

3362/83

9-83-148/6-83

Н.Ю.Казаринов, В.И.Казача

О ДОПУСКАХ НА ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЯ В ИНДУКЦИОННОЙ УСКОРЯЮЩЕЙ СИСТЕМЕ КУТИ-20

Индукция ведущего магнитного поля B_z в линейном индукционном ускорителе /ЛИУ/, предназначенном для ускорения электронно-ионных колец, должна иметь величину ~1,2 \div 1,36 $T^{:/1,\mathscr{B}'}$. Магнитное поле создается с помощью встроенных в индукторы отдельных катушек, запитываемых импульсным током, длительность полупериода которого $T_{1/2}$ на 2 \div 3 порядка превышает время пролета электронно-ионного кольца через ЛИУ. В силу дискретного расположения ряда одинаковых катушек B_z на радиусе кольца будет иметь знакопеременный градиент.

Величина амплитуды гармоники ${\rm B_z}$ ограничена требованием $W {<} W_{\Pi}$, где W - суммарное ускорение центра масс электронно-ионного кольца, определяемое напряженностью ускоряющего электрического поля ${\rm E_z}$ и радиальной составляющей индукции ${\rm B_r}$ на радиусе кольца; W_{Π} - предельно допустимое ускорение центра масс кольца. Более жесткое ограничение связано с возможностью пересечения электронно-ионным кольцом ряда резонансов при ускорении в ${\rm B_z}$, имеющем знакопеременный градиент. Кроме того, геометрия магнитной системы должна выбираться с учетом ограниченности величины индукции рассеянного магнитного поля в области пермаллоевых сердечников индукторов.

В данной работе вычисляются величины амплитуд гармоник В и его градиентов, связанные с дискретностью структуры магнитной системы ЛИУ как на радиусе кольца, так и вне катушек; рассматриваются также ограничения на их величины, связанные с возможным пересечением резонансов.

1. Рассмотрим магнитную систему ЛИУ, состоящую из бесконечного ряда одинаковых катушек с площадью сечения S, полным током J, образующую периодическую вдоль оси z структуру с периодом λ /рис.1/. В такой системе компоненты индукции ведущего магнитного поля могут быть представлены в виде разложения в ряд Фурье:

$$B_{z}(r, z) = B_{zo} \cdot [\epsilon(r) + \sum_{m=1}^{\infty} \tilde{a}_{m}(r) \cdot \cos \frac{2\pi m}{\lambda} z]$$
(1/

$$B_{r}(r, z) = B_{z_{0}} \cdot \sum_{m=1}^{\infty} \tilde{a}_{m}(r) \cdot \sin \frac{2\pi m}{\lambda} z$$
 /2/

/считаем, что начало координат находится в средней плоскости одной из катушек/. Здесь

$$\epsilon(\mathbf{r}) = \begin{cases} 1 & \text{при } \mathbf{r} < \mathbf{r}_{0}, \\ 0 & \text{при } \mathbf{r} > \mathbf{r}_{0} + \mathbf{h}, \end{cases}$$
(3/

$$B_{z_0} = \frac{4\pi \cdot J}{c \cdot \lambda}$$

и

×10⁻²

6

Выражения /4/ справедливы в случае, когда выполняются неравен-

ства h << r₀ и
$$\frac{2\pi r}{\lambda} \gg 1$$
.

Рассмотрим магнитную систему, геометрия которой близка к геометрии магнитной системы индукционной ускоряющей секции прототипа КУТИ $^{/2'}$: h = 1,2 см; l=0,6 см; $\lambda = 4,6$ см /4,6 см аксиальный размер одного индуктора/. На рис.2 /кривая 1/ показана рассчитанная для этих катушек по формулам /1/-/4/ зависимость амплитуды B_z от г вне катушек в области пермаллоевых

Рис.2. Распределение рассеянного B_z в области пермаллоевых сердечников индукторов. сердечников индукторов при $r_0 = 7$ см и $B_{z_0} = 1,36$ Т. Из рисунка видно, что максимальное значение рассеянного B_z в области пермаллоевых сердечников не превышает величины $6,3\cdot10^{-3}$ Т и быстро уменьшается с увеличением r. Такой уровень замагниченности рассеянным магнитным полем практически не влияет на работу сердечников.

2. Наличие периодического возмущения ведущего магнитного поля может привести к резонансному возбуждению колебаний как поляризации, так и малых размеров электронно-ионного кольца. В процессе ускорения поляризация кольца P_z и координата центра масс z_0 изменяются во времени согласно уравнениям $^{3/3}$:

$$\ddot{\mathbf{p}}_{z} + \omega^{2} \cdot \mathbf{p}_{z} = \mathbf{W}_{0} \cdot \left(\frac{1+\xi}{1-f}\right) + \mathbf{W}_{1} \cdot \left(1+\xi\right) \cdot \cos\frac{2\pi}{\lambda} \mathbf{z}_{0} - \frac{2\pi \mathbf{p}_{z}}{\lambda} \cdot \mathbf{W}_{1} \cdot \left(1+\xi\right) \cdot \sin\frac{2\pi}{\lambda} \mathbf{z}_{0},$$

$$(5)$$

Здесь
$$W_0 = \frac{e \cdot E_z \cdot (1-f)}{m \cdot \gamma \cdot (1+\xi)}$$
; $W_1 = \frac{e \cdot B_{r_0}}{m \cdot \gamma \cdot (1+\xi)}$; $\beta_{\theta} \approx 1$; ξ - фактор

загрузки; f - коэффициент нейтрализации; е и m- заряд и масса электрона; γ - релятивистский фактор вращения электронов в кольце; ω - частота дипольных колебаний в кольце, связанная с параметрами кольца:

$$\omega^{2} = \frac{z \cdot e^{2} \cdot N_{1}}{\pi \cdot \mathbf{R} \cdot \mathbf{a} \cdot \mathbf{m} \cdot \gamma} \cdot (1 + \frac{1}{\xi}), \qquad (6/$$

где z и N_i - средний заряд и число ионов в кольце; R и a - большой и малый радиусы кольща.

Переходя в системе /5/ от дифференцирования по времени к диф- ференцированию по координате z_{0} , получим

$$\frac{\mathrm{d}^2 \mathbf{p}_z}{\mathrm{d}z_0^2} + \frac{1}{\beta_z} \cdot \frac{\mathrm{d}\beta_z}{\mathrm{d}z_0} \cdot \frac{\mathrm{d}\mathbf{p}_z}{\mathrm{d}z_0} + \frac{\omega^2}{\beta_z^2 \cdot c^2} \cdot \mathbf{p}_z =$$

2

Q

10

11

Г.см

12

13

$$= \frac{W_0 \cdot (1+\xi)}{\beta_z^2 \cdot c^2 (1-t)} + \frac{W_1 (1+\xi) \cdot \cos \frac{2\pi}{\lambda} z_0}{\beta_z^2 c^2} - \frac{2\pi p_z}{\lambda} \cdot \frac{(1+\xi)}{\beta_z^2 \cdot c^2} \cdot W_1 \cdot \sin \frac{2\pi}{\lambda} z_0, /7/2$$
$$\beta_z \cdot \frac{d\beta_z}{dz_0} = \frac{W_0}{c^2} + \frac{W_1}{c^2} \cdot \cos \frac{2\pi}{\lambda} z_0.$$

Здесь $\beta_z = \frac{z_0}{c}$. Как видно из уравнений /7/, резонансное возбуждение колебаний поляризации возможно при выполнении следующих условий:

$$\frac{\omega}{\beta_{z_1} \cdot c} = \frac{2\pi}{\lambda}$$
 /8/

и

4

$$\frac{\omega}{\beta_{z_2} \cdot c} = \frac{\pi}{\lambda} .$$
 /9/

Первое из этих равенств соответствует прохождению целого резонанса, а второе - параметрического резонанса колебаний поляризации электронно-ионного кольца.

Для проектируемых параметров КУТИ-20^{/4/}: число электронов в кольце $N_e = 10^{13}$; число ионов урана $N_i = 3, 4 \cdot 10^{10}$; R = 4 см; a = 0, 2 см; Z/A = 0, 13 / A - атомный вес урана/; коэффициент запаса k = 0, 25; $\xi = 47, 5$; $E_z = 10$ кВ/см и $\gamma = 31, 3$, получаем из /6/ $\omega = 4, 1\cdot 10^9$ с⁻¹. Конечная энергия ускоренных ионов урана $\epsilon = 20$ МэВ/нуклон соответствует $\beta_z = 0, 2$. Для $\lambda = 4, 6$ см из формул /8/ и /9/ получаем $\beta_{z_1} = 0, 1$ и $\beta_{z_2} = 0, 2$.

Далее оценим увеличение амплитуды колебаний поляризации при пересечении целого резонанса /при этом из первого уравнения системы /7/ исключается третье слагаемое в правой части/. Будем искать решение в виде $p_z = p_{z_0} + x$, где p_{z_0} есть стационарное значение поляризации электронно-ионного кольца во внешнем однородном электрическом поле E_z :

$$p_{z_0} = \frac{W_0 \cdot (1 + \xi)}{\omega^2 (1 - f)}$$
 /10/

Тогда уравнение для х принимает вид

$$\frac{d^{2}x}{dz_{0}^{2}} + \frac{1}{\beta_{z}} \frac{d\beta_{z}}{dz_{0}} \cdot \frac{dx}{dz_{0}} + \frac{\omega^{2}}{\beta_{z}^{2} \cdot c^{2}} x = \frac{W_{1} \cdot (1+\xi)}{\beta_{z}^{2} \cdot c^{2}} \cos \frac{2\pi}{\lambda} z_{0} \cdot (11/\xi)$$

Интегрируя /11/ в предположении $W_1 << W_0$ с начальными условиями

 $\mathbf{x}|_{z_0=0} = 0$ и $\frac{dx}{dz_0}|_{z_0=0} = 0$, получаем следующее выражение, описывающее зависимость $\mathbf{x}(\boldsymbol{\beta}_z)$:

$$\frac{\mathbf{x}}{\mathbf{p}_{z_0}} = \frac{\mathbf{W}_1}{2\mathbf{W}_0} \sqrt{\frac{\lambda(1+\xi)(1-f)}{2\mathbf{p}_{z_0}}} \cdot \left\{\cos\left(\frac{\omega\cdot\beta_z\cdot\mathbf{c}}{\mathbf{W}_0} - \frac{\lambda\omega^2}{4\pi\mathbf{W}_0}\right)\right\} \times$$

$$\times \left[\mathbf{S} \left(\begin{array}{c} \frac{\pi \beta_z \mathbf{c}}{\lambda \omega} - \frac{1}{2} \\ \sqrt{\frac{\pi W_0}{\lambda \omega^2}} \end{array} \right) - \mathbf{S} \left(\begin{array}{c} \frac{\pi \beta_{z_0} \cdot \mathbf{c}}{\lambda \omega} - \frac{1}{2} \\ \sqrt{\frac{\pi W_0}{\lambda \omega^2}} \end{array} \right) \right] + \sqrt{\frac{\pi W_0}{\lambda \omega^2}}$$
 /12/

Здесь
$$\beta_z^2 = \beta_{z_0}^2 + \frac{2z_0W_0}{c^2}$$
; $S(\beta_z)$ и $C(\beta_z)$ - интегралы Френеля. На

рис.3 /кривая 1/ показана рассчитанная по формуле /12/ зависи-мость $f(\beta_z)$, иллюстрирующая изменение амплитуды дипольных коле-

баний ускоряющегося электронно-ионного кольца, отнесенной к

 $\frac{W_1}{2W_0} \cdot \sqrt{\frac{\lambda \cdot (1+\xi)(1-f)}{2p_{z_0}}}$. Из рис.3 видно, что максимальное значение

функции $f(\beta_z) = 1,66$. Тогда из /12/ получаем следующую оценку для максимально допустимого B_r :

$$\frac{E_{z_{\Pi}}}{E_{z_{0}}} - 1 = \frac{B_{r_{0}}}{2E_{z_{0}}} \cdot \sqrt{\frac{\lambda \cdot (1 + \xi)}{2p_{z_{0}} \cdot (1 - f)}} \cdot 1,66.$$
 (13/

Для проектируемых параметров КУТИ-20 предельно допустимое $E_{z_{II}} = 14 \text{ кB/см}$, а p_{z_0} , определяемое из уравнения /10/, составляет величину ~0,033 см и равно 0,72 от предельно допустимой поляризации. Подставляя в /13/ следующие значения параметров:

 $\lambda = 4,6$ cm, $\xi = 47,5$; $p_{z_0} = 0,033$ cm; f = 0,1 /14/

Рис.3. Зависимость амплитуды дипольных колебаний электронно-ионного кольца от его скорости β_z .

и $p_{z \text{ макс.}} \leq p_{z_0}$, получаем оценку для $B_{r_0} : \frac{B_{r_0}}{E_{z_0}} \leq 8 \cdot 10^{-3}$ или /для $E_{z_0} =$ =10 кB/см/ $(\frac{\partial B_z}{\partial z})_{\text{макс}} \leq 1,3 \cdot 10^{-3}$ T/м

/ B_z - индукция, усредненная по плоскости, охватываемой коль- цом/.

Как видно из рис.3 /кривая 1/, рост амплитуды колебаний происходит в ограниченном интервале скоростей $\Delta\beta_z$. Учитывая поведение интегралов Френеля в области аргументов ~1, из /12/ оценим $\Delta\beta_z$:

$$\frac{\Delta \beta_{z}}{\beta_{z}} = 4 \cdot \sqrt{\frac{\pi p_{z_0} \cdot (1-f)}{\lambda (1+\xi)}}.$$
 (15/

Подставляя в /15/ $\beta_{z_1} = 0,1$ и значения параметров /14/,получаем $\Delta \beta_z = 8 \ 10^{-2}$. Для оценки длины Δz , на которой осуществляется прохождение целого резонанса, используем второе уравнение системы /7/ и уравнение /10/. В результате имеем

$$\Delta z = \frac{\lambda}{\pi} \left[\frac{\lambda}{\pi} \frac{(1+\xi)}{(1-f)p_{z_0}} \right]^{\frac{1}{2}} . \qquad (16/1)$$

Подставляя в /16/ значения параметров /14/, получаем $\Delta z = 72$ см. Таким образом, прохождение целого резонанса осуществляется на длине, которую занимают ~16 индукторов.

Заметим, что в ЛИУ E_z на радиусе кольца также испытывает колебания с периодом λ , амплитуда которых зависит от условий, задаваемых конструкцией индукционной системы $^{75'}$. Решая задачу об ускорении электронно-ионного кольца в периодическом электрическом поле и проводя вычисления, аналогичные предыдущим, получаем следующую оценку для максимально допустимой амплитуды первой гармоники электрического поля:

$$\frac{E_{z_{\Pi}}}{E_{z_{0}}} - 1 = \frac{E_{z_{1}}}{2E_{z_{0}}} \sqrt{\frac{\lambda \cdot (1+\xi)}{2p_{z_{0}}(1-f)}} \cdot 1,66.$$
 /17/

Для нашего случая из /17/ имеем $\frac{E_{z1}}{E_{z0}} = 8 \cdot 10^{-3}$. Однородность поля много лучше требуемой можно получить, если в рабочую область ввести электропроводящий цилиндр, выполненный из керамики с нанесенным на внутреннюю поверхность проводящим слоем с электропроводностью квадрата поверхности $10^{-4} \div 10^{-3}$ Ом⁻¹ /5/.

Ожидаемая скорость электронно-ионных колец на входе в индукционную ускоряющую систему КУТИ-20 составляет величину $\beta_{z_0} \approx$ \approx 0,066. Если электрическое поле отсутствует, то максимальная амплитуда дипольных колебаний будет определяться вынужденным решением уравнений /7/ с $W_0 = 0$:

$$\Delta p_{z} = \frac{W_{1} \cdot (1 + \xi)}{\omega^{2}} \cdot \frac{1}{1 - (\beta_{z_{0}}/\beta_{z_{1}})^{2}} \cdot [\cos \frac{2\pi}{\lambda} z - \cos \frac{\omega}{\beta_{z_{0}}} z]. \quad /18/$$

Подставляя в /18/ ξ = 47,5; ω = 4,1.10⁹ c⁻¹; β_{z_0} = 0,066; β_{z_1} = = 0,1; λ = 4,6 см, имеем $\Delta p_{z \text{ MAKC}}$ 7,7.10⁻⁴ см, что в 17 раз меньше предельно допустимой поляризации $\Delta p_{z \text{ пред}}$.Это позволяет проводить наладку ускорителя при нулевом E_z без разрушения колец.

3. На рис.4 показана рассчитанная по формулам /2/-/4/ зависимость амплитуды пульсаций ускоряющего градиента $(\partial \mathbf{B}_z/\partial z)_{MaKC}$. на радиусе кольца от внутреннего радиуса г_о катушек с указанными выше параметрами /см. раздел 1/ при $\mathbf{B}_{zo} = 1,36$ Т. Из этого ри-

сунка видно, что уровень $(\frac{\partial \overline{B}_z}{\partial z})$, необходимый для прохождения це-

лого резонанса, достигается для катушек с радиусом г $_0 \ge 9,8$ см.

Однако выполнение этого требования приводит к существенному увеличению мощности системы питания ускорителя.

Из /8/ и /9/ видно, что, увеличивая или уменьшая период структуры λ , можно избежать прохождения целого резонанса колебаний поляризации в индукционной ускоряющей системе. Однако, как следует из формул /2/-/4/, при увеличении λ амплитуда

Рис.5. Зависимость $(\frac{\partial B_{z}}{\partial z})$ от r_{0} для катушек с $\lambda = 2,3$ см.

 ${\bf B}_{r_0}$ на радиусе кольца быстро растет и уже при $\lambda > 4,6\,$ см становится больше предельно допустимого ${\bf B}_{r_0} = 0,46\cdot 10^{-2}\,$ Т. Поэтому в дальнейшем будем рассматривать магнитную структуру с уменьшенным значением λ .

На рис.5 показана рассчитан-

ная зависимость
$$\left(\frac{\partial \vec{B}_z}{\partial z}\right)_{MaKC.}$$
 от r_0

для катушек с $\lambda = 2,3$ см, то есть для случая, когда в индуктор встроено 2 катушки с параметрами: h = 1,2 см; $\ell = 0,6$ см; L = 1,7 см. Как видно из ри-

сунка, уровень $\left(\frac{\partial \overline{B}_z}{\partial z}\right)_{\text{макс.}}$, необходимый для прохождения целого резо-

нанса, достигается при г₀ \geq 6,9 см. Для такой системы согласно формуле /8/ $\beta_{z_1} = 0,05$ и, как следует из /13/, амплитуда B_{r_0} в этом случае может быть увеличена в $\sqrt{2}$ раз.

В рассматриваемом случае $\beta_{z_0} = 0,066$ оказывается больше резонансного значения β_{z_1} , и амплитуда колебаний поляризации не испытывает резонансного роста в процессе ускорения кольца, что иллюстрируется кривой 2 на рис.3. Максимальное значение $f(\beta_z) = 0,16$. При этом Δp_z оказывается в 10 раз меньше $\Delta p_{z\,\Pi PEA_r}$. Рассчитанная зависимость от г амплитуды рассеянного магнитного поля в области пермаллоевых сердечников для катушек с $\lambda = 2,3$ см / $r_0 = 7$ см, $B_{z_0} = 1,36$ T/ показана на рис.2 /кривая 2/.

Как следует из /4/, гармоники пульсаций \mathbf{B}_{z} на радиусе кольца более высокого порядка имеют существенно меньшую амплитуду колебаний. Кроме того, с увеличением номера гармоники m отличие β_{z_1} от β_{z_0} увеличивается. Поэтому вклад высших гармоник в раскачку целого резонанса колебаний поляризации ускоряющегося электронно-ионного кольца пренебрежимо мал.

4. Уменьшение периода структуры λ до 2,3 см приводит к тому, что в процессе ускорения электронно-ионное кольцо будет проходить параметрический резонанс колебаний поляризации /согласно /9/ $\beta_{z_2} = 0,1/$. Кроме того, это значение β_{z_2} соответствует параметрическому резонансу колебаний малого размера кольца, так как частота некогерентных колебаний электронов с точностью до поправок порядка $1/\xi$ совпадает с ω /8/. Рассмотрим сначала случай прохождения параметрического резонанса колебаний поляризации. Согласно /7/ изменение во времени β_z описывается уравнением

$$\frac{d^2 p_z}{dz_0^2} + \frac{1}{\beta_z} \frac{d\beta_z}{dz_0} \frac{dp_z}{dz_0} + \frac{\omega^2}{\beta_z^2 c^2} \left[1 + \frac{2\pi p_{z_0}}{\lambda} (\frac{W_1}{W_0}) \cdot (1 - f) \cdot \sin \frac{2\pi}{\lambda} z_0\right] \cdot p_z = 0./19/$$

Согласно /19/ максимальный инкремент Γ определяется формулой $^{/6/}$:

$$\Gamma = \frac{\pi^2 \cdot p_{z_0}}{2 \cdot \lambda^2} \cdot \left(\frac{W_1}{W_0}\right) \cdot (1 - f) \,. \tag{20}$$

Оценим увеличение амплитуды колебаний при прохождении параметрического резонанса как $\Delta p_z = \Delta p_{z_0} \cdot e^{\Gamma \cdot \Delta z}$, где Δp_{z_0} – начальная амплитуда колебаний, а Δz – ширина резонансной полосы. Из /19/ имеем ^{/6/}:

$$\Delta z = \frac{2\pi \cdot (1+\xi) \cdot \beta_{z_2}^2 \cdot c^2}{\lambda \cdot \omega^2} \cdot (\frac{W_1}{W_0}).$$
 (21/

Подставляя в /20/ и /21/ значения параметров /14/, а также $\omega = = 4, 1 \cdot 10^9 \text{ c}^{-1}$; $\lambda = 2, 3 \text{ см}$; $\beta_{Z_2} = 0, 1 \text{ и W}_1/\text{W}_2 = 2 \cdot 10^{-2}$, получаем $\Gamma \approx 5, 5 \cdot 10^{-4} \text{ см}^{-1}$ и $\Delta z \approx 1, 4 \text{ см}$. Отсюда е $\Gamma \cdot \Delta z \approx 1$. Таким образом, при прохождении резонанской полосы амплитуда колебании поляризации практически не увеличивается.

Уравнение для некогерентных колебаний электронов в кольце имеет вид $^{/3/}$:

$$\frac{\mathrm{d}^{2}(\mathbf{z}_{e}-\overline{\mathbf{z}}_{e})}{\mathrm{d}z_{0}^{2}}+\frac{1}{\beta_{z}}\frac{\mathrm{d}\beta_{z}}{\mathrm{d}z_{0}}\cdot\frac{\mathrm{d}(\mathbf{z}_{e}-\overline{\mathbf{z}}_{e})}{\mathrm{d}z_{0}}+\frac{1}{2}$$

$$+ \frac{\omega^2}{\beta_z^2 c^2} \cdot \left[1 + \frac{2\pi R}{\lambda} \cdot \left(\frac{B_{r_0}}{B_{z_0}}\right) \cdot \frac{1}{\nu_{z_e}^2} \cdot \cos\frac{2\pi}{\lambda} z_0\right] (z_e - \bar{z}_e) = 0$$

Здесь $z_e - координата электрона; \bar{z}_e - координата центра масс$ $электронов; <math>\nu_{ze}^2 = \frac{\omega^2}{\omega_0^2}$ / ω_0 - частота вращения электронов в кольце/. В нашем случае $\nu_{ze}^2 = 0.3$; $B_{ro} = 6.2 \cdot 10^{-5}$ T; $B_{zo} = 1.36$ T; R = 4 см; $\lambda = 2.3$ см. Проводя вычисления аналогично расчету прохождения параметрического резонанса колебаний поляризации, получаем из уравнения /22/ $\vec{\Gamma} = 5.7 \cdot 10^{-4}$ см⁻¹ и $\Delta \vec{z} = 1.4$ см. Отсюда $e^{\vec{\Gamma} \cdot \Delta \vec{z}} = 1.$ Таким образом, и в случае прохождения параметрического резонанса некогерентных колебаний электронов амплитуда колебаний практически не увеличивается.

5. Далее оценим диапазон изменения N_e , для которого будет происходить устойчивое ускорение электронно-ионных колец в магнитном поле, сформированном катушками с выбранными параметрами: $\lambda = 2,3$ см; $\ell = 0,6$ см; h = 1,2 см; $r_0 = 6,8$ см; $B_{z_0} = 1,36$ Т. Для любого N_e количество ионов в кольце должно превосходить некоторое минимальное число N_i^{min} , обеспечивающее устойчивое ускорение в соленоидах с уменьшающейся индукцией B_z . Согласно результатам работы ^{/7/} можно считать, что среднее отношение ^{z/A} накопленных ионов урана с уменьшением N_e от 10¹³ до 5·10¹² линейно уменьшается от z/A = 0,13 до z/A = 0,0936. Подставляя в формулу для предельно допустимого

$$\left(\frac{\partial \mathbf{B}_{z}}{\partial z}\right)_{\mathrm{II} \mathrm{ peg}, \mathbf{I}} = \left(\frac{z}{\mathrm{A}}\right) \cdot \frac{2 \cdot \mathbf{k} \cdot \mathbf{e} \cdot \mathbf{N}_{\mathrm{I}} \cdot \mathrm{A}}{\pi \cdot \mathrm{R}^{2} \cdot \mathrm{a}}$$
 (23/

следующие параметры: $\left(\frac{\partial B_z}{\partial z}\right)_{\text{пред}} = 0,23 \text{ T/m}; k = 0,25; R = 4 \text{ см}; A = 238$

и а = 0,2 см, найдем N_1^{min} для любого N_e в выбранном диапазоне. Стметим, что резонансные скорости β_{z_1} и β_{z_2} не зависят от N_e и равны 0,05 и 0,1 соответственно. С уменьшением N_e увеличивается фактор загрузки ξ . что приводит к приближению β_r к резонансному значению β_{z_1} . В результате амплитуда колебаний поляризации увеличивается и, начиная с некоторых значений N_e , может превзойти предельно допустимую $\Delta p_{z\,IIDEA}$. На рис. 6 приведена зависимость от N_e отношения максимальной амплитуды колебаний поляризации в процессе ускорения Δp_z к предельно допустимой $\Delta p_{z\,IIDEA}$. Как видно,

Число ионов в кольце может превосходить N_i^{min} . На рис.7 показана рассчитанная область допустимых значений параметров электронно-ионных колец /заштрихована/. При фиксированном значении N_e с увеличением $N_i > N_i^{min}$ начальная скорость кольца β_{z_0} становится равной β_{z_1} . Вследствие этого сначала происходит быст-

Рис.6.Зависимость отношения $\Delta p_z \, / \, \Delta p_{z \, пред.}$ от числа электронов в кольце $N_{e}.$

значений параметров N_e и

 N_i .

Рис.8. Область допустимых значений параметров N_{θ} и N_{i} при остаточном давлении в камере $p = 2 \cdot 10^{-9}$ мм рт.ст.

рый рост амплитуды дипольных колебаний Δp_z , и функция $f(\beta_z)$, как следует из /12/, достигает своего максимального значения $f(\beta_z)^{MakC}$ = 1,66. При этом для $N_e < 8, 6 \cdot 10^{12} \Delta p_z$ превышает $\Delta p_{z пред}$ При дальнейшем увеличении N_i значение $f(\beta_z)^{MakC}$ -практически не меняется и, начиная с некоторых $N_i^{\prime\prime}$, Δp_z снова становится меньше $\Delta p_{z пред}$. Этим и обусловлено появление на рис.7 границ $N_i^{\prime\prime}$ и $N_i^{\prime\prime}$. Граница N_i^{MakC} соответствует значению коэффициента нейтрализации f = 0, 5, так как при $f \ge 0, 5$ коллективное ускорение ионов в электрическом поле становится неэффективным. Пунктирными кривыми обозначены параметры колец, соответствующие фиксированным значениям конечной энергии ионов урана в КУТИ-20 $\epsilon = 20$ МэВ/нуклон /кривая 1/ и $\epsilon = 17$ МэВ/нуклон /кривая 2/.

Если вакуум в камере адгезатора $\rm p=2.10^{-9}$ мм рт.ст., то согласно работе $^{/7/}$ число ионов азота в кольце /при $\rm N_{e}$ = 10 13 / $\rm N_{i}$ = $8\cdot10^{10}$,их средний заряд z = 5. На рис.8 показана рассчитанная с учетом загрузки колец ионами азота область допустимых значений параметров $\rm N_{e}$ и $\rm N_{i}$ урана. Кривые 1 и 2 соответствуют зна-

чениям конечной энергии ионов $\epsilon = 20$ МэВ/нуклон и $\epsilon = 17$ МэВ/нуклон

Как видно из рис.8, при ухудшении вакуума область допустимых значений $N_{\rm e}~$ и $N_{\rm i}~$ урана существенно уменьшается.

В заключение кратко сформулируем основные результаты работы. Требование устойчивого ускорения электронно-ионных колец в КУТИ-20 накладывает жесткие ограничения на величину максимально допустимой амплитуды пульсаций ведущего магнитного поля ${f B}_z$ и ускоряющего электрического поля ${f E}_z$.

Для катушек, создающих ведущее магнитное поле с периодом, равным аксиальному размеру индуктора $\lambda = 4,6$ см /как в индукционной ускоряющей секции прототипа КУТИ/, пересечение целого резонанса колебаний поляризации происходит при скорости кольца $\beta_{\rm g}$ = = 0,1, а пересечения параметрических резонансов колебаний поляризации и малого размера не происходит.

Для удовлетворения допусков на ведущее магнитное поле необходимо уменьшить период λ в два раза без изменения среднего радиуса катушек. Поскольку в этом случае начальная скорость кольца оказывается больше $\beta_{z_1} = 0,05$, то целый резонанс им не проходится и рост амплитуды колебаний поляризации в процессе ускорения в 10 раз меньше предельно допустимой. При прохождении кольцом параметрических резонансов как колебаний поляризации, так и малого размера кольца $/\beta_{z_2} = 0,1/$ существенного роста амплитуд колебаний не происходит.

Устойчивое ускорение колец при выбранной магнитной системе возможно только при N $_e > 6\cdot 10^{12}$ /при давлении в камере $p \le 2\cdot 10^{-9}\,$ мм рт.ст./.

Для того чтобы конечная энергия ускоренных ионов урана в КУТИ-20 была больше или равна 20 МэВ/нуклон, необходимое число электронов в кольце ограничено снизу величиной $N_{a} = 10^{13}$.

Авторы выражают благодарность Э.А.Перельштейну и В.С.Александрову за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Саранцев В.П. и др. ОИЯИ, Р9-11191, Дубна, 1979.
- 2. Казача В.И. и др. ОИЯИ, Р9-81-809, Дубна, 1981.
- 3. Казаринов Н.Ю., Перельштейн Э.А. ОИЯИ, Р9-12441, Дубна, 1979.
- Саранцев В.П. В кн.: Труды Всесоюзного совещания по проблемам коллективного метода ускорения. ОИЯИ, Д9-82-664, Дубна, 1982, с. 9.
- 5. Вахрушин Ю.П., Матора И.М. УФН, 1973, 110, выпуск 1, с. 117.
- Ландау Л.Д., Лифшиц Е.М. Механика. Физматгиз, М., 1958, с. 103.
- 7. Перельштейн Э.А., Ширков Г.Д. ОИЯИ, 9-80-124, Дубна, 1980.

Рукопись поступила в издательский отдел 11 марта 1983 года.

Казаринов Н.Ю., Казача В.И. 9-83-148 О допусках на электрическое и магнитное поля в индукционной ускоряющей системе КУТИ-20

Рассчитываются величины амплитуд гармоник ведущего магнитного поля B_g и ускоряющего электрического поля E_g в индукционной ускоряющей системе КУТИ-20, обусловленные дискретностью ее структуры. Определяются ограничения на величины амплитуд гармоник B_g и E_g, связанные с возможным пересечением в процессе ускорения резонансов когерентных и некогерентных колебаний электронно-ионного кольца. Предлагается геометрия магнитной системы, обеспечивающей устойчивое ускорение электронно-ионных колец с проектируемыми в КУТИ-20 параметрами. Анализируется допустимый диапазон изменения числа электронов N_e и числа ионов урана N_i в кольце.

Работа выполнена в Отделе новых методов ускорения ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

Kazarinov N.Yu., Kazarinova V.I. On Allowances for Electric and Magnetic Fields in KUTI-20 Induction Accelerating System

The amplitude values of the guiding magnetic field \mathbf{B}_{z} and accelerating electric field \mathbf{E}_{z} harmonics in the KUTI-20 induction accelerating system caused by its discrete structure are determined. The limitations on the amplitude values of \mathbf{B}_{z} and \mathbf{E}_{z} harmonics connected with a possible intersection of the resonances of coherent and incoherent electron-ion ring oscillations in the course of accelerating process are defined. The magnetic system geometry providing a stable acceleration of the electron-ion rings with designed KUTI-20 parameters is determined. The permissible alternation range of the electron number in the ring N_{e} and uranium ion number N_{i} is analysed.

The Investigation has been performed at the Department of New Acceleration Methods, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.