

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

5516/2-81

-

9/41-81

9-81-539

В.П.Заболотин, А.С.Исаев, В.Н.Перфеев, С.В.Федуков, Д.И.Шерстянов, А.П.Царенков, И.Н.Яловой

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК МАГНИТНОГО ПОЛЯ СИНХРОФАЗОТРОНА ОИЯИ И ИХ ВЛИЯНИЯ НА УСКОРЯЕМЫЙ ПУЧОК

В данной работе приведены результаты исследования и наладки магнитного поля синхрофазотрона за период 1960-74 г.г., которые проводились с целью повышения захвата пучка в режим ускорения на полях 160 и 230 Гс и уменьшения его потерь при ускорении.

1. ПОКАЗАТЕЛЬ НЕОДНОРОДНОСТИ МАГНИТНОГО ПОЛЯ На полях 160÷360 Гс

На 42 полюсах магнита измерено распределение по радиусу показателя неоднородности магнитного поля в при цикле с \dot{H} = 4 · 10³Гс/с в области R_0 +60 см с шагом по радиусу 10 см на поле 160 Гс ¹⁻⁴. Измерения проводились с помощью баллистического гальванометра и катушек, длина которых равна размеру полюса по азимуту. Точность измерений не хуже +2%. Данные измерений, усредненные по квадрантам и кольцу магнита, приведены в табл.1. В этой же таблице представлены значения поправки Λ_{R_0} в показатель неоднородности магнитного поля, полученной вследствие влияния остаточного поля при наличии одного цикла размагничивания с током 800 А, а также поправки Λ_{R_0} , полученной вследствие искажений, вносимых материалом измерительных электродов, установленных на 8 полюсах магнита.

В табл.2 и на рис.1 приведено распределение по радиусу значений п,усредненных по квадрантам и кольцу магнита с учетом вышеуказанных поправок Λn_0 и Λn_3 , а в табл.3 представлено распределение по радиусу разницы между усредненными значениями п на квадрантах и по кольцу магнита.

Чтобы выбрать оптимальное значение п, с помощью обмоток коррекции было подобрано его распределение по радиусу на уровнях 0,56; 0,60; 0,62; 0,63; 0,64; 0,65; 0,66; 0,67; 0,70; 0,73; 0,75; 0,78.

Катушечный метод измерения распределения в по радиусу при отсутствии корректирования и при его корректировании до вышеуказанных уровней на полях 160, 240 и 360 Гс был продублирован и другим методом, основанным на измерении частоты вертикальных бетатронных колебаний ускоряемых частиц v_z . Данные этих измерений, представленные в <u>табл.2</u> и <u>5</u>, показывают хорошее совпадение результатов обоих методов.

Таблица l

D	(01)			n			
	I	Π	Ш	ІУ	по кольцу	Δn _o	۵n
+65	5 0,77	0,76	0,79	0,78	0,775	-0,03	-0,035
+60) 0,78	0,77	0,80	0,775	0,78	-0,03	-0,03
+50	0,78	0,77	0,80	0,77	0,78	-0,04	-0,02
+40) 0,76	5 0,76	. 0,78	0,76	0,765	-0,035	-0,0I
+30	0,74	5 0,74	0,76	0,74	0,745	-0, 0 3	0
+20	0,72	5 0,72	0,74	0,72	0,725	-0,02	-0,0I
+10) 0,7I	0,70	0,7I	0,705	0,705	-0,0I5	0
R.	0,69	5 0,69	0,69	0,69	0,69	-0,0I	0
-10	0,67	5 0,67	0,67	0,67	0,67	+0,0I	0
20) 0,06	55 0,65	0,65	0,65	0,65	+0,015	+0, 0 I
-30	0,63	0,63	0,62	0,625	0,625	+0,02	0
-40) 0,6I	0,6I	0,60	0,605	0,605	+0,03	+0,0I
-50) 0,60	0,595	0,58	0,585	0,59	+0,04	+0,02
-60	0,59	0,59	0,57	0,58	0,58	+0,03	+0,03
-65	0,59	0,595	0,56	0,58	0,58	+0,03	+0,035

Таблица 2

10 16	т	т. т	TII	TV	По колі	ыty	_
Rem Rem	1	11	. 19	13	Katvero!!	ν* Σ	~
+65	0,705	0,695	0,725	0,715	0,71		
+60	0,72	0,7I	0,74	0,715	0,72		
+50	0,72	0,71	0,74	0,71	0,72		
+40	0,72	0,715	0,735	0,715	0,72	0.73	
+30	0,715	0,7I	0,73	0,71	0,715		
+20	0,695	0,69	0,7I	0,69	0,695	0,70	
+I0	0,695	0,685	0,695	0,69	0,69		
R.	0,685	0,68	0,68	0,68	0,68	0,69	
-10	0,685	0,68	0,68	0,68	0,68		
-20	0,68	0,675	0,675	0,675	0,675	0,68	
-30	0,65	0,65	0,64	0,645	0,645		
-40	0,65	0,65	0,64	0,645	0,645	0,65	
-50	0,66	0,655	0,64	0,645	0,65		
-60	0,65	0,65	0,63	0,64	0,64		
65	0,655	0,66	0,625	0,645	0,645		

*Измерения проводились методом, основанным на измерении частоты вертикальных бетатронных колебаний ускоренных частиц.

Рис.1. Распределение по радиусу показателя магнитного поля, усредненного по 42 полюсам магнита, на поле 160 Гс до корректирования /1/ и после /2/ при токе в цикле размагничивания 800 А.

Рис. 2. Зависимость интенсивности /1/ и потерь пучка протонов /2/ при ускорении от уровня показателя магнитного поля.

Рис.3. Зависимость интенсивности ускоренного пучка протонов от его положения в камере ускорнтеля в интервале ускорения от 20 мс до 100 мс при скорректированном показателе магнитного поля на уровне 0,65 /до 20 мс пучок ускоряется по радиусу R₀ /.

Рис.4. Первая гармоника искажения орбиты пучка по радиусу на поле 160 Гс до ее корректирования при токе в цикле ра.:магничивания 800 А.

Таблица 3

К квепр.	I	п.	Ш	1y
+65	-0,055	-0,015	+0,015	+0,005
+60	0 '	-0,0I	+0,02	-0,005
+50	0	-0,01	+0,02	-0,0I
+40	0	-0,005	+0,015	-0,005
+30	0	-0,005	+0,0I5	-0,005
+20	0	-0,005	+0,015	-0,005
+10	+0,005	-0,005	+0,005	0
R.	+0,005	0	0	0
-10	+0,005	0	0	· 0
20	+0,005	0	0	0
30	+0,005	+0,005	-0,005	0
-40	+0,005	+0,005	-0,005	0
-50	+0,0I	+0,005	-0,0I	-0,005
-60	+0,0I	+0,0I	-0,0I	0
65	+0,0I	+0,0I5	-0,02	0

Таблица 4

		N	x 10 ¹⁰	ч/и		1	Потери	
EDELAH	3	20	100	3000	от 3 до 20	от 20 до 100	от З до 100	от IOO до 3000
0,56	3	I.5	I.0	0,9	2	I,5	3	<u>I.I</u>
0,60	6	3,0	1.5	1.3	2	2	4	1,2
0,62	6	3,4	2,6	2,4	1.7	I .4	2,3	I.I
0,63	II	6,5	4,7	4,3	1.7	I.4	2,3	I,I
0,64	I8	9,0	7,5	6,8	2.0	1.2	2.4	I.I
0,65	30	14.0	II.0	10.0	2.I	1.2	2,7	I,I
0,66	27	13,0	8,4	7.7	2,I	1.6	3,2	1.1
0.67	24	9,0	5,6	5.0	2,3	1.6	4,2	I,I
0,70	I9	5,5	2.0	I.8	3.4	2.8	9,5	1.1
0.73	10	3,0	I,5	I.3	3.3	2,0	6,7	I.2
0,75	5	I,5	0,7	0,6	3.4	2,I	7.1	I.2
0,78	0,15	0.11	0,09	0.09	1.4	I.2	I.7	1.0
без корре кции	_ 22	4,6	I,6	I,5	4,8	2,9	13,8	I,I

H(Te)	16	0	2	240	3	360	
Renteron	Karya.	ν* Ξ	катуп.	ν* 	катуш.	ν*. ε	
+65	0,65		0,66		0,67		
~60	0,65		0,66		0,67		
+50	0,65	0,65	0,66	0,66	0,67	0,665	
+40	0,65	0,65	0,65	0,66	0,66	0,66	
+30	0,65	0,65	0,65	0,66	0,66	0,66	
+20	0,65	0,65	0,65	0,655	0,65	0,66	
+10	0,64	0,645	0,64	0,65	0,65	0,655	
26	0,64	0,645	0,64	0,65	0,65	0,65	
-10	0,65	0,65	0,64	0,65	0,65	0,65	
-20	0,65	0,65	0,65	0,65	0,65	0,645	
-30	0,65	0,65	0,65	0,645	0,65	0,64	
-40	0,65	0,66	0,64	0,645	0,64	0,64	
-50	0,66	0,66	0,65	0,645	0,64	0,635	
-60	0,66		0,65		0.64	• •	
65	0,66		0,65		0,64		

Таблица 5

*Измерено методом, основанным на измерении частоты вертикальных бетатронных колебаний.

Для каждого из уровней в измерена величина интенсивности пучка на 3, 20 и 100 мс с начала ускорения при одном и том же числе инжектируемых частиц / $8 \cdot 10^{19} \, \text{ч/и/}$ и при неизменном законе связи частоты ускоряющего напряжения с магнитным полем. Результаты приведены в <u>табл.4</u> и на <u>рис.2</u>; анализируя их, можно сделать следующее заключение:

 Максимальный захват пучка в ускорение и его минимальные потери при этом получаются при значении n=0,65, которое следует сохранять неизменным по крайней мере в течение первых 100 мс ускорения.

2. Отрицательное воздействие на захват и потери пучка при ускорении оказывают резонансы $\nu_r = \nu_g$ /при п=0,50 /, $\nu_r = 2/3$ (n=0,62). $3\nu_r - \nu_g = 1$ (n = 0,67), $3\nu_r = 2\nu_g$ (n = 0,69) и $\nu_r = 1/2$ (n = 0,79), а также суммовые резонансы выше второго порядка при n = 0,73 и 0,77. Особенно сильное воздействие оказывают резонансы $\nu_r = \nu_g$, $\nu_r = 1/2$ и $\nu_r = 2/3$.

Из табл.3 видно, что распределение по радиусу значений в, усредненных по квадрантам с точностью до ошибки измерения, совпадает с распределением, усредненным по кольцу магнита. Не-

Таблица 6

маркир.	ПІО,23	П8,21 ПЭ,1	6 FI,14	F4, I7 F6, I9	17,20	18,2I	ті , 24
(A)	+0,3	+0,3 -0,6	5 -0,6	-0,6 -0,8	-0,8	-0,8	-1,2
в в обм.	I		2		3		4

Таблина	7

Положение пучка в	N	Потери от З		
Ramepe (CM)	3	20	IOO MC	до 100 мс
+18			7,0	4,3
+16		-	9.0	3,3
+13			10,5	2,8
+12			11,0	2,7
+9			I I,5	2,6
+6			12,0	2,5
R.	30	15	12,0	2,5
-6			12,0	2,5
-10			12,0	2,5
-13			II,7	2,6
-15			11,2	2,7
-16			10,8	3,0
-17			9,1	3,3

Таблица 8

ни квалр. Ралкус (СИ)	I	Π	Ш	IJ
R. +60	0	+0,21	+0.09	-0.04
Re	0	+0.19	+0.08	-0.07
R60	0	+0,21	-0,0I	-0,14

;

смотря на это, было проверено влияние первой и второй гармоник в n с амплитудой 0,01÷0,04 в области $R_0 \pm 15$ см на захват и потери пучка при ускорении. Оказалось, что только при амплитуде более 0,02 в обоих случаях потери пучка несколько увеличивались.

В табл.6 представлено распределение по радиусу проводников обмоток коррекции показателя неоднородности магнитного поля и величины токов в них на поле 160 Гс для в = 0,65 при токе в цикле размагничивания 800 А.

В табл.7 и на рис.3 приведена зависимость интенсивности ускоренного пучка N протонов от его положения в камере ускорителя в интервале ускорения от 20 до 100 мс при откорректированном в до уровня 0,65 /поле инжекции 160 Гс/.

В интервале ускорения до 20 мс наименьшие потери пучка получаются при его ускорении по центральному радиусу R_0 , а в интервале от 20 до 100 мс с наименьшими потерями пучок можно ускорять в области R_0 +10 см.

Исходя из данных, приведенных в <u>табл.5</u> и 7, и учитывая, что пучок инжектировался в камеру на радиусе $R = R_0 + 63$ см, а также что искажение орбиты пучка по радиусу составляет не менее 6 см и что возможность измерения в методом измерения частоты вертикальных колебаний ускоренных частиц в пределах радиуса $R = R_0 + 50$ см /см. <u>табл.5</u>/, можно заключить, что в начале ускорения /160 Гс/ и через 50 мс /360 Гс/ после него, в пучке содержится достаточно большое число частиц с малыми амплитудами колебаний /1-4 см/. Это указывает на отсутствие заметной раскачки колебаний частиц при ускорении.

Получение максимальной величины захвата и минимальных потерь при ускорении пучка только по среднему радиусу R_0 и плавность потерь в интервале ускорения от 20 до 100 мс при смещении пучка в ту и другую сторону от области R_0+6 см $^+R_0-10$ см, подтверждает это заключение.

2. РАСПРЕДЕЛЕНИЕ МАГНИТНОГО ПОЛЯ ПО АЗИМУТУ На поле 160 гс и положение орбиты Пучка по радиусу

В 1974 г. было измерено распределение магнитного поля по азимуту $\Delta H_{\rm H}/H$ при H =160 Гс и H = 4 · 10⁸ Гс/с с помощью катушек и гальванометра /см. выше/. Кзмерения производились на каждом полюсе магнита на радиусах R_0 и $R_0 \pm 60$ см⁷⁵⁷. Точность измерений не хуже +1,6%.

Было измерено и распределение по азимуту остаточного магнитного поля для H = 160 Гс при токе в цикле размагничивания 800 А.

ампл. І-ї гари. Радиус (см)	А _Н (Х)	А (см)
R. + 60	0,11	5,7
R.	0,12	5,9
R - 60	0,15	7,7

Таблица 9

Таблица 10

# Л квадр.		I]	a	. I	1		IY
утол в град. Радиус (см)	27	66	18	63	27	66	27	72
R. + 45	0_	0	-2	-4	-5	-4	-4	-2
l.	+2	+Ĩ	-I	-1	-1	0	-I	0
R 45	-5	-I	-I	I	-I	0	-I	-5

Таблица 11

## квадр.	Год измер.	R_+ 63 cm	R + 30 cm	R,	R 30 cm	R 63 cm
т	1974	I4,5	19,5	2I.5	20,7	23,8
+	1960	18,3		17.5	-	21,8
 π	I974	34,5	32,7	33.0	36,9	39,8
<u> </u>	1960	18,2	_	22,0	-	26,4
	1974	-0.5	3,5	9.2	13,0	17,0
AL.	1960	6,5	-	7.4		13,2
17	1974	14,5	16.0	15.0	I6.8	32.6
	1960	13,7	-	I3,3	-	20,6

Данные этих измерений приведены в табл.8. На основании этих данных рассчитана амплитуда первой гармоники азимутальной асимметрии магнитного поля и амплитуда первой гармоники искажения орбиты пучка по радиусу на поле 160 Гс A_R , которая составляет на радиусах R_0 и R_0 + 60 см около 6 см, а на радиусе R_0 -60 см ~ около 8 см /табл.9 и рис.4/. С помощью обмоток коррекции искажение орбиты пучка по радиусу уменьшается до 5-9 см /таб<u>л.</u>10 и рис.7/.

ПОЛОЖЕНИЕ МАГНИТНОЙ МЕДИАННОЙ ПОВЕРХНОСТИ В ЭЛЕКТРОМАГНИТЕ СИНХРОФАЗОТРОНА ОТНОСИТЕЛЬНО СРЕДНЕЙ ГЕОМЕТРИЧЕСКОЙ ПЛОСКОСТИ

В 1968 г. были тщательно скорректированы искажения в распределении магнитной медианной поверхности /ММП/ по азимуту и радиусу. В 1970 г. была задействована система измерения положения ускоренного пучка по вертикали в начальный период ускорения⁷⁶⁷. Она показала, что искажение орбиты пучка по вертикали не превышало 15 мм. В дальнейшем не допускалось ее искажения больше, чем на 20 мм, так как многократные наблюдения показали, что искажения орбиты пучка по вертикали до 25 мм не уменьшают величины захвата пучка в ускорение и не увеличивают его потерь при ускорении.

Чтобы доказать отсутствие нескорректированных больших искажений ММП и сравнить полученные результаты с результатами 1960 г., установить причину появившихся искажений и сравнить первую гармонику искажения орбиты пучка по вертикали, рассчитанной по данным магнитных измерений, с положением пучка по вертикали, зарегистрированным измерентельными электродами⁷⁶⁷, в 1974 г. было измерено распределение ММП по азимуту и радиусу. Измерение проведено катушками и баллистическим гальванометром на каждом полюсе магнита /на 176 полюсах/ на радиусах R_0 , $R_0 \pm 30$ см, $R_0 \pm 63$ см на поле 230 Гс /поле инжекции/. Точность измерения не хуже $\pm 0,75$ мм.

В табл.11 приведены значения положения ММП, усредненные по квадрантам, на радиусах R_0 , $R_0 \pm 30$ см и $R_0 \pm 63$ см на поле 230 Гс, а в табл.12 и на <u>рис.5</u> - значения амплитуд первой гармоники искажения магнитной медианной поверхности $A_{\rm MMII}$ и искажения орбиты пучка по вертикали A_z на этих радиусах. Там же для сравнения приведены результаты измерений положения ММП, проведенные в 1960 г.

Из сравнения результатов измерений 1974 г. и 1960 г. видно, что значительное изменение положения ММП произошло на II квадранте. Характер этого изменения позволяет заключить, что причиной является просадка фундамента магнита под вторым квадрантом с перекосом фундамента по радиусу из-за распределенной нагрузки по наружному радиусу квадранта магнита вследствие построенного в 1963 г. здания экспериментального корпуса. Факт просадки фундамента под вторым квадрантом был установлен в 1969 г.

9

Рис.5. Эначения амплитуд первой гармоники искажения орбиты пучка по вертикали А, на поле 230 Гс на раднусах R₀ и R₀ +63 см по данным магнитных нзмерений в 1960 и 1974 гг.

Рис.6. Положение орбиты пучка по раднусу после ее корректирования на поле 170 Гс. измеренное измерительными электродами на радиусах: R0+45 см /1/, R₀/2/ и R₀-45 см /3/.

Рис.7. Положение скорректированной орбиты по вертикали на раднусах R₀+50 см /1/, R₀ /2/, R₀-45 см /3/ на поле 240 Гс. полученное с помощью измерительных электродов.

٨

Таблица 12								
год цзмер,	Парам.	R_+ 63 cm	R.+ 30 cm	R.	R 30 cm	R 63cm		
1974	AMMII	II,5	10,4	9,9	9,7	8,7		
	Ă _z	61	55	52	51	46		
	постоян. составл,	16	19	20	22	26		
	ΔY	00	00	+12 ⁰	+210	+240		
196 0	А	5,8	-	5,6	-	4,8		
	A z	31	-	30	-	25		
	Постоян. составл.	I4	*	I4	-	21		
	Δų	-21°	-	-12 ⁰	-	-I2 ⁰		

год	Наличие		N x IO	Оч/и на :		Потери до :			
измер.	корренции	3	20	100	3000: <i>n</i> c	I00	3000 Me		
1974	корредния вклю-	80	10	32	30	2,5	3,7		
	коррегция от- ключена	20	3	1_	0,9	20	23		
1967	коррекция вила-	18	12	10	9	I . 8	2,0		
	корренция от- ключена	6	I,5	0,6	0,5	10	12		

Таблица 13

Таблица 14

ја ја крадр.		I	Π				IУ	
угол (град). Радиус (сл)	37	66	I8	63	27	66	27	72
R. + 50	+9	+5	+10	+9	+9	+6	+10	+9
R.	+3	0	-I	-3	-3	-2	+5	+7
R _o - 45	0	0	+4	0	+6	+5	0	0

Таблица 15

# 15 квадр.	I		П		Ш		IV	
н(Гс)	27	66	18	63	27	66	27	72
240	+3	0	-I	-3	-3	-2	+5	+7
280	+3	0	+I	0	+I	+2	+6	-7
320	+2	+2	+5	+5	+6	+4	+6	+8
440	0	+2	+9	+12	+15	+12	+ 7	+7
540	0	0	+10	+14	+19	+18	+15	+6
640	0	-I	+8	+15	+2I	+I9	+10	+2

В <u>табл.13</u> приведены данные о величине захвата пучка в режим ускорения и о его потерях при ускорении при отсутствии и наличии коррекции магнитной плоскости. Как видно, благодаря коррекции магнитной плоскости интенсивность ускоренного пучка возрастает более чем в 30 раз.

В табл.14,15 и на рис.7 показано положение пучка по вертикали на разных радиусах и разных полях после корректирования магнитной плоскости. Из этих данных видно, что при подобранной коррекции искажение орбиты пучка по вертикали не превышает 10 мм в момент инжекции и 25 мм через 80 мс с начала ускорения /560 Гс/.

выводы

Благодаря проведенным исследованиям характеристик магнитного поля и их влияния на ускоренный пучок:

- подобрана коррекция искажений характеристик магнитного поля, вносимых остаточным магнитным полем, путем замены пяти циклов размагничивания на один цикл, что позволило увеличить частоту повторения импульсов, а соответственно и эффективность работы синхрофазотрона в 1,5 раза;

- подобрано оптимальное значение показателя неоднородности магнитного поля, равное 0,65, и его распределение по радиусу таким, что в этом случае получается максимальный захват пучка в режим ускорения и минимальные его потери при ускорении в области R₀ ±10 см. Это позволило заметно увеличить интенсивность ускоренного пучка при его инжекции на поле 160 Гс;

 корректированием положения магнитной медианной поверхности по азимуту и радиусу уменьшено искажение орбиты пучка по вертикали с 110-140 мм до 10-25 мм, что позволило значительно повысить интенсивность ускоренного пучка;

- подтверждено, что положение магнитной медианной поверхности было достаточно тщательно скорректировано в 1968 г., и причиной дополнительных искажений в положении магнитной медианной поверхности, появившихся после 1960 г., является дополнительная деформация фундамента магнита, особенно его перекос под вторым квадрантом вследствие нагрузки от построенного в 1963 г. экспериментального корпуса.

ЛИТЕРАТУРА

- 1. Безногих Ю.Д. и др. ОИЯИ, Б2-9-8513, Дубна, 1974.
- 2. Безчогих Ю.Д. и др. ОИЯИ, Б2-9-8999, Дубна, 1975.
- 3. Безногих Ю.Д. и др. ОИЯИ, Б2-9-9203. Дубна. 1975.
- 4. Безногих Ю.Д. и др. ОИЯИ, 52-9-9581, Дубна, 1975.
- 5. Безногих Ю.Д. и др. ОИЯИ. 51-9-8374. Дубна. 1974.
- 6. Конский Г.Н., Царенков А.П., Штырляев В.А. ОИЯИ, 9-5419, Дубна, 1970.
- 7. Безногих Ю.Д. и др. ОИЯИ, 52-9-8775, Дубна, 1975.

Рукопись поступила в издательский отдел 4 августа 1981 года.