

сообщения объединенного института ядерных исследований

дубна

31/8-81

9-81-336

В.А.Саввин

ВЛИЯНИЕ РАЗБРОСА ХАРАКТЕРИСТИК МАТЕРИАЛА СЕРДЕЧНИКОВ НА ДИНАМИКУ ИХ ПЕРЕМАГНИЧИВАНИЯ В ЛИУ

При изготовлении ускоряющих секций линейного индукционного ускорителя необходима калибровка сердечников, из которых состоят основные элементы секций - индукторы, по динамическим характеристикам.

С этой целью в НИИЭФА был создан специальный испытательный стенд, схема которого приведена на рис.1.

В данной работе кратко описаны результаты расчета влияния разброса некоторых статических и динамических характеристик материала сердечников на форму импульсов напряжения и тока при их перемагничивании на этом стенде.

Номинальные значения величин, характеризующих сердечники, были следующие:

Β,	= 1,2 Тл,	$R_{BH} = 0,075 M,$
в	= 1,33 Тл,	$R_{H_{\star}} = 0,19 \text{ M},$
Hc	= 20 A/m,	l = 0,025 м,
R	$= 1,35 \cdot 10^4 \text{ Om/m},$	f = 0,7,
ν	$= 3,24 \cdot 10^{-3} \text{ M/A},$	
ii i	$= 10^{5}$	

где B_r , B_s - остаточная индукция и индукция насыщения, H_c коэрцетивная сила, R, ν - динамические параметры пермаллоя, μ - относительная магнитная проницаемость, R_H , R_{BH} - наружный и внутренний радиусы сердечников, ℓ - толщина сердечников, f - коэффициент заполнения.

По развитой в^{/1/} методике решалась система 15 дифференциальных уравнений, описывающая процессы в приведенной схеме, составленная аналогично системе работы^{/1/}. Интегрирование велось численно, методом Рунге-Кутта.

Поскольку вихревая эдс в ЛИУ-30/250 должна составлять ~ 22 кВ на индуктор или ~ 5,5 кВ на сердечник, то расчеты схемы производились при зарядном напряжении, обеспечивающем указанную величину вихревой эдс.

Для повышения точности расчета каждый сердечник разбивался на 5 радиальных зон, и начальное значение индукции в каждой

<u>Рис.1.</u> Схема испытательного стенда. 1 — формирующая линия, 2 — активная нагрузка, 3 — испытуемые сердечники.

О БЕДИНЕННЫЙ ИНСТИТУ ФЛЕРНЫХ ИССЛЕДОВАНИ

ΕΝΕΛИΟΤΕΚΔ

Рис.2. Импульсы напряжения $U / \kappa B /$ на сердечнике с $H_c = 20 A/M / кривая 1 /,$ $H_c = 25 A/M / кривая 2 /. Вре$ мя t – в микросекундах.

чивания I /A/ для сердечника с $H_c = 20$ A/м /кривая 1/, $H_c = 25$ A/м /кривая 2/. Время t – в микросекундах.

зоне определялось статической петлей Гистерезиса и величиной размагничивающего тока ^{/2/}.

Как показали расчеты, значительный рост тока перемагничивания к концу импульса вызывается увеличением коэрцетивной силы по сравнению с номинальным значением. Это объясняется тем, что при увеличении ширины петли гистерезиса заданный ток размагничивания не обеспечивает достаточного приращения индукции материала по сравнению с номинальным режимом. Так, при токе размагничивания 25 А и Н $_{c} \geq$ 25 А/м происходит перемагничивание сердечников до области насыщения еще до окончания импульса. Вследствие этого и значение тока размагничивания является столь же критичным параметром, небольшое изменение которого /особенно в сторону уменьшения/ ведет также к резкому снижению КПД сердечника, ибо энергия, затрачиваемая на перемагничивание, пропорциональна при номинальном напряжении резко возрастающему току перемагничивания. На рис.2 и 3 приведены рассчитанные формы импульсов напряжения и тока для одного сердечника с номинальными параметрами и для сердечника с увеличенным /до 25 А/м/ значением коэрцетивной силы.

В <u>табл.1</u> приведены основные величины, характеризующие импульсы перемагничивающего тока и созданного одним, двумя, тремя и четырьмя сердечниками импульсы вихревого напряжения в зависимости от уровня тока размагничивания и коэрцетивной силы каждого сердечника. Такими величинами взяты /см. <u>рис.2/U₁,I₁</u> импульсное напряжение и ток в первом максимуме, U₂ - максимальное значение вихревой эдс во втором максимуме, I₂ - значение тока во втором максимуме тока перемагничивания.

Количество сердечни- ков	U ₁ U ₂ (RB) (RB)		I ₁ (A)	I Ток размаг- 2 ничивания, (A) А		Н _С (А/м)
I 5.9	5,99	6,22	24I	188	25	
I	5,97	6,09	246	398	25	25
2	II,9	12,8	242	201	25	20;20
2	II,9	12,7	245	404	25	20;25
2	II.9	12,8	243	184	35	20;25
3	17.9	19,4	240	214	25	20;20;20
3	17,9	19,3	243	1220	25	20;25;25
3	17,9	19.4	242	201	30	20;25;25
3	17,9	19.2	244	1730	25	20;25;28
3	17,9	19,4	243	211	30	20;25;28
4	23,9	26,0	239	210	25	20;20;20;20
4	23,9	25,9	240	410	25	20;20;20;25
4	23.9	25.9	24I	II60	25	20;20;25;25;
4	23,9	25,9	241	288	27	20;20;25;25;
4	23,9	26.0	240	225	28	20;20;25;25;
4	23.9	26.0	240	199	30	20;20;25;25

Как и следовало ожидать, при одновременном перемагничивании более чем одного сердечника с различными значениями коэрцетивной силы, величина перемагничивающего тока в конце импульса определяется сердечником с наиболее широкой петлей гистерезиса. Это объясняется насыщением материала данного сердечника и, как следствие этого, падением значения его импеданса.

Уменьшение динамических параметров R и и, а также значений индукции насыщения B_g и остаточной индукции B_r приводило к пропорциональному изменению тока намагничивания.

Таким образом, при изготовлении ускоряющих секций линейного индукционного ускорителя желательно использование сердечников с возможно более узкой петлей гистерезиса, либо, в случае сердечников с "широкой" петлей гистерезиса, увеличение тока размагничивания до уровня, обеспечивающего необходимое начальное значение индукции материала сердечников.

В заключение приношу искреннюю благодарность Н.А.Бурцевой за полезные дискуссии и И.М.Маторе за постоянное внимание к работе и ряд полезных замечаний.

3

2

ЛИТЕРАТУРА

4

- 1. Матора И.М., Саввин В.А. Радиотехника и электроника, 1976, XXI, 9, с.1878-1886.
- 2. Агарков Б.Н., Головцева Г.Н., Левченко Н.А. В сб.: Анализ электрических цепей и электромагнитных систем. "Наукова думка", Киев, 1967, с.116-120.

Рукопись поступила в издательский отдел 20 мая 1981 года.