

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

9-83-335

1983

В.П.Заболотин, А.С.Исаев, В.Н.Перфеев, С.В.Федуков, Д.И.Шерстянов, А.П.Царенков, И.Н.Яловой

АЗИМУТАЛЬНАЯ НЕОДНОРОДНОСТЬ МАГНИТНОГО ПОЛЯ В СИНХРОФАЗОТРОНЕ ОИЯИ И КОРРЕКЦИЯ ОРБИТЫ ПУЧКА ПО РАДИУСУ В НАЧАЛЬНЫЙ ПЕРИОД УСКОРЕНИЯ

1. ВВЕДЕНИЕ

Искажение замкнутой орбиты пучка в радиальном направлении вызывается азимутальной асимметрией магнитного поля. Основной вклад в возмущение орбиты вносят те гармоники, номера которых близки к частоте бетатронных колебаний. Поэтому коррекции подлежит в основном первая гармоника Фурье азимутальной асимметрии вертикальной составляющей магнитного поля ${\rm H_z}^{\prime 1}$. Первая гармоника искажения ${\rm H_z}$ с амплитудой 0,5% в синхрофазотроне ОИЯИ в результате искажения орбиты может привести к уменьшению рабочей области на 50 см. Таким образом, имеющиеся и появляющиеся искажения в распределении магнитного поля по азимуту могут привести к существенному снижению интенсивности ускоренного пучка в синхрофазотроне.

Цель данной работы - определить распределение искажений H_z по азимуту в рабочей области камеры, оценить их влияние на орбиту пучка и скорректировать имеющиеся искажения, если невозможно устранить вызвавшие их причины.

2. МЕТОДИКА ИЗМЕРЕНИЙ

Вначале измерялось распределение остаточного магнитного поля по азимуту $\frac{\Delta H_0}{H}$ % для H = 160 Э на радиусах R₀ и R₀+60 см после цикла размагничивания с током 800 А /H₀ = 59/. Затем было измерено распределение магнитного поля по азимуту $\frac{\Delta H_{H}}{H}$ % от цикла с H = 4x10³ Э/с при H = 160 Э на тех же радиусах / R₀ и R₀+60 см/.

Измерения проводились баллистическим гальванометром и двумя катушками, длина которых равнялась длине полюса в азимутальном направлении. Одна из катушек оставалась неподвижной /на опорном полюсе/, а вторая перемещалась по полюсам магнита на измеряемых радиусах. Постоянные катушек SW = 90000 см² вит.

Зависимость
$$\frac{\Delta H}{H} = f(\theta)$$
 вычислялась по формуле
 $\frac{\Delta H}{H} \approx -\frac{\Delta \alpha}{\alpha_{yp} K} \cdot 10^2$, Порторизменська сиртитут
следници вселением вселением в

1

где Δa - показания гальванометра, соответствующие разности средних значений магнитного поля ΔH на измеряемом и опорном полюсах, a_{yp} - показания гальванометра, соответствующие среднему значению магнитного поля H на измеряемом полюсе; К - коэффициент шунтировки гальванометра.

U

Ошибка при измерении $\frac{\Delta H}{H} \%$ равнялась: $\frac{\delta \frac{\Delta H}{H}}{\frac{\Delta H}{H}} = \frac{\delta \Delta a}{\Delta a} + \frac{\delta a_{yp}}{a_{yp}} + \frac{\delta K}{K}, \quad \frac{\delta \Delta a}{\Delta a} = \pm \frac{1}{2} \frac{\delta \Delta a_1 + \delta \Delta a_2}{\Delta a}.$ При $\Delta a = 100$ мм и $\delta \Delta a_1 = \delta \Delta a_2 = \pm 0,25$ мм, $\frac{\delta \Delta a}{\Delta a} = \pm 0,25\%;$ при $a_{yp} = 150$ мм $\frac{\delta a_{yp}}{a_{yp}} = \pm 0,17\%.$ $K = \frac{R^2}{R_1 R_2} = \frac{\delta K}{K} = 2 \frac{\delta R_{BHEBH}}{R_{BHEBH}} + \frac{\delta R_1}{R_1} + \frac{\delta R_2}{R_2}.$

 $R_{\text{внешн.}}$ измерялось мостом сопротивлений с точностью <u>+0,5%</u>. Сопротивления R_1 и R_2 устанавливались на штепсельных магазинах

с точностью
$$\pm 0,1\%$$
. Поэтому $\frac{\delta K}{K} \le \pm 1,2\%$.

Гальванометр отключался от измерительной схемы с помощью специального устройства в момент подачи импульса от компаратора ведущего магнитного поля ускорителя. Ошибка при отключении достигала нескольких сотых долей процента.

Таким образом, ошибка в измерении $\frac{\Delta H}{H}$ не должна быть хуже +1,7%.

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Распределение магнитного поля по азимуту $\frac{\Delta H}{H}$ % при H = 160 Э

было измерено по всем полюсам магнита на радиусах $R_0 ext{ и } R_0 \pm 60$ см при токе в цикле размагничивания 800 А. Раздельно измерялось распределение магнитного поля по азимуту $\frac{H_{II}}{H} \%$ от цикла с $H = 4 \cdot 10^3$ 3/с и от остаточного поля $\frac{H_0}{H} \%$ для H = 160 3 после окончания цикла

размагничивания с тем же током.

Полученные в процессе измерения результаты позволили устранить наиболее опасные локальные искажения магнитного поля, вызванные появлением контуров токов, охватывающих магнитопровод, Рис.1. Первая гармоника иска-

$\frac{\Delta H}{H}$ %, усредненное по квадрантам, A_H и A_R – при									
$H = 160 \ \Im, r = R_0 H R_0 \pm 60 \ \text{cm}, I_{\text{U},p} = 800 \text{ A}$									
квадр	<u>▲</u> H %, A _H , A _R	R_+ 60 см	R.	R 60 см					
	AHII %	0	0	. 0					
I	HO C	0	0	0					
	œ ^H H %	0	0	0					
	4 HII %	+0,18	+0,II	+0,10					
П	A HO %	+0,03	$R_{o} = 800$ $R_{o} = 800$ $R_{o} = 0$ 0 0 $+0,II$ $+0,08$ $+0,I9$ $-0,02$ $+0,I0$ $+0,08$ $-0,08$ $+0,0I$ $-0,07$ $0,I2$ 59 $+66^{0}$ IR	+0,II					
	AH %	+0,2I		+0,2I					
	HII 9%	0	-0,02	-0,07					
Ш	A HO %	+0,09	+0,10	+0,06					
	AH %	+0,09	+0,08	-0,01					
	AHU %	-0,04	-0,08	-0,15					
IY	A HO %	0	$ \begin{array}{c} I_{u. p} = 800 \\ \hline R_{o} \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ $	+0,0I					
	AH %	-0,04	$\begin{array}{c} \mathbf{R}_{0} \\ \mathbf{R}$	-0,14					
	Ан (?)	0 ,II	0,12	0,15					
	AR (MM)	57	59	77					
	Δφ°	+69 ⁰	+66 ⁰	+480					
			1 Ae						

в основном из-за нарушения изоляции между деталями вакуумной

камеры и магнитопроводом. В табл.1 приведены значения $\frac{\Delta H}{H}$ %, $\frac{\Delta H_{U}}{H}$ %и $\frac{\Delta H_{0}}{H}$ %, усредненные по

квадрантам, относительно квадранта I на измеренных радиусах при H = 160 Э. В этой же таблице и на рис.1 приведены значения амплитуд первой гармоники азимутальной асимметрии магнитного поля A_H , искажения орбиты пучка по радиусу A_R и их распределение по азимуту при H = 160 Э, полученные из данных измерений. Из них видно, что асимметрия в распределении магнитного поля по азимуту в момент инжекции приводит к появлению первой гармоники искажения орбиты пучка по радиусу с амплитудой 6-8 см.

Таблица 2

Величина тока в обмотках коррекции первой и второй гармоник азимутальной асимметрии с числом витков n = 2, H = 160 Э, $I_{\Pi,D} = 800$ А

	l-я гармо	оника	2-я гармон	ика
Обмотки	sin I	cosl	sin II	cos II
Ток /А/	+0,5*	+3,0	+0,25	+0,25

*Знак + означает, что положительная добавка поля создается на і и II квадрантах обмотками первой гармоники, на і и III квадрантах - обмотками второй гармоники.

В табл.2 приведены расчетные значения токов в обмотках коррекции первой и второй гармоник Фурье с числом витков в них, равным 2. При такой коррекции с помощью измерительных электродов^{/3/} определено положение пучка по радиусу в восьми точках азимута кольца магнита с шагом $40^{\circ}-50^{\circ}$ на радиусах R_0 и $R_0 \pm 45$ см на H = 170 Э. Данные этих измерений приведены в табл.3, из которой видно, что искажение скорректированной орбиты пучка при H = 170 Э составляет 3-5 см вместо 12-16 см до ее коррекции.

Определенный интерес представляет информация о распределении магнитного поля по азимуту на различных радиусах в линейных промежутках и на краях квадрантов. На малых полях это распределение нужно знать для определения его влияния на орбиту инжектируемого и ускоряемого пучка, а на больших полях - для учета влияния распределения на пучок, выводимый из камеры ускорителя и транспортируемый к физическим установкам.

В табл.4 и на рис.2 приведено $\frac{H_i}{H} \approx f(\theta)$ при H = 160 3 у края квадранта I и на вводном линейном промежутке на радиусах R_0 и R_0 +70 см.

Положение пучка по радиусу /мм/ после коррекции азимутальной асимметрии магнитного поля. Н = 170 Э, I_{II.D} = 800 А

квадр.	I		П			Ш		IУ
азимут (град) Радиус	27 ⁰	66 ⁰	18 ⁰	63 ⁰	27 ⁰	66 ⁰	27 ⁰	72
R. + 45 cm	0	0	-20	-40	-50	-40	-40	-20
R.	+20	+10	-10	-10	- I0	0	- I0	0
R 45 см	-50	-10	-10	-10	-10	0	-I 0	-50

Таблица 4

 $\frac{H_i}{u}$ %=f(θ) на краю квадранта I и в промежутке ввода.

H = 160Э, $r = R_0$ и $R_0 + 70$ см

	Kpati	квадр. I	Промеж.ввода (к квадранту ІУ)			
L (0)	() R <u>.</u>	R_+ 70 cm	L (см)	R.	R. + 70 cm	
200	100		8,7	62,5	63.5	
110	97,5	96	17.5	50	50.7	
80	96.5	94,5	27,5	37,8	38	
60	94,5	92,5	37,5	31	30,5	
40	94,3	92,3	57,5	21,3	21	
30	94	92	77.5	16	15	
20	92.8	91,2	107.5	7,8	8,5	
10	88	87,5	137.5	3.4	3,9	
0	77	78,5	180	0,5	0,6	

Рис.2. $\frac{H_i}{H}$ %=f(θ) в промежутке ввода и у края квадранта H = 160 Э; 1 - r = R₀, 2 r = R₀+70 см.

Таблица З

Таблица 5

в

 $\frac{H_i}{H}$ % = f(θ) в линейных промежутках и на краях квадрантов,

H =	160	и	11500	э,	$r = R_0$
-----	-----	---	-------	----	-----------

•	Промеж.	Іромеж. веод Ускоряющ. I		вывод		Ускоряющ.П			
IV, I	Н(Э) L (см)	160	11500	160	11500	I60	II500	I60	11500
Квадр. II,III	192,3 100,8 0	100 99,4 78,2	100 98,1 76,5	100 99,4 79,3	100 97,8 76,3	100 99,9 79 ,3	100 98,1 76,3	100 99,8 79	100 98,1 76,7
Промежутки	89,2 178,4 267,6 356,8 356,8	15,4 2 -0,1 -0,1 -0,2	17,6 2,7 0 -0,2 -0,2	13,5 0,1 -0,2 -0,1 -0,1	16,9 2,4 0 -0,1	15,5 2,2 0 -0,1 -0,1	17,2 2,3 0 -0,1 -0,1	15,I 0,2 0,I 0 0,I	17 2,3 0 -0,I -0,I
Ι,ΙΥ	267,6 178,4 89,2	-0,3 I,3 I6	0 2,7 17,7	0,I 2,7 I7,8	0 2,4 17	0 I,8 I6,0	0, 2,3 17,8	-0,I 2 I5,4	0 2,3 17,2
Квадр. I,II,II	0 100,8 192,3	78,I 99,3 I00	76,7 98 IOO	82,3 99,4 100	76,4 97,6 100	78,6 99.5 100	77,8 99 100	78,2 99,4 100	77 98,2 100

Рис. 3. $\frac{H_i}{H} \approx f(\theta)$ в промежутке ввода и в промежутке вывода, 1 - H = 160 Э, 2 - H = 11500 Э.

В табл.5 и на рис.3 приведено
$$\frac{H_i}{H}$$
%=f(θ) при H = 160 и 11500 Э линейных промежутках на радиусе R_0 .

Таблица 6

 $\frac{H_1}{H}$ % = f(θ) в промежутке выводы и на краю квадранта II H = 11500 Э, r = R₀, R₀ + 50 см и R₀ + 125 см

L (см)	R.	ℓ₀ + 50 см	L (CM)	R_+ 1 25 см
I 35	100		I 46,5	46
II5	99,8		I26,5	45,7
95	99,5	98,5	101,5	45,2
75	98	96,5	8 I, 5	45
55	96	94,5	56,5	44,3
45	95	93,5	26,5	4I,5
3 5	94	92,7	I6, 5	40,5
25	92,6	9 I, 5	6,5	38,5
I5	90	8 9		
5	84	84		
5	72	72,5	3,5	35,6
I5	56	56,7	I3,5	3I, 6
25	43	43, 5	23,5	27,2
35	34	34	33,5	23,4
45	28	28,2	43, 5	20,4
55	24	23, 5	5 3, 5	18
65	20	20,2	6 3, 5	15, 8
75	17,5	17,I	7 3, 5	13,7
85	I4,8	I4 , 8	83,5	II, 8
95	12,4	12,4	93,5	10,2
105	IO,5	10,6	103,5	8,4
I I5	8,5	8,8	113,5	6,8
125	6,9	6,9	12 3, 5	5,4
I 35	5,5	5,5	I33, 5	4,3
I4 5	3,2	-	I43,5	3,2

В табл.6 и на рис.4 приведено $\frac{\mathrm{H_i}}{\mathrm{H}}$ % = f(heta) на H = 11500 Э у края

квадранта II и в промежутке вывода на радиусах R_0 , R_0 + 50 см и R_0 + 125 см.

Из приведенных данных видно, что асимметрия в распределении магнитного поля по азимуту в линейных промежутках сравнительно незначительна и не представляет опасности для искажения орбиты пучка. Это подтвердилось и экспериментальной проверкой, путем создания добавочного магнитного поля того и другого знака обмотками, уложенными на половинах промежутков, а также вокруг двух крайних сердечников квадрантов. При этом увеличения захвата в квазибетатронный и синхротронный режимы ускорения не наблюдалось.

Рис.4. $\frac{H_i}{H} \approx f(\theta)$ в промежутке вывода и у края квадранта II, H = 11500 Э; 1 - r = R₀, 2 - r = R₀ + 50 см, 3 - r = R₀ + + 125 см.

Проведенные исследования позволили:

1. Получить подробную карту распределения магнитного поля по азимуту в рабочей области камеры в начальный период ускорения, а на выводном промежутке и вне рабочей области - при H = = 11,5 кЭ

2. Выявить и устранить опасные локальные искажения.

3. Установить, что асимметрия в распределении магнитного поля по азимуту в линейных промежутках незначительна и не вносит ощутимых искажений в положение орбиты пучка по радиусу.

4. Рассчитать необходимые токи в обмотках коррекции первой и второй гармоник асимметрии магнитного поля по азимуту, которые позволили уменьшить искажение орбиты пучка по радиусу с 15 до 5 см.

ЛИТЕРАТУРА

- 1. Коломенский А.А., Лебедев А.Н. Теория циклических ускорителей. ГИФМЛ, М., 1962.
- 2. Безногих Ю.Д. и др. ОИЯИ, Б1-9-8374, Дубна, 1974.
- 3. Конский Г.Н., Царенков А.П., Штырляев В.А. ОИЯИ, 9-5419, Дубна, 1970.

Рукопись поступила в издательский отдел 26 мая 1983 года.

Заболотин В.П. и др. 9-83-335 Азимутальная неоднородность магнитного поля в синхрофазотроне ОИЯИ и коррекция орбиты пучка по радиусу в начальный период ускорения

Приведены данные о распределении магнитного поля H = 160 3 по азимуту квадрантов магнита на радиусах R_0 и $R_0 \pm 60$ см при токе в цикле размагничивания 800 A, о величине амплитуды и положении первой гармоники азимутальной асимметрии магнитного поля, искажении орбиты пучка по радиусу, а также о величинах тока в обмотках коррекции, служащих для компенсации искажений. Представлено распределение магнитного поля по азимуту в линейных промежутках, а также на краях квадрантов в рабочей области и вне ее при H = 160, 3000 и 11500 3. Показана результативность коррекции искажений орбиты пучка по радиусу в начальный период ускорения.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

Zabolotin V.P. et al. 9-83-335 Azimuthal Inhomogeneity of Magnetic Field in JINR Synchrophasotron and Correcting of Beam Orbit over Radius at the Initial Stage of Acceleration

Information is presented on the distribution of magnetic field H = 160 0e over magnet quadrant azimuth on R_0 and $R_0 \pm 60$ cm radii for 800 A current in demagnetization cycle, on amplitude value and position of the first harmonics of azimuthal symmetry of the magnetic field and beam orbit distortion over radius, as well as on current values in correction coils which serve to compensate distortions. The magnetic field distribution over azimuth in linear gaps and on edges of the quadrants in the working region and outside it at H = 160, 3000 and 11500 0e is presented. The possibilities al stage of acceleration.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.