

5263 2-80

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

3/41-80

Ю. Дитрих

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТРЕХЭЛЕКТРОДНОЙ ИОННО-ОПТИЧЕСКОЙ СИСТЕМЫ

Дитрих Ю.

9-80-495

Численное моделирование трехэлектродной ионно-оптической системы

Теоретически исследуется трехэлектродная ионно-оптическая система, используемая на стенде ионных источников Лаборатории ядерных реакций ОИЯИ. Для вычисления траекторий частиц с учетом влияния пространственного заряда применялось квазигидродинамическое приближение. Расчеты выполнялись на ЭВМ CDC-6500 с использованием вычислительной программы ELENS. Исследовалось влияние различных параметров трехэлектродной ионно-оптической системы на расходимость пучка. Показано, что наибольшее влияние на расходимость пучка оказывает геометрия первого электрода. Результаты расчетов качественно согласуются с результатами экспериментальных и теоретических работ, проведенных другими авторами.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1980

etrich J.

9-80-495

Calculation of the Design of Three-Electrode lonoptical System

1. ВВЕДЕНИЕ

Проблема формирования интенсивных ионных пучков является актуальной во многих областях науки и техники, например, в ускорительной технике, в установках для разделения изотопов и других. Она заключается в нахождении оптимальных параметров ионно-оптической системы, позволяющих формировать интенсивные ионные пучки с минимальной расходимостью, без сферических аберраций, с минимальными потерями пучка на электродах ионнооптической системы. Решение этой проблемы является сложным ввиду наличия многих факторов /геометрии электродов, формы плазменного эмиттера, пространственного заряда и других/, влияющих на параметры пучка.

Чтобы найти оптимальную конфигурацию начальной оптики, можно провести расчеты траекторий ионов с помощью аналоговой или цифровой вычислительной машины. В данной работе исследуется теоретически трехэлектродная ионно-оптическая система, которая применяется на стенде ионных источников Лаборатории ядерных реакций ОИЯИ ^{/1,2/}.Эта система может быть использована на четырехметровом изохронном циклотроне тяжелых ионов У-400. Такие ионно-оптические системы с числом электродов больше двух имеют много возможностей вариации при экстракции ионных пучков с высоким первеансом и низкой угловой расходимостью.

2. ОПИСАНИЕ ИЗВЛЕЧЕНИЯ ПУЧКА

Геометрия трехэлектродной ионно-оптической системы приведена на <u>рис.1.</u> Здесь d – толщина электродов; D – расстояние между электродами; R – радиус отверстия в электродах в аксиальносимметричном случае или полуширина щели в двумерном плоскосимметричном случае; V – потенциал электродов и *a* – угол эмиссионной щели.

Первый электрод находится под потенциалом земли (V_1), следующие электроды находятся под отрицательным потенциалом (v V_9).

Оптический аналог трехэлектродной ионно-оптической системы изображен на рис.2^{/3/}. В зависимости от потенциала электродов первая линза действует как рассеивающая и вторая линза - как собирающая, или наоборот. По сравнению с двухэлектродной ионнооптической системой уже этот простой случай показывает, как

Объедлясьный институт плериних всследования

Рис.1. Геометрия трехэлектродной ионно-оптической системы: r,z - цилиндрические координаты, y,z - декартовы координаты.

Рис.2. Оптический аналог трехэлектродной ионно-оптической системы: а/ геометрия электродов, V_1 , V_2 , V_3 - потенциалы электродов; б/ $|V_2| > |V_3|$, $V_1 = 0$; ионы будут сначала ускоряться, а потом замедляться; $B/|V_3| > |V_2|$, $V_1 = 0$; ионы будут ускоряться в две ступени. Когда напряженность электрического поля первой части системы E_1 больше, чем напряженность электрического поля второй части системы E_2 , получаются представленные здесь действия линз.

при использовании добавочного электрода увеличивается возможность варьирования ионно-оптических параметров системы.

3. МЕТОД РАСЧЕТА

Для вычисления траекторий частиц с учетом влияния пространственного заряда используется так называемое квазигидродинамическое приближение⁷⁴⁷. В этом случае поток заряженных частиц разбивается на некоторое конечное число трубок /в аксиальносимметричном случае/ или слоев /в двумерном плоско-симметричном случае/ для вычисления кулоновских поправок. Плотность ионного тока при этом в плоскости, перпендикулярной пучку, постоянна. Форма границы плазмы зависит от параметров плазмы, формы и потенциалов электродов.

Для упрощения расчета предположим, что поверхность эмиттера является плоской и его положение совпадает с эквипотенциальной плоскостью в непосредственной близости от первого электрода. Ионы эмиттируются в направлении, перпендикулярном плоскости эмиттера. Влияние тепловых скоростей ионов не учитывается.

Для расчетов ионных траекторий используется вычислительная программа ELENS ^{/5/}. Она содержит подпрограмму EPDE1 ^{/8/}, с помощью которой можно решить уравнение Пуассона или уравнение Лапласа при заданном расположении электродов и значениях их потенциалов на основе метода конечных разностей и метода верхней релаксации.

Используя программу ELENS , решаем уравнения Лапласа и уравнение движения в аксиально-симметричном случае в виде квазигидродинамической модели потока с помощью метода Эйлера с уточнением

$$\frac{\partial^2 U(\mathbf{r}, \mathbf{z})}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} - \frac{\partial^2 U(\mathbf{r}, \mathbf{z})}{\partial \mathbf{r}} + \frac{\partial^2 U(\mathbf{r}, \mathbf{z})}{\partial \mathbf{z}^2} = 0,$$

$$\frac{d^2 \mathbf{r}}{dz^2} = \frac{1 + (d\mathbf{r}/dz)^2}{2U(\mathbf{r}, z)} \left[\frac{\partial U(\mathbf{r}, z)}{\partial \mathbf{r}} - \frac{d\mathbf{r}}{dz} - \frac{\partial U(\mathbf{r}, z)}{\partial z} + \frac{1}{2\pi\epsilon_0} \sqrt{\frac{\mathbf{m}}{2\mathbf{Q}}} - \frac{\mathbf{I}_0 \mathbf{r}}{\rho^2 \sqrt{\mathbf{U}(\mathbf{r}, z)}} \right],$$

где m - масса частицы; Q - заряд; U(r,z)- потенциал электростатического поля; ϵ_0 - диэлектрическая проницаемость вакуума; r,z - цилиндрическая система координат; I₀ - ток пучка; ρ радиус пучка.

В данной работе программа ELENS расширяется таким образом, что можно решить уравнение Лапласа и уравнение движения в двумерном случае:

$$\frac{\partial^2 U(y,z)}{\partial y^2} + \frac{\partial^2 U(y,z)}{\partial z^2} = 0,$$

$$\frac{d^2 y}{dz^2} = \frac{1 + (dy/dz)^2}{2U(y,z)} \left[\frac{\partial U(y,z)}{\partial y} - \frac{dy}{dz} - \frac{\partial U'(y,z)}{\partial z} + \frac{1}{2\epsilon_0} \sqrt{\frac{m}{2Q}} - \frac{I_0 y}{\rho \sqrt{U(y,z)}} \right],$$

3

где I₀ - значение тока пучка, приходящееся на единицу его ширины, у, z - декартовы координаты.

4. РЕЗУЛЬТАТЫ РАСЧЕТА

Расчеты производятся для аксиально-симметричного случая и для двумерного случая. Область, в которой решается уравнение Лапласа, имеет радиальный размер 7 мм и аксиальный размер 19 мм. Шаг сетки при вычислении потенциала составляет 0,25 мм в двух направлениях системы координат. Шаг интегрирования уравнения движения составляет 0,1 мм.

Оценка качества пучка происходит следующим образом. Траектории частиц после прохождения трехэлектродной ионно-оптической системы составляют угол Θ с оптической осью /<u>рис.3</u>/. Положительные углы соответствуют расходящемуся пучку, отрицательные углы - сходящемуся. Чтобы исследовать влияние различных факторов на расходимость пучка, вычисляются девять траекторий частиц. На основе полученных величин углов Θ вычисляется среднее значение $\overline{\Theta}$, которое характеризует в нашем случае расходимость пучка. С помощью $\overline{\Theta}$ можно оценить общее поведение пучка. Качество пучка будет тем лучше, чем меньше $\overline{\Theta}$.

. Ниже представлены типичные параметры трехэлектродной ионнооптической системы: V₁=0 B, V₂=-35 кB, V₃=-30 кB, R₁=1 мм, R₂=R₃=2 мм, D₁=D₂=4 мм, d₁=d₂=d₃=2 мм, α = 67,5° и I = = 100 мА/см². Отношение массы к заряду составляет A/Z=8. Исследовалась зависимость Θ от различных параметров (V, d, D, R)

Рис.3. Траектории частиц в аксиально-симметричном (-----) и двумерном плоско-симметричном (- - -) случаях при типичных параметрах.

Рис.5. Зависимость расходимости пучка (Θ) от потенциала второго электрода: V₁=0 B, V₃ = -30 кВ /постоянный/, — - аксиально-симметричный случай, --- - двумерный плоскосимметричный случай.

трехэлектродной ионно-оптической системы. При изменении одного из этих параметров остальные имеют фиксированные значения. Плотность тока на поверхности эмиттера меньше плотности тока, ограниченной пространственным зарядом, которая для плоского диода определяется значениями V_1, V_9, D_1 .

На рис.3 приведены для сравнения траектории частиц в аксиально-симметричном и двумерном случаях. Расходимость пучка в аксиально-симметричном случае меньше, чем в двумерном случае. Из рис.4 видно, что расходимость пучка сильно уменьшается с увеличением отрицательного потенциала второго электрода (V_2). При этом разность потенциала между вторым и третьим электродом (V_2 - V_3) постоянна. Таким же образом $\overline{\Theta}$ зависит от V_2 при постоянных потенциалах V_1, V_3 /рис.5/.

Влияние величины радиусов отверстий электродов в аксиальносимметричном случае или полуширины щели в двумерном плоскосимметричном случае на расходимость пучка показано на <u>рис.6</u>. Расходимость пучка с увеличением R_g возрастает в двумерном случае сильнее, чем в аксиально- симметричном случае. При изменении R_g расходимость практически не меняется в обоих случаях.

Сравнение полученных результатов, определяющих зависимость ионно-оптических параметров пучка от потенциала электродов /<u>рис.4,5</u>/, от геометрии трехэлектродной системы /<u>рис.6-8</u>/ и от плотности тока пучка /<u>рис.9,10</u>/, с экспериментальными результатами исследования, полученными в работе ^{/7/}, показывает их хорошее качественное согласие несмотря на принятые упрощающие предположения относительно формы эмиттера частиц. Для более точных расчетов надо учитывать положение и форму границы плазмы, которые зависят от ряда параметров. Сравнение проведенных расчетов с результатами, которые получены в работе ^{/8/} на основе решения уравнений Пуассона-Власова, показывает, что квазигидродинамическая модель потока заряженных частиц является пригодной для исследуемой задачи. Результаты расчета фазовых диаграмм качественно согласуются с результатами, полученными в работе ^{/9/}.

Рис.9. Зависимость фазовой диаграммы от плотности тока в аксиально-симметричном случае с вышеуказанными параметрами трехэлектродной ионно-оптической системы: а/ без пространственных зарядов, I = 0, б/I = 100 мА/см², в/I = 200 мА/см².

<u>Рис.10</u>. Зависимость фазовой диаграммы от плотности тока в двумерном плоско-симметричном случае с вышеуказанными параметрами трехэлектродной ионно-оптической системы: а/ без пространственных зарядов, I = 0, б/I = 100 мА/см².

Рис.11.Зависимость величины
радиуса или полуширины пучка
(ρ) от плотности тока в акси-
ально-симметричном случае
(—) и в двумерном плоско-
симметричном случае (– – –)
после прохождения трехэлект-
родной ионно-оптической систе-
мы / z = 19 мм/.

Принимая во внимание упрощающие предположения, можно резюмировать, что изготовление и юстировка первого электрода трехэлектродной ионно-оптической системы должны быть проведены с большой точностью. Расходимость пучка сильно зависит от геометрии первого электрода и от расстояния между первым и вторым электродами. Остальные параметры трехэлектродной ионно-оптической системы не оказывают существенного влияния на расходимость пучка.

ЛИТЕРАТУРА

- 1. Пасюк А.С. и др. ОИЯИ, 1522, Дубна, 1964.
- 2. Пасюк А.С. и др. АЭ, 1968, т.24, вып.1, с.21.
- Green T.S. IEEE Trans. on Nucl.Sci., 1976, v.NS-23, No.3, pp.918-928.
- 4. Молоковский С.И., Сушков А.Д. Интенсивные электронные и йонные пучки. "Энергия", Л., 1972.
- 5. Hornsby J.S. CERN, 6600 Computer, Program Library, 1965.
- 6. Hornsby J.S. CERN, 63-7, 1963.
- 7. Coupland J.R. et al. Rev.Sci.Inst., 1973, 44(9), pp.1258-1270.
- Ohara Y. et al. Jap.J.Appl.Phys., 1976, v.15, No.1, pp.135-140.
- 9. Kim J. et al. J.Appl.Phys., 1978, 49(2), pp.517-524.

Рукопись поступила в издательский отдел. 10 июля 1980 года.

Нет ли пробелов в Вашей библиотеке?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д1,2-84O5	Труды IV Международного симпозиу- ма по физике высоких энергий и эле- ментарных частиц. Варна, 1974.	. 2 р. О5 к.
P1,2-8529	Труды Международной школы-семи- нара молодых ученых. Актуальные проблемы физики элементарных час- тиц. Сочи, 1974.	2 p. 60 k.
Д6-8846	XIV совещание по ядерной спектро- скопны и теории ядра. Дубна, 1975.	1 р. 90 к.
Д13-9164	Международное совещание по мето- дике проволочных камер.Дубна,1975.	4 р. 20 к.
Д1,2-922 4	IV Международный семинар по про- блемам физики высоких энергий. Дуб- на, 1975.	3 р. 60 к.
Д-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3 p. 50 ĸ.
д9-10500	Труды II Симпозиума по колектив- ным методам ускорения.Дубна,1976.	2 p. 50 к.
Д 2-10533	Труды Х. Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3 р. 50 к.
Д13-11182	Труды IX Международного симпо- звума по ядерной электронике. Вар- на, 1977.	5 р. ОО к.
Д17-11490	Труды Международного симпозиума по избранным проблемам статисти- ческой механики. Дубна, 1977.	6 р. ОО к.
Д6-11574	Сборник аннотаций XV совещания по ядерной спектросколык и теории яд- ра. Дубиа, 1978.	2 р. 50 к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978-	3 р. ОО к.
Д13-11807	Труды III Международного сове- щания по пропорциональным и дрей- фовым камерам. Дубна, 1978.	бр. ОО к
	Труды УІ Всесоюзного совеща- ния по ускорителям заряженных частиц. Дубна 1978. /2 тома/	7 р. 40 к
д1,2-12036	Труды V Международного семи- нара по проблемам физики высо- ких энергий. Дубна 1978.	5 p. OO ĸ.
P18-12147	Труды 111 совещания по исполь- зованию ядерно-фезических ме- толов, пля решения научно-тех-	
	нических в народнохозяйствен- ных задач.	2 p.20 ĸ

Д1,2-12450	Труды XII Международной шко- лы молодых ученых по физике высоких энергий. Приморско, НРБ. 1978.	3 р. ОО к.
P2-12462	Труды V Международного сове- щания по нелокальным теориям поля. Алушта, 1979.	2 р. 25 к.
Д-12831	Труды Международного симпознума по фундаментальным проблемам тео- ретической и математической физи- ки. Дубна, 1979.	4 p. ΟΟ κ.
Д-12965	Труды Международной школы моло- дых ученых по проблемам ускоря- телей заряженных частиц. Минск, 1979.	3 р. ОО к.
Д11-80-13	Труды рабочего совещання по сис- темам и методам аналитических вы- числений на ЭВМ и их применению в теоретической физике. Дубна, 1979.	3 р. 50 к.
Д4-8 0-271	Труды Международной конференции по проблемам нескольких тел видер- ной физике. Дубиа, 1979.	3 p. OO ĸ.
Д4-8 О-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 р. ОО к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79.

издательский отдел Объединенного института ядерных исследований