

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2692/2-81

1/6-81 9-81-17

F

М.А.Воеводин, В.П.Заболотин, Л.П.Зиновьев, А.С.Исаев, И.И.Карпов, Л.Г.Макаров, В.Н.Перфеев, И.Н.Семенюшкин, В.Л.Степанюк, Д.И.Шерстянов, И.Н.Яловой, С.В.Федуков, В.И.Черников

СИНХРОФАЗОТРОН ОИЯИ. РАБОТА И СОВЕРШЕНСТВОВАНИЕ

(III квартал 1980 г.)

1. РАБОТА УСКОРИТЕЛЯ И НАУЧНАЯ ПРОГРАММА

В III квартале 1980 г.* было запланировано 1332 ч работы ускорителя. На физические исследования использовано 1004 ч /75,4%/, на совершенствование синхрофазотрона – 44 ч /3,3%/. Технологическая подготовка заняла 111 ч /8,3%/, потери времени по причине простоев оборудования составили 172 ч /12,9%/, прочие затраты – 0,1%.

В ходе экспериментов на синхрофазотроне ускорялись дейтроны, ядра гелия и углерода.Интенсивность ускоряемых частиц в импульсе, длительность работы, давление в вакуумной камере ускорителя представлены в следующей таблице:

	Ñ	Nm	T4	₽ ×Topp ^{−6}
đ	1,4•10 11	4,0.10 ¹¹	729	2,0
He	0,4·10 ¹⁰	1,3.10 ¹⁰	229	2,7
С	1,0.10 ⁸	2,0•10 ⁸	374	2,7

Коэффициент использования ускорителя для физических экспериментов К=1,83.

В течение третьего квартала на синхрофазотроне выполнены исследования продуктов фрагментации ядер в широком угловом и импульсном интервалах.С помощью улучшенного триггера на СКМ-200 получены экспериментальные данные о центральных взаимодействиях ядер углерода и меди. Измерены выходы нейтронов при взаимодействии релятивистских ядер с тяжелыми мишенями. Проведены радиобиологические эксперименты.

На 2-метровой пропановой и 1-метровой жидководородной пузырьковых камерах в пучках релятивистских ядер углерода, гелия, монохроматических нейтронов получено 200 тысяч фотографий.

^{*} Во II квартале 1980 г. синхрофазотрон был остановлен из-за проведения работ по очистке от леска системы главного водовода и водозабора.

2. АВТОМАТИЗИРОВАННАЯ СИСТЕМА ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ НЕОДНОРОДНОСТИ МАГНИТНОГО ПОЛЯ

Повышение интенсивности ускоренных пучков синхрофазотрона занимает значительное место в программе его совершенствования. Именно поэтому для проведения оптимального корректирования показателя неоднородности магнитного поля /МП/ (п) необходимо детально знать топографию магнитного поля всей рабочей области вакуумной камеры ускорителя^{1,2/}. До сих пор проведение подобного рода работ сопровождалось пребыванием людей в зоне повышенной радиации и магнитного поля.

В настоящее время создана и испытана в рабочих условиях автоматизированная десятиканальная система измерения n, работающая на линии с ЭВМ ЕС-1010. Помимо задач автоматизации, увеличения эффективности и оперативности измерений были решены также и методические вопросы, связанные с достижением высокой точности измерений. Были разработаны и изготовлены прецизионная электронная аппаратура, устройство контроля и калибровки и различные механические приспособления.

Вследствие малости величины квадрупольной компоненты магнитного поля /градиент 5,35·10⁻⁴ Т/м при величине МП 2,3·10⁻² T/ был выбран индукционный метод измерений. Использование многоканальной системы измерений п позволило получить точность не хуже 1%. При этом изготовленные преобразователи обладали высокой чувствительностью и избирательностью ко второй гармонике МП /ослабление дипольной составляющей должно быть не хуже 100 дБ/^{/3/}.

Преобразователь должен быть небольших размеров, технологичен в изготовлении и обладать стабильностью характеристик. Этим условиям в значительной степени отвечает преобразователь. состоящий из четырех клиновидных секций, которые жестко закреплены на цилиндрическом каркасе. На поверхности клиновидных секций расположены витки обмоток, образующие контуры, описы-ваемые гармоническим законом⁷⁴⁷. Для данной системы было изготовлено 11 таких преобразователей. Блок преобразователей устанавливается на подвижной платформе, обеспечивающей его перемещение внутри камеры ускорителя по дуге окружности радиусом 28 м /рис. 1/. Платформа тремя колесами опирается на рельсы, расположенные вне рабочей области /рис. 2/. Расстояние между рельсами 1700 мм. В движение платформа приводится двигателем с редуктором, который вместе с направляющими роликами смонтирован на плите и стойках. Устройство, передающее движение платформе, представляет собой верньерный механизм, соиз немагнитного металлического тросика и направляюстоящий щих роликов. Блок преобразователей включает в себя 10 квадрупольных датчиков и один датчик абсолютной величины магнитного поля.

<u>Рис.1.</u> Кинематическая схема привода подвижной платформы: I - вакуумная камера ускорителя; 2 - прямолинейный промежуток; 3 - рельсы; 4 платформа; 5 - блок преобразователя на платформе; 6 - двигатель; 7 - тросик; 8 - направляющие ролики.

Каждый из десяти каналов измерения градиента состоит из предусилителя с автономным источником питания, программноуправляемого аттенюатора, управляемого интегратора и оконечного усилителя с фильтром низких частот.

Сигнал с квадрупольного датчика посредством экранированной скрученной пары длиной ~80 м передается в предусилитель, а затем аналогичным образом транслируется на расстояние ~300 м в зал управления синхрофазотроном, где к располагается основная часть аппаратуры, для последующей обработки.

Блок управления режимом работы интеграторов / В-таймер/, на вход которого поступает сигнал с датчика абсолютной величины поля, определяет абсолютную величину магнитного поля и вырабатывает команды для изменения козффициента передачи интегратора и управляет режимом работы последнего. Таким образом, реализуется возможность автоматически измерять величину п в полном динамическом диапазоне рабочих индукций синхрофазотрона / B=2,3.10⁻² \div 1,2 T/.

Рис.2. Общий вкл подвижной платформы с блоком преобразователей.

Аппаратура сопряжения измерительной и управляющей электроники с ЭВМ выполнена в стандарте КАМАК. В системе предусмотрено девять режимов работы. Основным рабочим режимом является режим измерения при последовательно увеличивающихся значениях индукции магнитного поля синхрофазотрона.

Программное обеспечение системы, написанное на языке ACCEMБЛЕР ЭВМ ЕС-1010, включает подпрограммы приема, обработки и вывода информации на устройства представления и накопления на магнитной ленте. Результаты каждого измерения, соответствующие определенному значению магнитного поля, можно вывести на устройства представления информации. На печать выводятся измеренные величины сигналов с десяти датчиков магнитометра, вычисленные значения в на соответствующих радиусах апертуры ускорителя и значения индукции магнитного поля.

Для наглядного представления зависимостей n=f(r) используется графический дисплей и графолостроитель. При этом на графический дисплей можно вывести все графики, соответствующие одной серии измерений, - 8 графиков.

<u>Рис.3</u>. Зависимости n = f(r) для середины одного из полюсов при 8 значениях магнитной индукции, фото с экрана дисплея.

На <u>рис. 3</u> приведены зависимости п, полученные для середины одного из полюсов электромагнита при восьми значениях магнитной индукции. Фотография сделана с экрана графического дисплея ГД-71.

С помощью данной системы за 20 ч измерений было получено 16000 значений в при восьми значениях магнитной индукции. Погреш-

ность измерений не превышала 1% для В≤0,023Ти 0,5% для В≥0,6 Т^{/5/}.

3. МАЛОГАБАРИТНЫЙ ВЫСОКОВОЛЬТНЫЙ УМНОЖИТЕЛЬ ДЛЯ ИСТОЧНИКА КРИОН

Одним из путей повышения зарядности ионов в электроннолучевом источнике КРИОН является увеличение энергии электронного пучка. С этой целью был разработан малогабаритный высоковольтный умножитель, позволяющий поднять энергию электронного пучка в КРИОНе до 60 кэВ. Применение в умножителе довольно высокой рабочей частоты ~20 кГц позволило снизить пульсацию выходного напряжения и уменьшить габариты прибора.

Умножитель состоит из высоковольтного блока <u>/рис. 4</u>/ и блока питания <u>/рис. 5</u>/. Высоковольтная часть умножителя собрана по однофазной схеме на диодах КЦ 106Г и конденсаторах К15-4; 470 пФ, повышающих напряжение в 6 раз. Высоковольтная обмотка повышающего трансформатора разбита на 10 последовательно соединенных секций, расположенных на обоих стержнях ферритового сердечника. В трансформаторе использован феррит строчного трансформатора типа TBC 110 ЛА. Напряжение на вторичной обмотке трансформатора – 8 кВ, коэффициент трансформации – 400.

Блок питания /<u>рис. 5</u>/ состоит из стабилизированного источника питания +30B, 2A, задающего генератора по схеме Вина и усилителя мощности. Поскольку повышающий ферритовый транс-

Рис.4. Высоковольтный блок умножителя.

> Рис.5. Блок питания умиожителя.

. . .

форматор умножителя обладает резонансными свойствами, рабочая частота задающего генератора может регулироваться в пределах 15÷25 кГц. Усилитель мощности собран по двухтактной схеме. Предусмотрена регулировка козффициента его усиления, используемая для плавного изменения выходного напряжения умножителя.

Умножитель снабжен электронной токовой защитой выходных транзисторов усилителя мощности и релейной защитой по току стабилизированного питания.

Основные параметры умножителя:

1.	Выходное напряжение	- U _{вых} =-60 кВ.	
	регулировка от 0 до -60) кВ/	
2.	Максимальный ток нагрузки	- I _{мах} =0,2 мА.	
3.	Коэффициент пульсации		
	выходного напряжения	- K < 1%.	
4.	Габариты высоковольтного		
	блока	 - 210х364х416 мм 	8
5.	Масса высоковольтного		
	блока	- ~15 кГ.	

4. ГЕОДЕЗИЧЕСКИЕ ИЗМЕРЕНИЯ

Измерения проводились по "кусту реперов", по шкалкам рабочей и осадочной сети синхрофазотрона.

	Реэультат	ы измерен	ий по "кус	сту реперс)B ^{''}
№ № цикла	Дата прове- дения	н н репера	.5 маж (мм)	<i>S</i> абс. (мм)	Средн.квадрат погрешн.шзмер. (мм)
1	2	3	4	5	6
68	10.04.80	I	+ 0,08	- 0,06	·····
		2	- 0,03	+ 0,02	
		3	- 0,07	- 0,02	<u>+</u> 0,012
		4	+ 0,02	- 0,08	
	25,05,80	I	- 0,06	- 0,12	
~~		2	- 0,02	0,00	
69		3	+ 0,0I	- 0,0I	± 0,006
-		4	+ 0,04	- 0,04	

Таблица l							
езультаты	измерений	по	"кусту	реперов"			

1	2	3	4	5	6
		I	0,00	- 0,12	
7 0	TR 00 00	2	- 0,02	- 0,02	
70	18.06.80	3	- 0,06	- 0,07	<u>+</u> 0,009
		4	+ 0,09	+ 0,05	
	9.09.80	I	- 9,0I	- 0,13	
P T		2	- 0,02	- 0,04	
71		3	+ 0,05	- 0,02	<u>+</u> 0,022
		4	+ 0,04	+ 0,04	
		I	- 0,05	- 0,18	
		2	- 0,05	- 0,09	
72	14.10.80	3	- 0,08	- 0,10	<u>+</u> 0,012
		4	+ 0,20	+ 0,24	

Продолжение табл. 1

Таблица 2

Результаты измерений по шкалкам рабочей сети на колоннах здания синхрофазотрона

в в цакла	Дата провед. щикла	∦ ∦ квадрант	a Ben.	<u>S. (мм)</u> Наруж.	<u>Sабо</u> , Нын.	(ма) Наруж.	Ср.квадр. погрешн.пзмер (мм)
		I	+0,06	+0,03	+0,07	+0,03	
		п	+0,26	+0,35	+0,06	-0,55	0.000
XXIII	апрель 1980 г.	Ш	+0,18	+0,02	-0,34	-2,12	± 0,020
		IY	-0,04	-0,02	-0,48	-I,08	
		I	+0,018	-0,013	+0,017	-0,0II	
XXIY	ШОНЬ 1980 г.	Ц	-0,01	-0,06	-0,13	-0,6I	0.074
		Ш	-0,013	-0,07	-0,37	-2,20	± 0,014
		IÀ	+0,0I3	-0,06	-0,34	-0,92	

Таблица З

¥ № цигла	Дата провед. цихла	№ № квадран- та	SHAX (MM)		Sade. (MM)		Средн.квадр. погрешн. изм.
			BH.	наруж.	Ввн.	наруж.	- (MMK)
XXIII	апрель	I	-0,55	+0,29	-1,86	-0,14	
	1980 F.	п	-0,44	+0,22	-1,14	-0,48	= 0,060
		Ш	+0,09	-0,16	-1,58	-I,38	0,2 0,5
		IÀ	-0,22	-0,04	-2,42	-0,92	Ň
ХХІУ	июнь 1980 г.	I	+0,50	-0,5I	-1,17	-0,46	
		2	+0,56	-0,33	-0,52	-0,76	+ 0.020
		3	-0,17	+0,14	-I,6 5	-I,02	-
		4	+0,68	-0,08	-I, 69	-I,07	

Результаты измерений по шкалкам осадочной сети на стойках электромагнита синхрофазотрона

ЛИТЕРАТУРА

- 1. Безногих Ю.Д. и др. В кн.: Труды V Всесоюзного совещания по ускорителям заряженных частиц. "Наука", М., 1977, т.2, с. 245.
- Безногих Ю.Д. и др. В кн.: Труды VI Всесоюзного совещания по ускорителям заряженных частиц, т. 2. ОИЯИ, Дубна, 1979, с. 136.
- 3. Воеводин М.А., Коваленко А.Д. СИЯИ, Р9-12378, Дубна, 1979.
- 4. Воеводин М.А. Авт.свид. СССР №631848, кл. СО 1232/02. Бюлл. ОИПОТЗ, 1978, №41, с. 170.
- 5. Воеводин М.А. и др. ОИЯИ, Р9-80-578, Дубна, 1980.

Рукопись поступила в издательский отдел 9 января 1981 года.