемам физики<br>высоких энергий. Дубна, 1978                                                                  | 5 | р. | <b>0</b> 0 | к. |
| Д1,2-12450           | Труды XII Международной школы молодых ученых по физике<br>высоких энергий. Приморско, НРБ, 1978.                                                     | 3 | р. | 00         | к. |
|                      | Труды VII Всесоюзного совещания по ускорителям заря-<br>женных частиц, Дубна, 1980 /2 тома/                                                          | 8 | р. | 00         | к. |
| Д11-80-13            | Труды рабочего совещания по системам и методам<br>аналитических вычислений на ЭВМ и их применению<br>в теоретической физике, Дубна, 1979             | 3 | р. | 50         | к. |
| д4-80-271            | Труды Международной конференции по проблемам<br>нескольких тел в ядерной физике. Дубна, 1979.                                                        | 3 | р. | 00         | к. |
| Д4-80 <b>-</b> 385   | Труды Международной школы по структуре ядра.<br>Алушта, 1980.                                                                                        | 5 | p. | 00         | к. |
| Д2-81~543            | Труды VI Международного совещания по проблемам кван-<br>товой теории поля. Алушта, 1981                                                              | 2 | р. | 50         | к. |
| <b>Д10,11-81-622</b> | Труды Международного совещания по проблемам математи-<br>ческого моделирования в ядерно-физических исследова-<br>ниях. Дубна, 1980                   | 2 | р. | 50         | к. |
| Д1,2-81-728          | Труды VI Международного семинара по проблемам физики<br>высоких энергий. Дубна, 1981.                                                                | 3 | р. | 60         | к. |
| Д17-81-758           | Труды II Международного симпозиума по избранным<br>проблемам статистической механики. Дубна, 1981.                                                   | 5 | р. | 40         | к. |
| Д1,2-82-27           | Труды Международного симпозиума по поляризационным<br>явлениям в физике высоких энергий. Дубна, 1981.                                                | 3 | р. | 20         | к. |
| P18-82-117           | Труды IV совещания по использованию новых ядерно-<br>физических методов для решения научно-технических<br>и народнохозяйственных задач. Дубна, 1981. | 3 | p. | 80         | к. |
| д2-82-568            | Труды совещания по исследованиям в области<br>релятивистской ядерной физики. Дубна, 1982.                                                            | 1 | р, | 75         | к. |
| д9-82-664            | Труды совещания по коллективным методам<br>ускорения. Дубна, 1982.                                                                                   | 3 | р. | 30         | к. |
| ДЗ,4-82-704          | Труды IV Международной школы по нейтронной<br>физике. Дубна, 1982.                                                                                   | 5 | р. | 00         | к. |

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

| Гикал Б.Н. и др. 9-83-416<br>Исследование процесса ускорения тяжелых ионов из лазерной<br>плазмы на циклотроне У-200                                                                                                                                                                                                                                                                                    |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| На циклотроне У-200 удалось впервые ускорить тяжелые ионы<br>из лазерной плазмы. Реализован режим работы циклотрона, исклю<br>чающий пробой или понижение ВЧ-напряжения на дуантах, и осу-<br>ществлено ускорение с обычными для У-200 потерями частиц.<br>Средняя интенсивность выведенного пучка ионов С <sup>3+</sup> , которые<br>выбраны в качестве тестовых, составила 2.10 <sup>9</sup> част./с. |  |  |  |  |
| Работа выполнена в Лаборатории ядерных реакций ОИЯИ.                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Препринт Объединенного института ядерных исследований. Дубна 1983                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Gikal B.N. et al. 9-83-416<br>Investigation of Heavy Ion Acceleration from Laser Plasma<br>at the U-200 Cyclotron                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Heavy ions from laser plasma have been accelerated for the first time on the U-200 cyclotron. The operation of the cyclotron without breakdown from dees and reducing dee voltage has been realised. The average intensity of extracting test ion beam $C_{12}^{3+}$ was equal to 2.10 <sup>9</sup> particle/s.                                                                                         |  |  |  |  |
| The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Preprint of the Joint Institute for Nuclear Research. Dubna 1983                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

Перевод О.С.Виноградовой.