

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

5516/2-81

9-81-539

В.П.Заболотин, А.С.Исаев, В.Н.Перфеев, С.В.Федуков, Д.И.Шерстянов, А.П.Царенков, И.Н.Яловой

ИССЛЕДОВАНИЕ

ХАРАКТЕРИСТИК МАГНИТНОГО ПОЛЯ

СИНХРОФАЗОТРОНА ОИЯИ

И ИХ ВЛИЯНИЯ НА УСКОРЯЕМЫЙ ПУЧОК

В данной работе приведены результаты исследования и наладки магнитного поля синхрофазотрона за период 1960-74 г.г., которые проводились с целью повышения захвата пучка в режим ускорения на полях 160 и 230 Гс и уменьшения его потерь при ускорении.

1. ПОКАЗАТЕЛЬ НЕОДНОРОДНОСТИ МАГНИТНОГО ПОЛЯ НА ПОЛЯХ 160÷360 Гс

На 42 полюсах магнита измерено распределение по радиусу показателя неоднородности магнитного поля в при цикле с $H=4\cdot10^3$ Гс/с в области R_0+60 см с шагом по радиусу 10 см на поле 160 Гс $^{1\cdot4}$. Измерения проводились с помощью баллистического гальванометра и катушек, длина которых равна размеру полюса по азимуту. Точность измерений не хуже $\pm2\%$. Данные измерений, усредненные по квадрантам и кольцу магнита, приведены в ± 60.1 . В этой же таблице представлены значения поправки Δn_0 в показатель неоднородности магнитного поля, полученной вследствие влияния остаточного поля при наличии одного цикла размагничивания с током 800 A, а также поправки Δn_0 , полученной вследствие искажений, вносимых материалом измерительных электродов, установленных на 8 полюсах магнита.

В табл.2 и на рис.1 приведено распределение по радиусу значений n, усредненных по квадрантам и кольцу магнита с учетом вышеуказанных поправок Λn_0 и Λn_1 , а в табл.3 представлено распределение по радиусу разницы между усредненными значениями n на квадрантах и по кольцу магнита.

Чтобы выбрать оптимальное значение п, с помощью обмоток коррекции было подобрано его распределение по радиусу на уровнях 0,56; 0,60; 0,62; 0,63; 0,64; 0,65; 0,66; 0,67; 0,70; 0,73; 0,75; 0,78.

Катушечный метод измерения распределения в по радиусу при отсутствии корректирования и при его корректировании до вышеуказанных уровней на полях 160, 240 и 360 Гс был продублирован и другим методом, основанным на измерении частоты вертикальных бетатронных колебаний ускоряемых частиц ν_z . Данные этих измерений, представленные в $\frac{\text{табл.2}}{\text{табл.2}}$ и $\frac{5}{5}$, показывают хорошее совпадение результатов обоих методов.

Таблица 1

R (0	٠٠١			n.			
~ (0	I	ĪĪ	Ш	Iλ	по кольцу	- An,	۵n
+65	0,77	0,76	0,79	0,78	0,775	-0,03	-0,065
+60	0,78	0,77	0,80	0,775	0,78	-0,03	-0,03
+50	0,78	0,77	0,80	0,77	0,78	-0,04	- 0,03
+40	0,765	0,76	. 0,78	0,76	0,765	-0,035	-0,0I
+30	0,745	0,74	0,76	0,74	0,745	- 0 ,0 3	0
+20	0,725	0,72	0,74	0,72	0,725	-0,02	-0,0I
+I0	0,71	0,70	0,71	0,705	0,705	-0,0I5	0
R.	0,695	0,69	0,69	0,69	0,69	-0,01	0
- I0	0,675	0,67	0,67	0,67	0,67	+0,0I	0
-20	0,0655	0,65	0,65	0,65	0,65	+0,015	+0, 0 I
-30	0,63	0,63	0,62	0,625	0,625	+0,02	0
-4 0	0,61	0,61	0,60	0,605	0,605	+0,03	+0,0I
- 50	0,60	0,595	0,58	0,585	0,59	+0,04	+0,02
- 60	0,59	0,59	0,57	0,58	0,58	+0,03	+0,03
-65	0,59	0,595	0,56	0,58	0.58	+0,03	+0,035

Таблица 2

JA JA	I	π	Ш	IУ	IIo колі	PIÍ.
Р смедадр.		11	. 121	13	Katvukoii	ν* z
+65	0,705	0,695	0,725	0,715	0,71	
+60	0,72	0,71	0,74	0,715	0 ,7 2	
+50	0,72	0,71	0,74	0,71	0,72	
+40	0,72	0,715	0,735	0,715	0,72	0.73
+30	0,715	0,71	0,73	0,71	0,715	
+20	0,695	0,69	0,71	0,69	0,695	0,70
+I 0	0,695	0,685	0,695	0,69	0,69	
D.	0,685	0,68	0,68	0,68	0,68	0,69
-10	0,685	0,68	0,68	0,68	0,68	
-20	0,68	0,675	0,675	0,675	0,675	0,68
-30	0,65	0,65	0,64	0,645	0,645	
-40	0,65	0,65	0,64	0,645	0,645	0,65
-5 0	0,66	0,655	0,64	0,645	0,65	
6 0	0,65	0,65	0,63	0,64	0,64	
65	0,655	0,66	0,625	0,645	0,645	

^{*}Измерения проводились методом, основанным на измерении частоты вертикальных бетатронных колебаний ускоренных частиц.

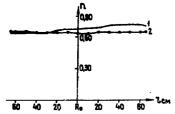
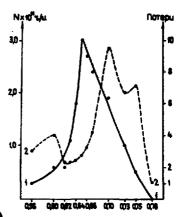



Рис.1. Распределение по радиусу показателя магнитного поля, усредненного по 42 полюсам магнита, на поле 160 Гс до корректирования /!/ и после /2/ при токе в цикле размагничивания 800 А.

Рис. 2. Зависимость интенсивности /1/ и потерь пучка протонов /2/ при ускорении от уровня показателя магнитного поля.

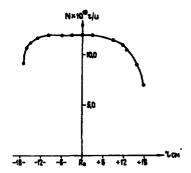


Рис. 3. Зависимость интенсивности ускоренного пучка протонов от его положения в камере ускорителя в интервале ускорения от 20 мс до 100 мс при скорректированном показателе магнитного поля на уровне 0,65 /до 20 мс пучок ускоряется по радиусу R₀/.

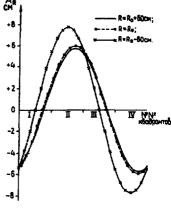


Рис. 4. Первая гармоника искажения орбиты пучка по радиусу на поле 160 Гс до ее корректирования при токе в цикле ра:магничивания 800 A.

Таблица 3

№ № квапр. Ксм	I	Π.	Ш	IУ
+65	-0,055	-0,015	+0,015	+0,005
+60	0 '	-0,01	+0,02	-0,005
+50	0	-0,0I	+0,02	-0,0I
+40	0	-0,005	+0,015	-0,005
+30	0	-0,005	+0,0I5	-0,005
+20	0	-0,005	+0,015	-0,005
+10	+0,005	-0,005	+0,005	0
R.	+0,005	0	0	0
-10	+0,005	0	0	. 0
-20	+0,005	0	0	0
30	+0,005	+0,005	-0,005	0
-4 0	+0,005	+0,005	-0,005	0
- 50	+0,0I	+0,005	-0,0I	-0,005
-60	10,0 +	+0,01	-0,01	0
-65	+0,0I	+0,0I5	-0,02	0

Таблица 4

		N	x 10 ¹⁰	ч/и			Іотери	
BDelast (MC)	3	20	100	3000	от 3 до 20	от 20 до IOO	от 3 до 100	от IOO до 3000
0,56	3	1,5	1.0	0,9	2	1,5	3	1,1
0,60	6	3,0	T.5	I.3	2	2	4	1.2
0.62	_ 6	3,4	2,6	2.4	I.7	I,4	2,3	I.I
0,63	II	6,5	4,7	4.3	1.7	I,4	2,3	I,I
0.64	I8	9,0	7,5	6,8	2,0	1.2	2.4	I,I
0,65	30	14.0	11.0	10.0	2.1	1,2	2,7	I,I
0.66	27	13.0	8,4	7.7	2,1	1.6	3,2	1.1
0.67	24	9.0	5,6	5.0	2,3	1,6	4,2	I,I
0.70	I 9	5,5	2.0	1.8	3,4	2,8	9,5	I.I
0.73	10	3.0	I,5	I,3	3,3	2.0	6,7	1.2
0,75	5	I.5	0,7	0,6	3.4	2.I	7.I	1,2
0.78	0.15	0.II	0,09	0.09	I.4	1.2	I.7	1.0
кции корре без	_ 22	4,6	I,6	1,5	4,8	2,9	13,8	I,I

Таблица 5

H _(Tc)	16	0	2	40	3	60
LOTETOI	катуш.	ν* Έ	катуш.	ν** E	катуш.	ν*.
+65	0,65		0,66		0,67	
∻60	0,65		0,66		0,67	
+50	0,65	0,65	0,66	0,66	0,67	0,665
+40	0,65	0,65	0,65	0,66	0,66	0,66
+30	0,65	0,65	0,65	0,66	0,66	0,66
+20	0,65	0,65	0,65	0,655	0,65	0,66
+10	0,64	0,645	0,64	0,65	0,65	0,655
Q6	0,64	0,645	0,64	0,65	0,65	0,65
-10	0,65	0,65	0,64	0,65	0,65	0,65
-20	0,65	0,65	0,65	0,65	0,65	0,645
-30	0,65	0,65	0,65	0,645	0,65	0,64
-40	0,65	0,66	0,64	0,645	0,64	0,64
-50	0,66	0,66	0,65	0,645	0,64	0,635
-60	0,66		0.65		0.64	•
-65	0,66		0,65		0.64	

^{*}Измерено методом, основанным на измерении частоты вертикальных бетатронных колебаний.

Для каждого из уровней в измерена величина интенсивности пучка на 3, 20 и 100 мс с начала ускорения при одном и том же числе инжектируемых частиц / $8\cdot10^{12}$ ч/и/ и при неизменном законе связи частоты ускоряющего напряжения с магнитным полем. Результаты приведены в табл. 4 и на рис. 2; анализируя их, можно сделать следующее заключение:

- 1. Максимальный захват пучка в ускорение и его минимальные потери при этом получаются при значении n=0.65, которое следует сохранять неизменным по крайней мере в течение первых 100 мс ускорения.
- 2. Отрицательное воздействие на захват и потери пучка при ускорении оказывают резонансы $\nu_{\rm r}=\nu_{\rm g}$ /при n=0,50 /, $\nu_{\rm r}=2/3$ (n=0,62). $3\nu_{\rm r}-\nu_{\rm g}=1$ (n=0,67), $3\nu_{\rm r}=2\nu_{\rm g}$ (n=0,69) и $\nu_{\rm r}=1/2$ (n=0,79), а также суммовые резонансы выше второго порядка при n=0,73 и 0,77. Особенно сильное воздействие оказывают резонансы $\nu_{\rm r}=\nu_{\rm g}$, $\nu_{\rm r}=1/2$ и $\nu_{\rm r}=2/3$.

Из табл.3 видно, что распределение по радиусу значений п, усредненных по квадрантам с точностью до ошибки измерения, совпадает с распределением, усредненным по кольцу магнита. Не-

Таблица 6

						+43,5 I7,20	-	+67 FII,24
(A)	+0,3	+0,3	-0,6	-0,6	-0,6 -0,8	-0,8	-0,8	-I,2
ж ж обм.	I			2		3		4

Таблица 7

Положение пучка в	//	x\r ^{Ol} Ol x		Потери от 3
камере (см)	3	20	IOO Mo	до IOO мс
+18			7,0	4,3
+16			9,0	3,3
+I3			10,5	2,8
+12			11,0	2,7
+9			I I,5	2,6
+6			12,0	2,5
R.	30	I 5	12,0	2,5
- 6			12,0	2,5
_ I0			12,0	2,5
- I3			II,7	2,6
- I5			11,2	2,7
– 16			10,8	3,0
-1 7			9.1	3,3

Таблица 8

в жадр. Радате (ои)	I	П	Ш	Ι¥
R. +60	. 0	+0,21	+0.09	-0.04
R.	0	+0.19	+0.08	-0.07
R60	0	+0,2I	-0,0I	-0,I4

смотря на это, было проверено влияние первой и второй гармоник в n с амплитудой $0,01\div0,04$ в области $R_0\pm15$ см на захват и потери пучка при ускорении. Оказалось, что только при амплитуде более 0,02 в обоих случаях потери лучка несколько увеличивались.

В табл.6 представлено распределение по радиусу проводников обмоток коррекции показателя неоднородности магнитного поля и величины токов в них на поле 160 Γ c для n=0.65 при токе в цикле размагничивания 800 A.

В табл.7 и на рис.3 приведена зависимость интенсивности ускоренного пучка N протонов от его положения в камере ускорителя в интервале ускорения от 20 до 100 мс при откорректированном в до уровня 0.65 /поле инжекции 160 гс/.

В интервале ускорения до 20 мс наименьшие потери пучка получаются при его ускорении по центральному радиусу \mathbf{R}_0 , а в интервале от 20 до 100 мс с наименьшими потерями пучок можно ускорять в области \mathbf{R}_0 +10 см.

Исходя из данных, приведенных в табл.5 и 7, и учитывая, что пучок инжектировался в камеру на радиусе $R=R_0+63$ см, а также что искажение орбиты пучка по радиусу составляет не менее 6 см и что возможность измерения π методом измерения частоты вертикальных колебаний ускоренных частиц в пределах радиуса $R=R_0+50$ см /см. τ aбл.5/, можно заключить, что в начале ускорения /160 Γ c/ и через 50 мс /360 Γ c/ после него, в лучке содержится достаточно большое число частиц с малыми амллитудами колебаний /1-4 см/. Это указывает на отсутствие заметной раскачки колебаний частиц при ускорении.

Получение максимальной величины захвата и минимальных потерь при ускорении пучка только по среднему радиусу \mathbf{R}_0 и плавность потерь в интервале ускорения от 20 до 100 мс при смещении пучка в ту и другую сторону от области \mathbf{R}_0+6 см $\div \mathbf{R}_0-10$ см, подтверждает это заключение.

2. РАСПРЕДЕЛЕНИЕ МАГНИТНОГО ПОЛЯ ПО АЗИМУТУ НА ПОЛЕ 160 ГС И ПОЛОЖЕНИЕ ОРБИТЫ ПУЧКА ПО РАДИУСУ

В 1974 г. было измерено распределение магнитного поля по азимуту $\Delta H_{\rm H}/H$ при H =160 Гс и H = $4\cdot10^8$ Гс/с с помощью катушек и гальванометра /см. выше/. Измерения производились на каждом полюсе магнита на радиусах R_0 и R_0 ± 60 см/ $^{5/}$. Точность измерений не хуже ± 1.6 %.

Было измерено и распределение по азимуту остаточного магнитного поля для H=160 Гс при токе в цикле размагничивания 800 A.

Таблица 9

ампл. І-й гари. Радвус (ом)	(%)	А (см)
R. + 60	0,11	5,7
R.	0,12	5,9
R ₁₆ - 60	0,15	7,7

Таблица 10

∌ й квалр.		I		0		1		IJ
угол в град. Раднус (сы)	27	66	18	63	27	66	27	72
R.+ 45	. 0_	0	2	-4	- 5	_4	-4	-2
Q	+2	+Ī	-I	_I_	- I	0	-I	0
R.~ 45	- 5	-I	-I	-I	_I	0	-I	-5

Таблица 11

## квадр.	Год измер.	R_+ 63 cm	R + 30 cm	R.	R _e - 30 cm	R 63 cm
т	I974	I4, 5	19,5	21.5	20,7	23,8
	I960	18,3		17.5		21.8
17	I974	34,5	32,7	33.0	36.9	39.8
	1960	18,2	_	22,0	_	26,4
	I974	-0.5	3,5	9.2	13,0	17.0
	1960	6.5		7.4		13,2
Iy	I974	I4,5	I6,0	15.0	16.8	22,6
	1960	13,7	-	13,3	-	20,6

Данные этих измерений приведены в табл.8. На основании этих данных рассчитана амплитуда первой гармоники азимутальной асимметрии магнитного поля и амплитуда первой гармоники искажения орбиты пучка по радиусу на поле 160 Гс ${\rm A_R}$, которая составляет на радиусах ${\rm R_0}$ и ${\rm R_0}$ + 60 см около 6 см, а на радиусе ${\rm R_0}$ -60 см около 8 см /табл.9 и рис.4/.

С помощью обмоток коррекции искажение орбиты пучка по радиусу уменьшается до 5-9 см /табл.10 и рис.7/.

- 3. ПОЛОЖЕНИЕ МАГНИТНОЙ МЕДИАННОЙ ПОВЕРХНОСТИ В ЭЛЕКТРОМАГНИТЕ СИНХРОФАЗОТРОНА ОТНОСИТЕЛЬНО СРЕДНЕЙ ГЕОМЕТРИЧЕСКОЙ ПЛОСКОСТИ
- В 1968 г. были тщательно скорректированы искажения в распределении магнитной медианной поверхности /ММП/ по азимуту и радиусу. В 1970 г. была задействована система измерения положения ускоренного пучка по вертикали в начальный период ускорения обить показала, что искажение орбиты пучка по вертикали не превышало 15 мм. В дальнейшем не допускалось ее искажения больше, чем на 20 мм. так как многократные наблюдения показали, что искажения орбиты пучка по вертикали до 25 мм не уменьшают величины захвата пучка в ускорение и не увеличивают его потерь при ускорении.

Чтобы доказать отсутствие нескорректированных больших искажений ММП и сравнить полученные результаты с результатами 1960 г., установить причину появившихся искажений и сравнить первую гармонику искажения орбиты лучка по вертикали, рассчитанной по данным магнитных измерений, с положением пучка по вертикали, зарегистрированным измерительными электродами R6 , в 1974 г. было измерено распределение ММП по азимуту и радиусу. Измерение проведено катушками и баллистическим гальванометром на каждом полюсе магнита /на 176 полюсах/ на радиусах R_0 , R_0 ± 30 см, R_0 ± 63 см на поле 230 Гс /поле инжекции/. Точность измерения не хуже ± 0 ,75 мм.

В табл.11 приведены значения положения ММП, усредненные по квадрантам, на радиусах R_0 , $R_0\pm30$ см и $R_0\pm63$ см на поле 230 Гс, а в табл.12 и на рис.5 — значения амплитуд первой гармоники искажения магнитной медианной поверхности $A_{\rm MMII}$ и искажения орбиты пучка по вертикали A_z на этих радиусах. Там же для сравнения приведены результаты измерений положения ММП, проведенные в 1960 г.

Из сравнения результатов измерений 1974 г. и 1960 г. видно, что значительное изменение положения ММП произошло на II квадранте. Характер этого изменения позволяет заключить, что причиной является просадка фундамента магнита под вторым квадрантом с перекосом фундамента по радиусу из-за распределенной нагрузки по наружному радиусу квадранта магнита вследствие построенного в 1963 г. здания экспериментального корпуса. Факт просадки фундамента под вторым квадрантом был установлен в 1969 г.

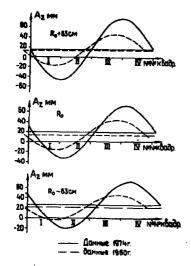


Рис. 5. Значения амплитуд первой гармоники искажения орбиты пучка по вертикали A_2 на поле 230 Гс на радиусах R_0 и $R_0 \pm 63$ см по данным магнитных нэмерений в 1960 и 1974 гг.

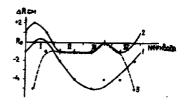


Рис. 6. Положение орбиты пучка по раднусу после ее корректирования на поле 170 Гс, измеренное измерительными электродами на раднусах: R_0+45 см /1/, $R_0/2/$ и R_0-45 см /3/.

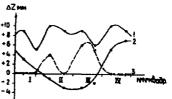


Рис. 7. Положение скорректированной орбиты по вертикали на радиусах R_0+50 см /1/, $R_0/2/$, R_0-45 см /3/ на поле 240 Гс, полученное с помощью измерительных электродов.

Таблица 12

год измер,	Параи.	R . + 63 cm	R. + 30 cm	R.	Q. – 30 см	R _o - 63см
	A _{MMII}	11,5	10,4	9,9	9,7	8,7
1974	A	6I	55	52	51	46
	. ККОТООП	16	19	20	22	26
	ΔΨ	00	00	+I2º	+210	+240
	AMMII	5,8	-	5,6	-	4,8
196 0	A Z	31	-	30	-	25
1960	Постоян. составл.	14	*	14	-	21
	Δφ	-21°	-	-12°	-	-IS _Q

Таблица 13

год	Наличхе коррекции		√ x I0	. сн и/Р ^О	Потери до :			
измер.		3	20	100	3000:40	100	3000 ме	
I974	коррежция вклю-	80	40	32	30	2,5	2,7	
	коррегция от-	20	3	Ī_	0,9	20	2 3	
1967	коррекция вклю-	18	13	10	9	1,8	2,0	
	коррекция от- ключена	6	I,5	0,6	0,5	10	12	

Таблица 14

# # кратр.		ī	Π		<u>lii</u>		ĮУ	
угол (град). Рациус (сы)	27	66		63	27	66	27	72
R. + 50	+9	+5	+10	+9	+9	+6	+10	+9
R.	+3	0	- I	-3	-3	-2	+5	+7
R 45	0	0	+4	0	+6	+5	0	0

Таблица 15

№ 15 квапр.	I		П		D		IJ	
н(Ге)	27	66	18	63	27	66	27	72
240	+3	0	T	~ 3	~ 3	-2	+5	+7
280	+3	0	+Ī	0	÷Ι	+2	+6_	- 7
320	+2	+2	+5	+5	+6	+4	+6	+8
440	0	+2	+9	+12	+15	+12	+ 7	+7
540	0	0	+10	+14	+19	+18	+15	+6
640	0	I	+8	+15	+2I	+ I9	+10	+2

В табл.13 приведены данные о величине захвата пучка в режим ускорения и о его потерях при ускорении при отсутствии и наличии коррекции магнитной плоскости. Как видно, благодаря коррекции магнитной плоскости интенсивность ускоренного лучка возрастает более чем в 30 раз.

В табл.14,15 и на рис.7 показано положение пучка по вертикали на разных радиусах и разных полях после корректирования магнитной плоскости. Из этих данных видно, что при подоб-

ранной коррекции искажение орбиты пучка по вертикали не превышает 10 мм в момент инжекции и 25 мм через 80 мс с начала ускорения /560 Гс/.

выводы

Благодаря проведенным исследованиям характеристик магнитного поля и их влияния на ускоренный пучок:

- подобрана коррекция искажений характеристик магнитного поля, вносимых остаточным магнитным полем, путем замены пяти циклов размагничивания на один цикл, что позволило увеличить частоту повторения импульсов, а соответственно и эффективность работы синхрофазотрона в 1,5 раза;
- подобрано оптимальное значение показателя неоднородности магнитного поля, равное 0,65, и его распределение по радиусу таким, что в этом случае получается максимальный захват пучка в режим ускорения и минимальные его потери при ускорении в области $R_0 \pm 10$ см. Это позволило заметно увеличить интенсивность ускоренного пучка при его инжекции на поле 160 Гс;
- корректированием положения магнитной медианной поверхности по азимуту и радиусу уменьшено искажение орбиты пучка по вертикали с 110-140 мм до 10-25 мм, что позволило значительно повысить интенсивность ускоренного пучка;
- подтверждено, что положение магнитной медианной поверхности было достаточно тщательно скорректировано в 1968 г., и причиной дополнительных искажений в положении магнитной медианной поверхности, появившихся после 1960 г., является дополнительная деформация фундамента магнита, особенно его перекос под вторым квадрантом вследствие нагрузки от построенного в 1963 г. экспериментального корпуса.

ЛИТЕРАТУРА

- 1. Безногих Ю.Д. и др. ОИЯИ, Б2-9-8513, Дубна, 1974.
- 2. Бегчогих Ю.Д. и др. ОИЯИ, Б2-9-8999, Дубна, 1975.
- 3. Безногих Ю.Д. и др. ОИЯИ, Б2-9-9203, Дубна, 1975.
- 4. Безногих Ю.Д. и др. ОИЯИ, Б2-9-9581, Дубна, 1975.
- Безногих Ю.Д. и др. ОИЯИ, Б1-9-8374, Дубна, 1974.
- Конский Г.Н., Царенков А.П., Штырляев В.А. ОИЯИ, 9-5419, Дубна, 1970.
- 7. Безногих Ю.Д. и др. ОИЯИ, 62-9-8775, Дубна, 1975.

Рукопись поступила в издательский отдел 4 августа 1981 года.