

сообщения объединенного института ядерных исследований дубна

5783/2-81

23/41-81 9-81-562

В.П.Заболотин, А.С.Исаев, В.Н.Перфеев, С.В.Федуков, Д.И.Шерстянов, И.Н.Яловой

О ПРИЧИНАХ ИСКАЖЕНИЯ ПОКАЗАТЕЛЯ НЕОДНОРОДНОСТИ МАГНИТНОГО ПОЛЯ СИНХРОФАЗОТРОНА ОИЯИ В НАЧАЛЬНЫЙ ПЕРИОД УСКОРЕНИЯ Повышение интенсивности ускоренных в синхрофазотроне ядер продолжает оставаться актуальной задачей. Одним из вариантов уменьшения потерь пучка на остаточном газе при вакууме в камере ускорителя $/2-3/\cdot 10^{-6}$ Торр является четырежкратное увеличение скорости нарастания магнитного поля в электромагните синхрофазотрона / $\dot{\rm H}$ = 16000 $\Gamma c/c/$. Но при повышении скорости нарастания магнитного поля ($\dot{\rm H}$) более резко проявляется искажающее воздействие охватывающих магнитный поток контуров, возникающих из~за недостаточной электрической изоляции в элементах магнита и вакуумной камеры ускорителя, а также вихреых токов, развивающихся в элементах конструкций, размещенных в зазоре магнита.

Даже малые возмущения магнитного поля могут нарушать устойчивость колебаний частиц, если выполняется резонансное условие

$$k_x \nu_x + k_z \nu_z + q = 0$$

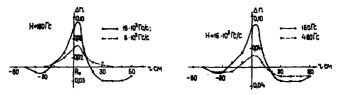
 $/k_{x,z}$ q - целые числа, ν - частота бетатронных колебаний/.

Малые искажения магнитного поля вблизи линейных резонансов приводят к резкому возрастанию амплитуды бетатронных колебаний. Благодаря нелинейным эффектам, связанным с нелинейной зависимостью магнитного поля от координат, например от радиуса, бетатронные колебания при достаточно больших амплитудах могут стать неустойчивыми и вдали от резонансов. Во всех случаях оказывается существенным характер азимутальной зависимости возмущения, а не только его величина 11.

Таким образом, имеющиеся искажения в магнитном поле могут привести к существенному снижению интенсивности ускоренного пучка и даже к нарушению работы синхрофазотрона,

Поэтому прежде чем перейти к работе с четырехкратной скоростью нарастания магнитного поля необходимо было убедиться в отсутствии недопустимых искажений последнего.

В 1974 году при исследовании характеристик магнитного поля в IV квадранте магнита синхрофазотрона при повышенной скорости нарастания магнитного поля было обнаружено, что в случае полей, близких к полю инжекции/160 Гс/, показатель неоднородности магнитного поля в искажается в области среднего радиуса кольца магнита R_0 , а величина искажения увеличивается с ростом скорости нарастания магнитного поля (II) и уменьщается с ростом величины поля $H^{2,8,4}$ /табл. 1, рис. 1/. Также было установлено от-


Таблица 1

a/ n=f(r) на полюсе №33 IV квадранта в плоскости z_0 на полях 160, 320 и 480 Гс при $H_{\rm p}=4000$ Гс/с /без учета остаточного поля/

AT(Chi)	+60	+50	+40	+30	+20	+I0	R.	- IO	-20	-3 0	-40	-50	-60
I 60	0,78	0,76	0,74	0,72	0,71	0,70	0,69	0,66	0,63	0,60	0,57	0,55	0,54
320	0,76	0,74	0,72	0,70	0,69	0,68	0,67	0,65	0,62	0,59	0,56	0,54	0,53
480	0,76	0,74	0,72	0,70	0,69	0,68	0,67	0,65	0,63	0,60	0,57	0,55	0,54

 $^{5/}$ Δn = \mathbb{R} т) на полюсе №33 IV квадранта в плоскости z_0 на полях 160, 320 и 480 Гс при $H_{\rm B}$ 8000 и 16000 Гс/с относительно $H_{\rm p}$ = 4000 Гс/с

(Te/c)	ετ(cm) Η (Γc)	+60	+50	+40	+30	+20	+10	R.	- I0	-20	-30	-40	-5 0	-60
	160	0	0	0	+0,01	+0,0I	+0,03	+0,04	+0,02	+0,0I	0	0	0	0
8.10 ³	320	0	0	0	+0,0I	+0,01	+0,0I	+0,02	+0,0I	0	0	0	0	0
	480	0	0	0	0	0	0	+0,01	0 -	- 0,OI	- 0,0I	0	0	0
	I60 -	0,02	-0,0 3	-0,03	-0,03	-0,0I	+0,04	+0,08	+0,03	+0,0I	- 0,0I	-0,0I	0	0
16.10 ³	320 -	0,02	-0,03	-0, 02	-0,02	-0.0I	+0,02	+0,03	+0,02	0	IO,0 -	IO,0-	0	0
	430 -	0,02	-0,02	-0,02	-0,02	-0,0I	+0,01	+0,03	+0,0I	-0,0I	- 0.01	-0,0I	0	0

 $\frac{P\mu c.1.}{\text{поле}}$ $\frac{\Lambda n = f(r)}{\Lambda n}$, Квадрант IV. полюс №33, плоскость z_0 , поле $\frac{1}{4}$ 160 и 480 Гс, $\frac{1}{4}$ 8 · 10 $\frac{3}{4}$ и 16 · 10 $\frac{3}{4}$ Гс/с относительно $\frac{1}{4}$ $\frac{1}{4}$ - 4 · 10 $\frac{3}{4}$ Гс/с.

сутствие контуров, охватывающих магнитный поток по длине квадрантов, и отсутствие ошибок в схемах соединений проводников и шин, уложенных в камере ускорителя.

Показатель в измерялся с помощью двух жестко соединенных между собой катушек, расстояние между осями которых составляло 5 см, и баллистического гальванометра. Длина катушек равна длине полюса в азимутальном направлении. Их постоянные /произведение числа витков на площадь/ одинаковы с точностью до 0,05%. При включении катушек встречно измеряется величина разности полей ΔH на расстоянии $\Delta r = 5$ см, а при отключении одной катушки – величина поля H; ΔH определяется дважды. При втором измерении катушки меняются местами /поворотом их на 180° вокруг вертикальной оси/ для уменьшения ошибки. Гальванометр отключается от схемы специальным устройством в момент подачи импульса от компаратора ведущего магнитного поля ускорителя. Точность измерения была не хуже $\pm 2\%$, шаг измерения по радиусу был принят равным 10 см.

Так как протяженность по радиусу областей искажений может быть меньше 10 см, то было решено в дальнейшем проводить измерения по радиусу с шагом 5 см, а не 10 см, как делалось раньше. И действительно, оказалось, что благодаря уменьшению шага были обнаружены малопротяженные искажения в распределении п по радиусу /puc.2-5/, которые не могли быть зарегистрированы при шаге 10 см. А это помогло найти причины искажений п, вызывавшие большие потери пучка при ускорении.

В 1975 году было исследовано распределение n по радиусу при H=4000 и 16000 Гс/с на 24 полюсах магнита в плоскости z_0 на поле 160 Гс и на 4 полюсах в плоскостях $z_0\pm 8$ см на поле 230 Гс. Шаг измерения был равен 5 см.

Полученные данные, которые приведены в табл. 1-3 и на рис.2,3, показывают, что показатель в искажается на радиусах R_0+5 см, R_0+15 см, R_0+25 см, R_0+35 см 1, II и IV квадрантов магнита. При рабочей скорости нарастания магнитного поля

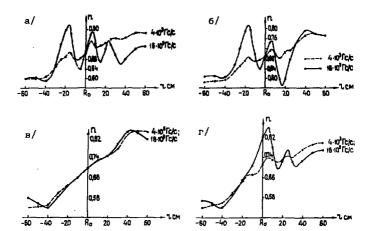
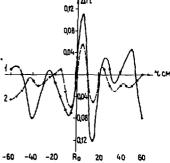



Рис.2. п = f(r) в плоскости z_0 , H = 160 Гс, \dot{H} = 4 ·10³ и $16 \cdot 10^8$ Гс/с. Усреднение по шести полюсам. а - квадрант I, 6 - квадрант II , г - квадрант IV.

/ H=4000 Гс/с/ эти искажения в области $R_0\pm 20$ см составляют $\pm 0,02$ в плоскости z_0 и $\pm 0,05$ в плоскостях $z_0\pm 8$ см, а при H=16000 Гс/с они доходят до $\pm 0,12$ в области $R_0\pm 30$ см.

Величина искажений в для одного и того же радиуса несколько различная на разных квадрантах, а на III квадранте они практически отсутствуют.

 $\frac{\text{Таблица 2}}{\text{Значения } n=f(r)} \text{ в плоскости } z_0 \quad \text{при H} = 160 \; \Gamma c \, ,$ $(H) = 4000 \quad 16000 \; \Gamma c/c \, , \; \text{усредненные ло шести полюсам } \text{на каждом квадранте}$

Ĥ ^{lc} ∕c		40	000			16000				
KB-T	I	П	Ш	IУ	I	П	Ш	IУ		
+65	0,76	0,75	0,84	0,80	0,735	0,765	0,825	0,79		
+60	0,785	0,77	0,85	0,80	0,73	0,77	0,82	0.77		
+50	0,785	0,78	0,855	0.79	0,72	0,775	0,845	0,755		
+40	0,765	0,77	0,84	0,77	0 ,6 8	0,79	0 ,8 5	0,725		
+30	0,765	0,735	0,785	0,74	0,70	0,73	0,80	0,725		
+25	0,76	0.71			0,74	0,675				
+20	0,745	0,705	0,75	0,73	0,72	0,595	0.75	0,725		
+15	0,735	0,68			0,67	0,595				
+10	0,73	0,70	0,73	0,73	0,735	0,69	0,73	0,78		
+5	0,755	0,71			0,78	0,74				
R.	0,705	0,685	0,70	0,7I	0,7I	0,69	0,695	0,82		
 5	0,685	0,675			0,64	0,64				
-IO	0,68	0,67	0,66	0,67	0,68	0,70	0,655	0,705		
- I5	0,705	0,68			0,785	0,795				
-20	0,69	0,67	0,635	0,645	0.80	0,79	0,63	0,65		
-25	0,68	0,65			0,74	0,72				
-30	0,65	0,63	0,60	0,60	0,655	0,655	0,585	0,59		
-40	0,6I	0,595	0,555	0,56	0,59	0,605	0,54	0,54		
- 50	0,60	0,59	0,545	0 ,5 5	0,605	0,6I	0,56	0,56		
-6 0	0,60	0,585	0,54	0,54	0,60	0,61	0,575	0,57		
-6 5	0,60	0,595	0,52	0,53	0,595	0,595	0,55	0,56		

Таким образом, искажения п распределяются как по радиусу, так и по азимуту и могут приводить к потерям пучка при ускорении.

Анализ этих данных позволил заключить, что искажения п на трех квадрантах магнита вызваны токами, протекающими у поверхности верхних и нижних полюсов магнита по всей длине квадрантов. Магнитное поле этих токов противоположно основному магнитному полю $\rm H_Z$ в зазоре магнита и распределено по радиусу в ограниченных интервалах с максимальными эначениями на радиусах $\rm R_0 \pm 10$ см, $\rm R_0 \pm 20$ см, $\rm R_0 \pm 30$ см, $\rm R_0 \pm 40$ см и $\rm R_0 \pm 50$ см.

 $\frac{\text{Таблица 3}}{\Delta n = f(t) \text{ в плоскостях}} \quad \frac{z_{0} + 8 \text{ см относительно плоскости } z_{0}}{z_{0} \text{ H} = 160 \text{ Гс при H} = 16 \cdot 10^{3} \text{ Гс/с и H} = 230 \text{ Гс при H}}$

	Полюс №33,IV	квадрант	Усредненные з по четырем по			
۳.	H = 160 Гс, Н	I = I 6000 Fc/c	Н = 230 Ге, Й = 4000 Ге/с			
(cm)	Z ₀ ± 8 cm	z. - 8 cm	Z _o +8 cm	z8 cm		
+65			+0,0I	+0,01		
+60		-0,005	0	-0,015		
+55			-0,0I	-0,03		
+50		+0,005	-0,02	-0,005		
+45			-0,02	+0,02		
+40		+0,005	- 0,02	-0,005		
+35			-0,03	-0,02		
+30	0	+0,0I	-0,02	-0,0I5		
+25			+0,0I	+0,005		
+20	-0,005	-0,015	-0,0I	-0,005		
+15	-0,13	-0,I2.	-0,05	-0,04		
+I0	0	0	-0,0I	-0,02		
+5	+0,IO	+0,II	+0,055	+0,05		
R _e	+0,04	+0,03	-0,005	-0,01 5		
- 5	-0,06	-0,07	-0,06	-0,055		
- I0	-0,065	-0,065	-0,03	-0,025		
- I5	-0,04	-0,04	+0,0I	-0,0I		
-20	-0,015	~0,0I5	0	0		
-25			-0,005	+0,005		
-30	-0,015	~0,0I5	~ 0,0I5	-0,02		
-35			-0,02	-0,025		
-40		-0,005	-0,0I	-0,02		
-45			-0,0I	-0,02		
-50		0	-0,03	-0,02		
~5 5			-0,04	+0,0I5		
-60		+O,OI	-0,045	+0,005		
-65		·	-0,05	-0,005		

Но на этих радиусах у поверхности верхних и нижних полюсов магнита на I , II и IV квадрантах уложены медные шины обмотки резонансного вывода ускоренного пучка размером $\Delta r \times \Delta z$ \approx

= 24x4 мм² /24 мм ~ размер шины в радиальном направлении/, а у поверхности нижних полюсов по всему кольцу магнита на радиусах R_0 ± 50 см уложены рельсы из уголка дюраля размерами 30 ммх30 мм / на каждом полюсе закреплен отрезок рельса/. На III квадранте медные шины имеют сечение намного меньше/ $\Delta r \times \Delta z = 10x5$ мм²/.

Исходя из вышесказанного, был сделан следующий вывод $^{/5}/:$

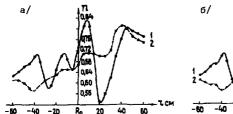
- 1/ Вероятной причиной искажения показателя неоднородности магнитного поля являются вихревые токи, развивающиеся в медных шинах обмотки медленного вывода пучка и особенно в шинах сечением 24x4 мм 2 :
- 2/ Благодаря отсутствию на III квадранте магнита шин сечением $2^4 x^4$ мм 2 в магнитное поле этого квадранта вносятся незначительные искажения от шин сечением 10x5 мм 2 ;
- 3/ Учитывая, что шины имеют разное удельное сопротивление из-за различия марок меди и термической обработки, то и вносимые ими искажения отличаются по величине.

Чтобы подтвердить высказанное предположение о причинах искажения n было предложено удалить на одном из полюсов l или l квадрантов несколько шин сечением 2^4x^4 мм 2 измерив распределение n по радиусу до и после этой операции $^{15}/.$

Из-за трудоемкости удаления шин на одном из полюсов III квадранта магнита, в котором не обнаружено значительных искажений n, были уложены дополнительно 3-метровые отрезки медных шин сечением $\Delta r \times \Delta z = 24x4$ мм 2 сверху и снизу на радиусах R_0+10 см, R_0+20 см и R_0-30 см и измерено распределение n по радиусу до и после укладки отрезков шин в плоскости z_0 на поле 160 Γc при $\dot{H}=4000$ и 16000 $\Gamma c/c$. После этого было проверено влияние дополнительных шин сечением $\Delta r \times \Delta z = 4x25$ мм 2 /отрезки шин сечением 25x4 мм 2 были повернуты на $90^\circ/$.

Данные измерений, приведенные в табл.4 и на рис.4, показывают, что дополнительно уложенные отрезки медных шин сечением 25х4 мм 2 вызывают искажение в распределении п по радиусу во всей рабочей области камеры ускорителя / R_0 +60 см/ с наибольшими значениями на радиусах R_0 + 7 см, R_0 + 22 см, R_0 - 5 см, R_0 - 12 см, R_0 - 25 см, R_0 - 40 см. Величина искажения показателя магнитного поля Δn доходит до + 0,12 на радиусе R_0 + 7 см и - 0,20 на радиусе R_0 + 22 см. При повороте отрезков шин на 90° сечение их становится равным 4х24 мм 2 и вносимое ими искажение на этих радиусах резко уменьшается. Наибольшая его величина равна - 0,05 на радиусе R_0 + 22 см.

Данный эксперимент подтвердил наше предположение, что основные искажения в распределение в по радиусу вносятся вихревыми


Таблица 4

п=f(r) на полюсе №25 III квадранта в плоскости z₀ при Н=160 Гс и Н= 4000 и 16000 Гс/с с дополнительными шинами и без них

	Без дополня	тельных шин	Дополнит шини уложени на $R_o + 10$ см, $R_o + 20$ см, $R_o + 30$ см				
7.	Й = 4000 Гс/с	H = 16000 Fc/c	Й = 16000 Гс/с				
(cm)			сечение	MICH : ALKAZ			
+65	0,75	0,75	24 MM X 4 MM 0,77	4 MM X 24 LUA 0,74			
+60	0,73	0,76	0,77	0,74			
+55	0,76	0,77	0,78	0,76			
+50	0,79	0,79	0,79	0,77			
+45	0,79	0.80	0,80	0,80			
+40	0,79	0,82	0,76	0,80 0,81			
+35	0,79	0,62	0,70	0,79			
+30	0,75	0.77	0,62	0,79			
+25	0,73	0,77	0,56	0,72			
+20	0,72	0,73	0,53	0,70			
+15	0,71	0,73	0,71	0,70 0,7I			
+10	0,69	0,72 0,7I	0,71	0,71			
+5	0,69	0,71	0,81	0,71			
R.	0.68	0,69	0,73	0,67			
-5	0,67	0,67	0,65	0,65			
-IO	0,66	0,66	0,69	0,65			
-15	0.64	0,65	0,70	0,65			
-20	0.64	0,64	0,65	0,63			
-25	0,63	0,63	0.59	0,62			
-30	0,59	0,60	0,61	0.61			
-35	0,60	0,58	0.68	0,59			
-40	0,57	0,57	0,70	0,57			
~ 15	0.56	0,59	0,67	0,58			
- 50	0,5%	0,59	0,66	0,60			
-5 5	0,58	0,60	0,64	0,61			
-60	0,59	0,61	0,63	0,61			
-6 5	0,60	0,61	0,62	0,61			

токами, развивающимися в медных шинах обмотки вывода пучка pasmepom $\Delta t \times \Delta z = 24 \times 4 \text{ mm}^{2/6}$.

В апреле 1977 года после замены ледных шин сечением $\Delta \mathbf{r} \times \Delta \mathbf{z} =$ = 24x4 mm² на медные шины сечением 5x10 mm² на II квадранте маrнита снова было проведено измерение распределения в по радиусу в плоскостях z_0 и z_0 - 8 см на поле 160 Гс при H = 4000 и 16000 Fc/c.

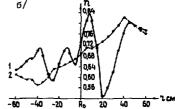
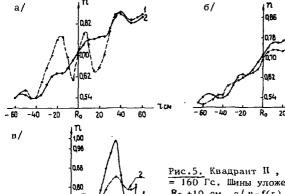



Рис. 4. п = f(r), квадрант III, полюс №25, плоскость z_0 , H=160 Гс, $H=16\cdot10^3$ Гс/с. a/1 — на радиусах R_0+10 см, R_0+20 см, R_0-30 см уложены дополнительные шины сечением $\Delta r \times \Delta z=24x4$ мм 2 . 2 — дополнительные шины сняты. 6/ На радиусах R_0+10 см, R_0+20 см, R_0-30 см уложены дополнительные шины. 1 — сечение шин $\Delta r \times \Delta z=24x4$ мм 2 , 2 — сечение шин $\Delta r \times \Delta z=24x4$ мм 2 .

0.64

0.55

048

Рис. 5. Квадрант II , полюс №12, H = 160 Гс. Шины уложены на раднусах $R_0 + 10$ см. a/n = f(r), $H = 16 \cdot 10^3$ Гс/с, плоскость $Z_0 \cdot 1$ — сечение шин $\Lambda r \times \Lambda z = 24 \times 4$ мм², $Z = -24 \times 4$ сечение шин $\Delta r \times \Delta z = 5 \times 10$ мм², $Z = -24 \times 4$ мм², Z

Таблица 5

n=f(r) на полюсе №12 II квадранта в плоскостях z_0 и z_0-8 см при H=160 Гс и H=4000 и 16000 Гс/с после замены шин на радиусе $r=R_0+10$ см сечением 24 мм х 4 мм на сечение 6 мм х 10 мм

Сечены	ие шин н	a R _{o ±} 1	[O cm = 6	мм х ІОмм	Данные от 10.X.75 г. Сечение шин на €.+10 см ≈ 24 мм x 4 мм
	7.		7	Всн	2.0
Й Гс/с С (см)	4000	16000	4000	16000	I6000
+65	0,83	0,84	0,80	18,0	0,85
+60	0,83	0,84	0,79	0,68	0,85
+50	0,825	0,82	0,82	0,85	0,83
+45	0,82	0,84	0,845	0,99	
+40	0,81	0,86	0,82	0,94	0,85
+35	0,79	0,84	0.79	0,88	
+30	0,76	0,80	0,75	0,79	0,79
+25	0,74	0,77	0,72	0,74	0,70
+20	0,725	0,77	0,72	0,75	0,65
+15	0,73	0,76	0.73	0,77	0,64
+I0	0,73	0,76	0,72	0,77	0,74
+5	0,725	0,74	0,71	0,74	0,78
₽.,	0,69	0,71	0,69	0,72	0,70
- 5	0,65	0,68	0,66	0,67	0,61
-IO	0,64	0,65	0,63	0,63	0,69
- I5	0,63	0,63	0,63	0.63	0,77
-20	0,62	0.63	0.63	0.63	0.76
 25	0.61	0,62	0.62	0.67	0.70
-30	0,60	0,59	0,61	0,58	0,65
-35	0,59	0,55	0,57	0,53	
-4 0	0,55	0,54	0,53	0,46	0,54
-4 5	0,55	0,54	0,48	0,40	
- 50	0,53	0.5 5	0,51	0,53	0.57
-60	0,51	0.54	0,54	0,63	0.54
-6 5	0,52	0.52	0,52	0,51	0,52

Данные измерений, приведенные в табл.5 и на рис.5, показывают, что после замены шин размером 24x4 мм 2 на шины размером 6x10 мм 2 искажение показателя магнитного поля уменьшилось с ± 0 ,14 до ± 0 ,04. Это позволило сделать следующие выводы $\frac{7}{7}$:

^{1/} медные шины обмотки резонансного вывода пучка размером $\Delta\,r \times \Delta\,z = 6 x 10$ мм 2 вносят незначительные искажения в распределение п по радиусу при $H_{=}$ 16000 Гс/с, которые нетрудно скорректировать;

- 2/ искажения показателя неоднородности магнитного поля, вносимые вихревыми токами, развивающимися при $\dot{\mathbf{H}}=16000$ Гс/с в дюралевых рельсах, уложенных у поверхности нижних полюсов магнита на радиусах R_0+50 см, трудно скорректировать, и наилучшим способом устранения этих искажений является замена рельсов из дюраля на рельсы из нержавеющей стали с большим удельным сопротивлением.
- В 1978 году, после замены по всему кольцу магнита медных шин сечением 24x4 мм 2 на медные шины сечением $6x10^2$ интенсивность ускоренного пучка заметно возросла и потребовалась незначительная коррекция магнитного поля в начальный период ускорения.

Таким образом, итогом данного исследования является следуюшее:

- 1. Установлено наличие недопустимых искажений в магнитном поле синхрофазотрона и измерено распределение их величины в рабочей области камеры ускорителя.
 - 2. Определена причина искажений.
- 3. Предложен путь устранения этих искажений, реализация которого привела к заметному повышению интенсивности ускоренного пучка при рабочей скорости нарастания магнитного поля / \hat{H}_p = 4000 Гс/с/. Это поэволяет после замены рельсов из дюраля камере ускорителя на рельсы из нержавеющей стали начать работы по ускорению пучка при четырехкратной скорости нарастания магнитного поля /16000 Гс/с/.

Авторы выражают благодарность доктору технических наук Л.П.Зиновьеву за ценные советы.

ЛИТЕРАТУРА

- 1. Коломенский А.А., Лебедев А.Н. Теория циклических ускорителей. ГИФМЛ, М., 1962.
- 2. Безногих Ю.Д. и др. ОИЯИ, Б1-9-8460, Дубна, 1974.
- 3. Безногих Ю.Д. и др. ОИЯИ, Б2-9-8513, Дубна, 1974.
- 4. Безногих Ю.Д. и др. ОИЯИ, Б2-9-8999, Дубна, 1975.
- Безногих Ю.Д. и др. ОИЯИ, Б2-9-9581, Дубна, 1975.
- 6. Безногих Ю.Д. и др. ОИЯИ, Б2-9-10141, Дубна, 1976.
- 7. Безногих Ю.Д. и др. ОИЯИ, Б3-9-11063, Дубна, 1977.

Рукопись поступила в издательский отдел 14 сентября 1981 года.