СООБЩЕНИЯ Объединенного института ядерных исследований дубна

3004/82

28/11-82

9-82-188

А.А.Глазов, В.П.Дмитриевский, Н.Л.Заплатин, В.В.Кольга, В.А.Кочкин, Д.Л.Новиков, Л.М.Онищенко, Е.В.Самсонов, П.Т.Шишлянников

ЭКСПЕРИМЕНТЫ

ПО ЭФФЕКТУ РАСШИРЕНИЯ ОРБИТ



Исследование эффекта расширения замкнутых орбит<sup>/1,2/</sup>, проводимое в Лаборатории ядерных проблем, ведется параллельно двумя путями: численными методами на ЭВМ и экспериментально на электронной модели кольцевого циклотрона. Результаты, полученные при численном экспериментировании, подвергались проверке на электронной модели после соответствующей доработки аппаратуры или существенной модернизации ее отдельных систем. Гакой модернизации, в частности, подвергались ускоряющая и магнитная системы электронной модели.

Для увеличения зоны действия эффекта расширения обмотка спада вариации, представляющая собой систему из двух симметрично расположенных относительно медианной плоскости одиночных проводников /3, была дополнена тремя парами аналогично исполненных обмоток,которые располагались ближе к медианной плоскости в дисках тонкой коррекции. Один полюс каждой вариационной обмотки состоит из двух идентичных ветвей, уложенных по дугам окружности и радиальным линиям. Ветви сдвинуты друг относительно друга на половину периода системы, и по ним текут токи противоположных направлений. Это приводит к компенсации среднего поля и к удвоению амплитуды вариации. На рис.1 показаны зависимость амплитуды основной гармоники вариации /N =8/ в зоне расширения от радиуса, а также расчетная и экспериментально полученная зависимости коэффициента расширения для модифицированной магнитной системы. Из графиков рис.1 видно, что вновь полученная форма зависимости коэффициента расширения орбит имеет вид непрерывной функции, а максимальное его значение соответствует увеличению энергетического шага орбиты e /8 - 10/ pas.

Для уменьшения амплитуды когерентных колебаний пучка, связанных с асимметрией ускорения и наличием первой гармоники магнитного поля, один 90-градусный дуант заменен двумя 45градусными дуантами, расположенными напротив друг друга и включенными в противофазе. С этой же целью введена система гармонических компенсирующих обмоток внутри камеры ускорителя. Обмотки компенсации выполнены так, чтобы имелась возможность изменять величину и фазу первой гармоники вдоль всего радиуса ускорения от радиуса инжекции R =18 см до радиуса зоны начала эффекта расширения R=90-92 см. Всего изготовлено 11 пар компенсирующих обмоток. Измерения характеристик ускоренного пучка

1





Рис.5. Зависимость энергети-

ческого разброса в пучке ускоренных частиц от его длительности при различных значениях фазы центра сгустка на инжекции  $\phi_0$ : 1 - 66,5°; 2 - 68,5°; тии его пробником №2. 70,5°; 6 - 71,5°.

Из графиков <u>puc.5</u> видно, что только для одной фазы ускорения, а именно, для  $\phi_0 = 71,5^\circ$ , можно ожидать, что энергетический разброс в пучке не будет превышать допуска, определенного в работе  $^{/1/}$ .

Измерения характеристик пучка при введении двух диафрагм по 0,5 мм показали, что амплитуда некогерентных колебаний на всех радиусах ускорения также не превышает 4-5 мм /см. рис. 2/.

Зависимости тока пучка, падающего на дифференциальную мишень пробника №6 от радиуса в зоне расширения при различных значениях ускоряющего напряжения на дуантах показаны на <u>рис.6.</u> Из приведенных графиков видно, что зона разделения орбит, как в предыдущих измерениях<sup>22</sup>, составляет 4-5 см. Аналогичные зависимости тока пучка от радиуса в зоне расширения были получены при изменении фазы ускорения, перераспределения токов в вариационных обмотках, формирующих спад вариации, в обмотках изменяющих величину и фазу первой и второй гармоник в зоне расширения и т.д. Из графиков <u>рис.6</u> также следует, что если для вывода пучка использовать электростатическое выводное устройство с эффективной толщиной септума 0,5 мм, то коэффициент вывода составит 99,5%.

Проведенные дополнительные расчеты на ЭВМ показали, что в приведенной серии экспериментов оказалось не выполненным,



ŀ

Ő:

4

a.

Рис.6. Зависимости тока на мишень пробника №6 от радиуса при различных значениях ускоряющего напряжения на дуантах  $U_{\rm A}$ : 1-1560B, 2 - 1440B, 3 - 1410B, 4 - 1390B, 5 - 1300B, 6 -1270B.

несмотря на все предпринятые меры, требование необходимого энергетического разброса в пучке /1/Из анализа расчетов можно сделать вывод о том,что в применяемой в настоящее время на электронной модели двухдуантной системе постоянство фазы ускоряющего напряжения должно сохраняться с точностью до 0,5°, причем фаза должна поддерживаться на таком уровне как по радиусу, что зависит от точности сформированного магнитного поля, так и по времени, что зависит от стабиль-НОСТИ ВЫХОДНЫХ КОНТУРОВ ВЫСОКОчастотного генератора. Применяемая на электронной модели в

настоящее время аппаратура не позволила выдержать такие жесткие требования.

Для получения 100%-ного вывода, основанного на эффекте расширения замкнутых орбит, потребуется специальная разработка ускоряющей системы, позволяющей уменьшить энергетический разброс в пучке до 10<sup>-3</sup>. Наиболее вероятной в этом свете представляется ускоряющая система, возбуждаемая суперпозицией двух гармонических колебаний различной кратности <sup>/5</sup>. Такая система позволит снизить требования к поддержанию фазы ускоряющего напряжения в допустимых пределах и одновременно увеличить фазовую протяженность ускоряемых сгустков, что приведет при прочих равных условиях к увеличению интенсивности ускорителя и даст возможность поднять точность определения коэффициента вывода.

### ЛИТЕРАТУРА

1. Дмитриевский В.П. и др. ОИЯИ, Д9-81-290, Дубна, 1981.

2. Василенко А.Т. и др. ОИЯИ, Е9-8443, Дубна, 1974. Труды IV Всесоюзного совещания по ускорителям заряженных частиц, "Наука", М., 1975, т.1, с. 205.

- 3. Заплатин Н.Л., Самсонов Е.В. ОИЯИ, Р9-8257, Дубна, 1974.
- 4. Дмитриевский В.П. и др. ОИЯИ, Р9-7449, Дубна, 1973.
- 5. Глазов А.А. и др. ОИЯИ, 13-4496, Дубна, 1969, с. 55.

## НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

## Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Я.

| Д1,2-9224          | IV Международный семинар по проблемам Физики высоких<br>энергий. Дубна, 1975.                                                            | 3 | р. | 60 | к. |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|----|
| Д-9920             | Труды Международной конференции по избранным вопросам<br>структуры ядра. Дубна, 1976.                                                    | 3 | р. | 50 | к. |
| Д9-10500           | Труды II Симпозиума по коллективным методам ускорения.<br>Дубна, 1976.                                                                   | 2 | p. | 50 | к. |
| <b>Д2-</b> 10533   | Труды X Международной школы молодых ученых по физике<br>высоких энергий. Баку, 1976.                                                     | 3 | p. | 50 | к. |
| Д13-11182          | Труды IX Международного симпозиума по ядерной элект-<br>ронике. Варна, 1977.                                                             | 5 | p. | 00 | к. |
| Д17-11490          | Труды Международного симпозиума по избранным пробле-<br>мам статистической механики. Дубна, 1977.                                        | 6 | p. | 00 | к. |
| Д6-11574           | Сборник аннотаций XV совещания по ядерной спектроско-<br>пии и теории ядра. Дубна, 1978.                                                 | 2 | p. | 50 | к. |
| ДЗ-11787           | Труды III Международной школы по нейтронной физике.<br>Алушта, 1978.                                                                     | 3 | р. | 00 | к. |
| Д13-11807          | Труды III Международного совещания по пропорциональ-<br>ным и дрейфовым камерам. Дубна, 1978.                                            | 6 | р. | 00 | к. |
|                    | Труды VI Всесоюзного совещания по ускорителям заря-<br>женных частиц. Дубна, 1978 /2 тома/                                               | 7 | р. | 40 | к. |
| Д1,2-12036         | Труды V Международного семинара по проблемам физики<br>высоких энергий. Дубна, 1978                                                      | 5 | р. | 00 | к. |
| Д1,2-12450         | Труды XII Международной школы молодых ученых по физике<br>высоких энергий. Приморско, НРБ, 1978.                                         | 3 | р. | 00 | к. |
|                    | Труды VII Всесоюзного совещания по ускорителям заря-<br>женных частиц, Дубна, 1980 /2 тома/                                              | 8 | p. | 00 | к. |
| Д11 <b>-</b> 80-13 | Труды рабочего совещания по системам и матодам<br>аналитических вычислений на ЭВМ и их применению<br>в теоретической физике, Дубна, 1979 | 3 | р. | 50 | к. |
| Д4-80-271          | Труды Международной конференции по проблемам<br>нескольких тел в лдерной физика. Дубна, 1979.                                            | 3 | p. | 00 | к. |
| д4-80-385          | Труды Международной шко <b>лы по структура ядра.</b><br>Алушта, 1980.                                                                    | 5 | р. | 00 | к. |
| Д2-81-543          | Труды VI Международного совощания по пробламам кван-<br>товой теории поля. Алушта, 1981                                                  | 2 | р. | 50 | к. |
| Д10,11-81-622      | Труды Маждународного совещания по пробламам математи-<br>ческого моделирования в ядерно-физических исследова-<br>нилх. Дубна, 1980       | 2 | p. | 50 | к. |

Рукопись поступила в издательский отдел 15 марта 1982 года. Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

# ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

| /індек | с Тематика                                                                                                           |
|--------|----------------------------------------------------------------------------------------------------------------------|
| 1.     | Экспериментальная физика высоких энергий                                                                             |
| 2.     | Теоретическая физика высоких энергий                                                                                 |
| 3.     | Экспериментальная нейтронная физика                                                                                  |
| 4.     | Теоретическая физика низких энергий                                                                                  |
| 5.     | Математика                                                                                                           |
| 6.     | Ядерная спектроскопия и радиохимия                                                                                   |
| 7.     | Физика тяжелых ионов                                                                                                 |
| 8.     | Криогеника                                                                                                           |
| 9.     | Ускорители                                                                                                           |
| 10.    | Автоматизация обработки экспериментальных<br>данных                                                                  |
| 11.    | Вычислительная математика и техника                                                                                  |
| 12.    | Химия                                                                                                                |
| 13.    | Техника физического эксперимента                                                                                     |
| 14.    | Исследования твердых тел и жидкостей<br>ядерными методами                                                            |
| 15.    | Экспериментальная физика ядерных реакций<br>при низких энергиях                                                      |
| 16.    | Дозиметрия и физика защиты                                                                                           |
| 17.    | Теория конденсированного состояния                                                                                   |
| 18.    | Использование результатов и методов<br>фундаментальных физических исследований<br>в смежных областях науки и техники |

19. Биофизика

#### Глазов А.А. и др. Эксперименты по эффекту расширения орбит 9-82-188

Приведены результаты экспериментов по исследованию эффекта расширения замкнутых орбит на электронной модели кольцевого циклотрона. Путем специально предпринятых мер величина амплитуд когерентных и некогерентных колебаний частиц ускоренного пучка сведена к 4-5 мм на всех радиусах ускорителя. Введение внутренного высокочастотного инжектора и использование оптики первого оборота ускорения позволили получить сгустки ускоренных частиц длительностью 0,07÷0,35 нс /1=5°/. Исследованы зависимости тока расширенной орбиты от ускоряющего напряжения на дуантах, закона спада вариации, фазы ускоряющего напряжения. При использовании выводного устройства с септумом 0,5 мм можно ожидать коэффициента вывода пучка, близкого к 99,5%.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1982

Glazov A.A. et al. Experiments on the Effect of Orbit 9-82-18 Expansion

Results of experimental research of the effect of closed orbit expansion on the electron model of the isochronous ring cyclotron are described. Amplitudes of coherent and incoherent oscillations of the accelerated beam were reduced to 4-5 mm with special efforts. Employment of the internal high frequency injector and the use of the first turn optics permitted to obtain the bursts of accelerated beam of about  $0.07 \div 0.35$  ns  $(1-5^\circ)$  duration. The dependences of the expansion orbit current versus accelerating voltage on dess, steep slope of the magnetic field variation, accelerating phase and their parameters are investigated. For use of extraction system with 0.5 mm septum one can the expect the extraction coefficient close to 99.52.

The investigation has been performed at the Laboratory of the Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.