

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

5514/2-81

4-81 9-81-570

Ю.Д.Безногих, А.Г.Бонч-Осмоловский, М.А.Воеводин, В.И.Волков, Л.П.Зиновьев, И.И.Куликов

ИССЛЕДОВАНИЕ НЕОДНОРОДНОСТЕЙ МАГНИТНОГО ПОЛЯ СИНХРОФАЗОТРОНА.

О ДИНАМИКЕ ПУЧКА МАЛОЙ ИНТЕНСИВНОСТИ

Исследование динамики ускоряемого пучка в камере синхрофазотрона /СФ/, а также работа по программе повышения интенсивности ускоряемых частиц связаны с изучением основных характеристик магнитного поля /МП/ ускорителя. В работах ^{/1-3, 8/} было показано, что наличие азимутальных вариаций производных МП по радиусу / $\partial B_g/\partial r$; $\partial^2 B_z/\partial r^2$ и т.д./ является одной из причин потерь частиц в начале процесса ускорения за счет действия нелинейных резонансов связи 2,3 и даже 4-го порядков. В настоящей работе приводятся основные результаты измерения показателя неоднородности "п" магнитного поля СФ, описывается методика определения производных "п", их азимутальных гармоник, а также обсуждаются вопросы, связанные с динамикой пучка в камере синхрофазотрона.

В связи с тем, что СФ имеет небольшую величину градиента МП /например, для поля инжекции $B_{\rm xHM.} = 0,023$ Т градиент $\partial B_z/\partial r$ = 5,35·10⁻⁴ T/м/, при определении "л" необ-ходимо учитывать поправку, вносимую градиентом остаточного МП.

$$\mathbf{n} \approx \frac{\mathbf{R}_0}{\mathbf{B}_0} \left(\frac{\partial \mathbf{B}_{\Pi \text{MH}}}{\partial \mathbf{r}} + \frac{\partial \mathbf{B}_{\text{OCT}}}{\partial \mathbf{r}} \right) = \mathbf{n}_{\Pi} + \Delta \mathbf{n}_{\text{OCT}}, \qquad /1/$$

где $\frac{\partial B_{дин}}{\partial t}$ и $\frac{\partial B_{oct}}{\partial t}$ - градиенты динамического и остаточного МП ускорителя, B_0 - магнитное поле на равновесном радиусе R_n .

Зависимость величины остаточного МП для одного из полюсов магнита от величины тока размагничивания представлена на <u>puc.1</u>. Для СФ градиент $\partial B_{\rm OCT}/\partial \tau$ имеет зависимость от радиуса, обратную той зависимости $\partial B_{\rm ДИН}/\partial \tau$, которая обусловлена динамическим эффектом /4/, поэтому при определенном токе размагничивания можно достичь частичной компенсации динамических искажений "n" в некоторой области рабочих индукций. На <u>puc.2</u> представлены зависимости $\Delta n_{\rm OCT}$. На различных полюсах при однократном цикле размагничивания током 300 А. Усредненная зависимость $\Delta n_{\rm OCT} = f(t)$ изображена пунктирной линией. Измерения показали, что при токе размагничивания 300 А характер зависимости $\Delta n_{\rm OCT} = f(t)$ близок к тому, чтобы компенсировать динамические искажения "n" в области магнитного поля инжекции.

Измерения распределения остаточного МП в зазоре магнита проводились с помощью магнитометра с использованием гальвано-

1

<u>Рис.2</u>. Зависимость показателя неоднородности, обусловленного градиентом остаточного МП синхрофазотрона, приведенного к полю инжекции.

<u>Рис.1</u>. Зависимость величины остаточного магнитного поля СФ от тока при однократном цикле размагничивания.

магниторекомбинационного преобразователя:⁷⁵⁷. Исследование динамического значения " $n_{\rm d}$ " осуществлялось с помощью многоканальной автоматизированной системы, работающей на линии с ЭВМ EC-1010⁷⁶⁷. В качестве датчиков использовались индукционные преобразователи, обладающие высокой чувствительностью и избирательностью к градиенту МП⁷⁷⁷.

Измерения динамического показателя неоднородности МП были произведены в 180 точках азимута ускорителя в центрах магнитных полюсов, при восьми значениях индукций /0,023; 0,06; 0,15; 0,3; 0,5; 0,75; 1,0; 1,2/Т. В радиальном направлении десять датчиков располагались с шагом 12 см в пределах рабочей области +54 см. Измеренные значения "п " " в удобной форме представлялись оператору и записывались на магнитную ленту для последующей обработки. Для определения азимутальной зависимости показателя неоднородности МП были произведены измерения "п "" с шагом 5 см на участке магнита, состоящего из трех полюсов. На рис.3 представлены зависимости $n_{\pi} = f(\theta) / \theta$ азимут ускорителя/ для трех значений индукций на трех радиусах ускорителя. Из рисунка видно, что величина "n_л" зависит не только от азимута ускорителя, но и от величины магнитного поля и рабочего радиуса. Это обстоятельство было учтено при последующей обработке данных.

<u>Рис.3</u>. Азимутальное распределение зависимости показателя неоднородности магнитного поля синхрофазотрона между двум: полюсами на трех радиусах ускорителя и трех значениях величины магнитного поля $/B \approx 0,023$ T; 0,5 T и 1,0 T/.

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ "'n "

Измеренные данные записывались на магнитную ленту в виде блоков /рис.4/, включающих информацию об "п" на одном азимуте ускорителя для десяти радиальных точек при восьми значениях магнитной индукции. В начале каждого блока содержатся номера квадранта, полюса и координата в пределах данного полюса, по которым осуществляется поиск необходимой информации.

Обработка записанных на магнитную ленту данных производится с помощью трех программ и сводится к вычислению производных $\frac{\partial n}{\partial r}$; $\frac{\partial^2 n}{\partial r^2}$ и $\frac{\partial^3 n}{\partial r^3}$ для всех измеренных значений показателя неоднородности / программа DERVMF /, определению азимутальных гармоник указанных m' u его производных / HARMMF, а также формированию входного файла данных для первых двух программ (DSPMF). Ниже приводится их краткое описание.

1. Программа DSPMF

Эта программа служит для выполнения определенных операций с данными, записанными на магнитную ленту во время проведения измерений "n". Заявки на выполнение операций подаются с операторской консоли в виде приказов, в которых указывается тип операции и при необходимости - дополнительные параметры. Выдачей символа (*)ЭВМ оповещает оператора о готовности к приему приказа, а знаком "Возврат каретки" заканчивается командная строка. При выполнении операций, требующих поиска информации, относящайся к определенной азимутальной точке ускорителя, дополнительно в режим ответов на вопросы ЭВМ задаются номера квадранта, магнитного полюса и координата в пределах полюса. Программа предоставляет оператору следующие услуги:

 *RD - поиск на магнитной ленте и считывание в оперативную память ЭВМ блока данных, включающего информацию об "n" в заданной азимутальной точке ускорителя.

 *LPi - вывод на печать или элфавитно-цифровой дисплей в числовом виде значений "n" на заданном азимуте ускорителя.

i= 0 - вывод значений "n" при всех рабочих значениях В,

i = 1÷8 - указывает порядковый номер рабочей индукции В соответственно /0,023; 0,06; 0,15; 0,3; 0,5; 0,75; 1,0; 1,2/Т, для которых необходимо выводить информацию об "л":

3. *GDi - представление на экране графического дисплея GD-71 данных об "n" на заданном азимуте в виде графиков n = f(r); r - радиальная координата камеры ускорителя.

4. * SDi - то же, что и в приказе 3, но графики представляются на экране графического дисплея Tektronix-811.

5. * PLi - построение графиков функций n = f(r) с помощью графопостроителя HP7210A.

6. *MOj - модификация значения "п" на радиусе ускорителя $r = R_0 + 12j$ - 54 см при заданном значении B, j - номер дат-чика /крайний на внутреннем радиусе датчик имеет порядковый номер 1/.

7. * МU - выполнение операции п=п+q_n для всех значений"п" блока данных, считанного в ОЗУ ЭВИ, где q₁ - калиброзочная константа.

Br

R1

пø

Рис.4. Формат блока записи на магнитную ленту.

<u>Рис.5</u>. Схема синхрофазотрона, поясняющая нумерацию полюсов, квадрантов, а также определяющая начало отсчета при вычислении азимутальных гармоник и топографии показателя неоднородности МП.

8. *AV - усреднение значений "n" в заданном количестве S полюсов, т.е. выполнение операции $\overline{n} = \sum_{m=1}^{S} n_m / S$.

166

168

186

9. *МК - вычисление коэффициента для учета азимутальной зависимости "n", т.е. определение для всех радиусов ускорителя и значений рабочих индукций магнитного поля коэффициентов $q_2 = \frac{n-n}{n}$, где n - измеренное значение показателя неодно-родности в центре магнитного полюса.

10. * MD - выполнение операции $n = n + q_2 n$ для всех зна-чений "n " выбранного блока данных.

11. «LK - распечатка величины коэффициентов q.

 12. *₩D - запись блока данных из 03У ЭВМ на магнитную ленту.

При введении неправильного приказа или недопустимой величины дополнительных параметров выдается сообщение об ошибке.

5

В каждом квадранте ускорителя имеются области, недоступные для измерений в автоматическом режиме. Например, платформа с датчиками не может переместиться к 2-3 крайним полюсам каждого квадранта. В связи с этим при формировании входных данных программ DERVMF и НАРММF для указанных полюсов брались усредненные по квадранту значения "n".

2. Программа DERVMF

При аналитическом рассмотрении динамики частиц з камере ускорителя важно знание азимутальных гармоник не только показателя неоднородности магнитного поля, но и его производных по радиусу. Практический интерес представляют производные до 3-го порядка включительно. Программа DERVMF предназначена для вычисления указанных производных.

Производные "л" в крайних точках и на внутренних радиусах определялись разностным методом соответственно по формулам:

$$\frac{\partial n(r_1)}{\partial r_1} = \frac{n(r_2) - n(r_1)}{\Delta r}; \quad \frac{\partial n(r_{10})}{\partial r_{10}} = \frac{n(r_{10}) - n(r_9)}{\Delta r}, \quad /2/$$

$$\frac{\partial n(r_i)}{\partial r_i} = \frac{n(r_{i+1}) - n(r_{i-1})}{2\Delta r}, \quad i = 2, 3, \dots, 9, \quad /3/$$

где $\Delta r = 12$ см - расстояние между соседними датчиками.

Производные более высокого порядка определялись аналогично. Погрешность измерения n_д не превышала 1% для индукции 0,023 Т и 0,5% - для индукций выше 0,023 Т. Максимальная абсолютная погрешность при определении производных показателя неоднородности МП оценивалась по формуле:

$$\delta(\frac{\partial^{m} n}{\partial r^{m}}) = \frac{2\delta(\partial^{m-1} n/\partial r^{m-1})}{\Delta r}$$
 /4/

и составила для первой, второй и третьей производных соответственно: 5,4 \cdot 10⁻⁴ 1/см; 8,5 \cdot 10⁻⁵ 1/см²; 1,4 \cdot 10⁻⁵ 1/см⁸. Вычисленные значения производных каждого порядка в виде отдельных файлов данных записывались на магнитную ленту и в качестве входных использовались программой HARMMF.

3. Программа **НА**RMMF

Входные файлы данных программы гармонического анализа учитывают также значения "n" в прямолинейных промежутках ускорителя, которые взяты нулевыми. Окончательный сформированный

6

файл содержит 232 блока записи, соответствующих значениям показателя неоднородности в 232 азимутальных точках ускорителя с расстоянием между двумя соседними 89 см. При гармоническом анализе за начало отсчета принята середина 2-го прямолинейного промежутка /рис.5/.

Программа HARMMF позволяет вычислять коэффициенты ряда Фурье до 4-го порядка включительно. При вычислении этих коэффициентов использовались формулы Бесселя для приближенного гармонического анализа:

$$a_0 = \frac{1}{N} \sum_{i=0}^{N-1} y_i$$
, /5/

$$a_{k} = \frac{2}{N} \sum_{i=0}^{N-1} y_{i} \cos(k\theta_{i}),$$
 /6/
$$b_{k} = \frac{2}{N} \sum_{i=0}^{N-1} y_{i} \sin(k\theta_{i}),$$
 /7/

где k = 1,2,.... - номер гармоники; N=232 - число азимутальных точек; $\theta_i = \Delta \ell / R_{\Gamma f.}$; $\Delta \ell = 89$ см - азимутальная протяженность магнитного полюса, $R_{\Gamma f.} = R_0 + 4L$; L = 8 м - длина прямолинейного промежутка, y_i - значение одного из параметров n_i ; $\frac{\partial n_i}{\partial r}$; $\frac{\partial 3n_k}{\partial r^2}$; $\frac{\partial 3n_k}{\partial r^3}$ в і точке азимута ускорителя. Амплитуда Q_k и фаза ϕ_k гармоники определялись соответственно по формулам: $Q_k = \sqrt{a_k^2 + b_k^2}; \phi_k = atotg(b_k/a_k).$

Результаты расчетов в удобной форме выдавались на печать.

В настоящее время по итогам измерсний получен большой массив информации о показателе неоднородности МП синхрофазотрона. В него входят: а/ абсолютные значения в. охватывающие практически все полюса магнита СФ /16 тыс. значений/; б/ усредненные по квадрантам 320 значений "n"; в/ азимутальные гармоники "n" по 4-ю включительно /320 значений/; г/ производные ∂ mm/ ∂ r m m = 1,2,3 /38 тыс. значений/; / азимутальные гармоники производных "n" /960 значений/.

В качестве иллюстрации приведем некоторые данные. На <u>рис.6</u> представлено усредненное по четырем квадрантам радиальное распределение для диапазона рабочих индукций от 0,023 Т /кривая 1/ до 1,2 Т /кривая 8/. На <u>рис.7</u> представлены зависимости n=f(Δ R) для каждого квадранта при B = 0,5 Т. В <u>таблице</u> приведены данные величин азимутальных гармоник производных $\partial^m n/\partial r^m$ для индукции B = 0,023 Т в области рабочих радиусов R₀ +42 см.

Анализ результатов магнитных измерений позволяет сделать следующие выводы:

1/ Зависимость $n_{\pi} = f(r, B)$ носит размытый характер /рис.8/. Это размытие /разброс/ в величине "л" на центральном радиусе достигает величины ~0,021 и объясняется влиянием клиновидного воздушного зазора между пакетами железного сердечника магнита ускорителя.

Однако благодаря наличию градиента остаточного магнитного поля, соответствующего току размагничивания 300 А, размытие в зависимости в = f(r, B) в значительной степени уменьшается, что приводит к стабилизации рабочей точки на диаграмме резонансов /<u>рис.9</u>/.

2/ Минимальная величина первой производной $\partial n/\partial r$, усредненная по четырем квадрантам для полей от 0,06 T до 0,3 T, составляет 6,4 ·10⁻⁴ 1/см. Эта величина должна быть учтена при обеспечении оптимальной настройки режима медленного вывода пучка из камеры синхрофазотрона и выборе рабочего радиуса при оптимальной настройке ускорителя.

3/ Установлено влияние собранных обмоток резонансного вывода пучка на искажения, вносимые в величину "п".

Так, например, при поле инжекции 0,023 Т это изменение составляет $\Delta n \approx 0,008$. Необходимо отметить, что в настоящее время еще недостаточно изучено влияние собранных корректирующих

Рис.9. Диаграмма резонансов и частот колебаний пучка.

Рис.8. Радиальное распределение "п" в диапазоне рабочих индукций /от 0,023 Т до 1,2 Т/на одном из полюсов ускорителя без учета влияния остаточного магнитного поля ускорителя.

обмоток, проводники которых находятся вблизи полюсов магнита, на искажения "в" в диапазоне рабочих индукций.

4/ Наличие восьми сигнальных электродов, находящихся внутри вакуумной камеры для измерения пространственного положения пучка, слабо влияет на общий характер показателя неоднородности МП и его азимутальные гармоники.

ОБСУЖДЕНИЕ ДАННЫХ. О ДИНАМИКЕ ПУЧКА СИНХРОФАЗОТРОНА ПРИ МАЛОЙ ИНТЕНСИВНОСТИ

Проведенные измерения характеристик магнитного поля СФ и их обработка позволяют сделать выводы о возможных источниках потерь как при большой, так и при малой интенсивности ускоряемых в СФ пучков. Ранее, из-за отсутствия таких данных, анализ процессов потерь, происходящих в начальной стадии ускорения при большой интенсивности, делался на основе косвенных данных о магнитном поле по характеристикам коррекций, вводимых в процессе настройки ускорителя, которые давали значительный эффект^{/1-8/}. Сравнение таблиц коэффициентов п^km, приведенных в ^{/2/}, и <u>таблицы</u> данной работы позволяет сделать вывод о том,что принятая ранее процедура была правильной, данные совпадают в пределах порядка величины и погрешностей измерений.

Таблица

величина	азимутал	івных і	арм	оник	∂"h/a	9 r ^m	Э (области	ł
рабочих ј	раднусов	$R_0 + 42$! см	для	поля	инжек	ции	0.023	Т

m	Редиальная	Номер азимутальной гармоники (К)						
	KOODINHATA		2	3				
0	Ro - 42 CM	0,91.10-2	0,26,10	7,3.10	0,21			
	₽I8 cm	1.10-2	4,9.10-3	6,6.10-3	0,22			
	R6 CM	1.10-2	1.10-2	2,2.10-3	0,22			
	№ +6 см	1,7.10-3	1,2.10-3	I.5.10 ⁻³	0,22			
	Ra +18 см	4.6.10 ⁻³	I,7.IO ⁻³	3,7.10-3	0,22			
	Ro+42 CM	3,5.10 ⁻³	1,5.10-3	4,9.10 ⁻³	0,22			
4	Ro-42 CM	4,5.10-4	3,5.10-4	2,3.10-4	5.10-4			
	€₀ -18 см	6,0.I0 ⁻⁴	4.10-4	2,2.10	I,8.10 ⁻⁴			
	Ro-6 CM	4,7.10-4	I,7.10 ⁻⁴	2,2.10-4	I,7.IO ⁻⁴			
	Ro+6 см	4,7.10-4	5,3.10-4	2,2.10-4	6.10			
	R₀+I8 cm	5,I.I0 ⁻⁴	1,1.10-4	4,3.10 ⁻⁴	1,5.10-4			
	Ro +42 CM	7.7.10-4	2,1.10-4	4.10-4	1,8.10-4			
2	Ro-42 CM	2,8.10-5	2,4.10-5	2,6.10	1,9.10-5			
	RI8 CM	2,6.I0 ⁻⁵	I,I.I0 ⁻⁵	8,8,10-6	I,8.I0 ⁻⁵			
	К6 см	3,9.10 ⁻⁵	3,9.10-5	1,1,10-5	0,9.10-5			
	R.+6 CM	7,4.10-6	6,8.I0 ⁻⁶	I,I.I0 ⁻⁵	0,9.10-5			
	ka+I8 cm	2,3.10 ⁻⁵	2,6.10	1,0,10-5	0,6.10			
	R=+42 CM	2.1.10-5	I.2.10 ⁻⁵	2,2.10-5	2,2.10-5			
3	Ro-42 CM	1,1.10-6	I,4.10 ⁻⁶	1,1.10	1,7.10-6			
	Қа — 18 см	2,9.10-6	2,1.10	1,2.10-6	8,5.10			
	Ro -6 CM	1,2.10-6	8,7.10-7	5,4.10-7	0,9.10			
	К⊿+6 см	2,6.10 ⁻⁶	2,9.10	6,6.10-7	0.8.10-6			
	Re +IB CM	2,5.10-6	9,7.10-7	1,8,10 ⁻⁶	0,8.10-0			
	Ro +42 CM	3.0.10-6	4.7.10-7	<u>1,2.10⁻⁶</u>	2,2,10 ⁻⁶			

Ниже мы остановимся на соображениях, связанных с возможными источниками потерь при малой интенсивности ускоряемых пучков, когда кулоновский сдвиг и его влияние на динамику пучка несущественны. Это происходит при начальном числе ускоряемых частиц: $N \le 5 \cdot 10^{11}$ част./имп., когда кулоновский сдвиг частот некогерентных колебаний частиц меньше расстояния от рабочей окружности на диаграмме частот ускорителя до полосы потенциально опасного резонанса 4-го порядка $2\nu_r + 2\nu_z = 3$, рассмотренного ранее 2^{2} . Рассмотрим детально окрестность рабочей точки ускорителя, которая, согласно данным магнитных измерений, в основном соответствует n = 0.66 и частоты которой равны:

$$\nu_{\mathbf{x}}^{\mathbf{p}} = 0.633 ; \quad \nu_{\mathbf{z}}^{\mathbf{p}} = 0.883 .$$
 /9/

Учитывая радиальный полуразмер сепаратрисы в нормальных условиях, равный х = 35 см, получаем $\Delta p/p \mid_{max} = 0.43\%$ и, следовательно, согласно формулам /13/ работы /1/, можно вычислить размытие частот колебаний из-за наличия в ускорителе зависимости n(r) /без коррекции/ при B₀= 230 Гс, которой соответствует среднее значение $\partial n/\partial r$.

$$\partial n / \partial r = -0,47 \cdot 10^{-3} 1 / cm.$$
 /10/

Таким образом, среднее размытие частот равно:

$$\frac{\overline{\Delta\nu}_{r}}{\overline{\Delta\nu}_{z}}^{\max} = \pm 0.021.$$
(11)

Данные магнитных измерений показывают, что существуют локальные увеличения $\partial n/\partial r$ на определенных радиусах до величины

что увеличивает величины /10/ в полтора раза.Размытие частот происходит по дуге окружности на диаграмме частот по обе стороны от рабочей точки n=0,66 /<u>рис.9</u>/. Колебания по отрезку окружности происходят с частотой синхротронных колебаний. Таким образом, за время 1 мс частицы дважды проходят через полосы резонансов связи 4-го порядка:

$$3\nu_{\rm r} - \nu_{\rm z} = 1$$

 $3\nu_{\rm z} - \nu_{\rm r} = 2$. /12/

При некоторых условиях /уменьшение частот рабочей точки или увеличение в' в процессе настройки/ на начальном этапе ускорения может захватываться полоса резонанса медленного вывода:

$$3\nu_{*} = 2$$
 /13/

и, видимо, в особо неблагоприятных случаях, резонанс связи 3-го порядка:

$$2\nu_{z} - \nu_{r} = 1.$$
 /14/

Вопрос о роли резонансов /12/ кратко обсуждался ранее ^{/2/}, резонанс /14/ был там же рассмотрен детально. Сейчас мы покажем, что согласно данным магнитных измерений, резонансы связи /12/, непосредственно зависящие от перекоса медианной поверхности ускорителя, не очень опасны и не могут вызывать существенных потерь частиц в начальный лериод ускорения.

Оба эти резонанса определяются 1-й и 2-й гармониками Фурье производной поля вида

$$\frac{\partial^{3} B_{x}}{\partial x^{3}} |_{1,2} = z \frac{\partial^{4} B_{z}}{\partial x^{4}} |_{1,2} = \frac{z \cdot B_{0}}{R_{0}} n_{3}^{1,2} .$$
 (15/

k

Здесь z - смещение медианной поверхности. Ширины резонансных полос /12/ равны:

$$\Delta_{1,2} = a_{r_0} a_{z_0} \cdot z |n_3^{1,2}| .$$
 (16)

Здесь ${a_{r\,0}}$, ${a_{z\,0}}$ – начальные амплитуды горизонтальных и вертикальных бетатроных колебаний. Для $|n\,{1_3}^2| \approx 0,2\cdot 10^{-5}$ 1/см 3 /см. таблицу/ $\Delta_{1,2}\approx 4\cdot 10^{-4}$ при z –2 см, ${a_{r\,0}},{a_{z\,0}}\approx 10$ см.

Далее нетрудно произвести расчет роста амплитуд, например, вертикальных колебаний, за время прохождения полосы резонанса. Максимальный рост амплитуды равен:

$$a_{z}/a_{z_{0}} \approx 1 + \frac{\pi}{9}\Delta. \qquad (17)$$

Если принять /оценка по максимуму/, что каждое прохождение полосы сопровождается максимальным ростом, то за время, например, 200 мс относительный прирост амплитуды будет:

 $\Delta a_{z}/a_{z_{0}} = 5.10^{-2}$.

Таким образом, при существующих искажениях магнитного поля в синхрофазотроне /даже без коррекций/ резонансы /12/ не могут вызвать заметных потерь частиц на начальном этапе ускорения =до 100 мс/. Напомним, что эти резонансы разностные, т.е. наиболее опасный рост амплитуд z -колебаний ограничен соотношением:

$$\begin{aligned} &5\nu_{r} - \nu_{z} = 1 \,, \quad a_{z}^{2} + 0.24a_{r}^{2} = \text{const} = a_{z_{0}}^{2} + 0.24a_{r_{0}}^{2} \,, \\ &3\nu_{z} - \nu_{r} = 2 \,, \quad a_{z}^{2} + 2.7 \,a_{r}^{2} = \text{const} \,. \end{aligned} \tag{18}$$

Как уже отмечалось в^{/2/}, в этом отношении резонанс $2\nu_z = \nu_r = 1$ потенциально более опасен, т.к. он допускает рост a_z амплитуды /при $a_{r_0} = a_{z_0} = 10$ см/ вплоть до 20 см, когда частицы теряются на вертикальных стенках камеры.

Если условия в ускорителе таковы, что смещение частот допускает пересечение полосы резонанса $3\nu_{r} = 2$, немедленно возникнут потери селиц по горизонтали. Используя данные магнитных измерений /напомним, что они получены без коррекций/, находим ширину полосы этого резонанса:

 $\Delta \simeq a_{r_0} n_1^2 \simeq 3.10^{-8}$

и радиальная амплитуда может возрасти в несколько раз уже к 20 мс /за одно прохождение полосы радиальное отклонение частиц увеличивается на ~10%/. В связи с этим представляют опасность возможные искажения магнитного поля, например, в связи с несовершенством корректирующих обмоток, приводящие к резким локальным уменьшениям показателя спада МП "п" по радиусу и соответствующему росту $\{\partial n/\partial t\}$. Этот вопрос требует дальней-шего экспериментального изучения.

В заключение можно сделать следующие выводы и рекомендации:

1/ В целом магнитное поле синхрофазотрона находится в неплохом состоянии, и при достаточно аккуратном применении существующих систем коррекций как n_m^k , так и искажений медианной поверхности, способно обеспечить устойчивое ускорение интенсивных пучков заряженных частиц.

2/ При малой интенсивности особо тщательному контролю подлежат значения п /рабочая точка/ и $\partial n/\partial r$. Величину "п" нужно ограничить, фиксировав значением $0.66 \stackrel{+0.02}{_{-}0.01}$, а $|\partial n/\partial r| \lesssim$ < $0.3 \cdot 10^{-8}$ 1/см при инжекции и до значения поля 0,06 Т.

3/ Динамической коррекции подлежат первая и вторая гармоники производных магнитного поля по радиусу, особенно $n_1^{1,2}$. При большой интенсивности / N > $1\cdot10^{12}$ част./имп./ добавляется еще и требование коррекции 3-й гармоники Фурье (n_3^{-9}) .

4/ В процессе настройки ускорителя следует следить за величинами $\Delta p/p|_{max}$; z_m , а также a_{r_0} и a_{z_0} .

Авторы выражают благодарность Б.В.Василишину за полезные обсуждения представленных материалов.

ЛИТЕРАТУРА

ł

- 1. Безногих Ю.Д. и др. ОИЯИ, Р9-9115, Дубна, 1975.
- 2. Безногих Ю.Д. и др. ОИЯИ, Р9-9120, Дубна, 1975.
- Безногих Ю.Д. и др. ОИЯИ, Р9-11903, Дубна, 1978; Труды VI Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1979, т.2, с.136.
- Журавлев А.А. и др. Ускорители элементарных частиц. Атомиздат, М., 1957, с.15.
- 5. Воеводин М.А. и др. ПТЭ, 1978, №6, с.143.

- 6. Воеводин М.А. и др. ОИЯИ, Р9-80-578, Дубна, 1980; Труды VII Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1981. ОИЯИ, т.2, с.272.
- 7. Воеводин М.А. Авт.свид. СССР №631848 от 17.06.76 г. Болл. ОИПОТЗ, 1978, №41, с.170. 8. Василишин Б.В. и др. ОИЯИ, Б1-3-8031, Дубна, 1974.

Рукопись поступила в издательский отдел 21 августа 1981 года.

CARL CARDEN AND