ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

9 - 5591

С.В. Ворожцов

МАГНИТНАЯ СИСТЕМА ФАЗОТРОНА С ПРОСТРАНСТВЕННОЙ ВАРИАЦИЕЙ ПОЛЯ

Специальность 052 - электрофизика

Автореферат диссертации, на соискание учёной степени кандидата физико-математических наук

. Работа выполнена в Лаборатории ядерных проблем Объединенного института ядерных исследований.

Научный руководитель:

кандидат физико-математических наук, старший научный сотрудник

Н.Л. Заплатин

Официальные оппоненты:

доктор физико-математических наук, старший научный сотрудник

Ю.М. Адо

кандидат физико-математических наук, старший научный сотрудник

В.Н. Канунников

Ведущее предприятие: Научно-исследовательский институт электрофизической аппаратуры имени Ефремова.

Автореферат разослан " 1971 года. Защита диссертации состоится " 1971 года на заседании Ученого совета Лаборатории ядерных проблем Объединенного института ядерных исследований.

Адрес: г. Дубна, Московской области, Объединенный институт ядерных исследований, Лаборатория ядерных проблем.

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Ученый секретарь Совета

Ю.А. Батусов

С.Б. Ворожцов

МАГНИТНАЯ СИСТЕМА ФАЗОТРОНА С ПРОСТРАНСТВЕННОЙ ВАРИАЦИЕЙ ПОЛЯ

e

3

S.S.L

Специальность 052 - электрофизика

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Объедностина и MEDRICHX MCDONORS

В настоящее время во многих синхроциклотронных лабораториях мира разрабатываются или уже осуществляются реконструкции действующих ускорителей /1/.

and in the contract

in president program and a second of the second second second second

and the second secon

В Объединенном институте ядерных исследований (Дубна) в течение ряда лет под научным руководством члена-корреспондента АН СССР В.П. Джелепова и профессора В.П. Дмитриевского проводятся работы по созданию ускорителей циклотронного типа с пространственной вариацией магнитного поля. Усовершенствование синхроциклотрона Лаборатории ядерных проблем ОИЯИ предполагается осуществить введением пространственной вариации и растущего среднего магнитного поля, не достигающего, однако, изохронной зависимости. Как показано в работе^{/2/}, такая модификация синхроциклотрона позволит увеличить ток протонов до ≈ 50 мка. Основные параметры модифицируемого фазотрона ОИЯИ приведены в таблице 1.

			1		
Конечная энергия	Средняя ин- тенсивность	Число спира-	Амплитуда В.Ч.	Диала- Ч зон час- м	астот
(Мэв)	(мка)	лей N	(кв)	тот (Мгц)	ции (гц)
700	50	4	40	18,2-14,2	700
Магнитное поле (кгс)	Внешний радиус (см)	Параметр спирали) (см)		
12-16	300	60			

Таблица 1

Реферируемая диссертация посвящена одному из наиболее сложных и трудоемких вопросов создания фазотрона с пространственной вариацией (установка "Ф") - формированию требуемого магнитного поля ускорителя.

Для установки "Ф" закон изменения магнитного поля в цилиндрической системе координат для плоскости симметрии (Z =0) выбран в виде:

 $\mathbf{H}_{\mathbf{r}}\left(\mathbf{r},\mathbf{j},\boldsymbol{\phi}\right)_{\mathbf{r}}=\mathbf{H}(\mathbf{r})\cdot\left[\mathbf{1}+\epsilon_{\mathbf{N}}\left(\mathbf{r}\right)\right]\cos\left(\frac{\mathbf{r}}{\lambda}-\mathbf{N}\boldsymbol{\phi}\right)\mathbf{]},$

 $H(\mathbf{r}) = H_{0} \exp(0.359\xi^{2} + 0.83\xi^{6} - 2.351\xi^{8} + 1.5\xi^{9} - 0.025\xi^{1}),$ $H_{0} = 11902_{9}; ; h\xi = \frac{r}{r_{k}}, r_{k} = 270_{CM}.$

среднего поля H (r) определялась при постоянном значении параметра спиральности поля N λ и для заданной зависимости частоты свободных вертикальных колебаний ^{/3,4/}

В пределах зазора электромагнита синхроциклотрона ОИЯИ (2h_м =120 см) и с учётом других геометрических ограничений были определены основные элементы магнитной системы реконструируемого ускорителя. Расчётным и экспериментальным путем сделана оценка необходимых геометрических размеров модели магнитной системы. Серия экспериментов с прямолинейными брусками позволила оценить угловой размер a_г (r) и минимальное расстояние до медианной плоскости h₁ (r) спиральных шимм. Эксперименты с одной парой спиральных шимм и парой кольцевых показали возможность формирования заданного перепада среднего поля.

Моделирование поля магнитной системы с коэффициентом подобия k =5,22 производилось с целью подтверждения выбранных основных параметров и уточнения конфигурации спиральных и кольцевых шимм. Требования к формированию магнитного поля изложены в работах^{/4,5/} и для модели магнитной системы, в основном, сводятся к следующему:

а) в центральной области необходимо выполнение условия $0 \leq \Delta H \leq 8_9$, где ΔH - отклонение среднего поля от требуемого;

6) допуск на градиент среднего поля изменяется с радиусом $|\Delta \frac{dH}{dr}| \approx (2,3-11)$ э/см для r = 12-51,7 см, соответственно; в) в зоне вывода частиц необходимо выполнить соотношения $|\frac{\Delta H_4}{H_4}| < 0,06$ и $|\Delta \frac{d\phi_4}{dr}| < 5^{\circ}10^{-3}$ рад/см, где ϕ_4 – азимутальное положение максимума основной гармоники;

r) требуемая параметрическая фокусировка должна обеспечиваться, начиная с r =3 см;

д) допуски на низшие гармоники в центральной области следующие: $\frac{H_1}{H} < 10^{-3}$, $\frac{H_2}{H} < 5.10^{-3}$.

Измерения магнитного поля на модели производились с помощью автоматизированного измерительного стенда^{6/} в 144-х равномерно распределенных по окружности точках для каждого радиуса. Результаты измерений регистрировались с помощью перфо ратора при непрерывном перемещении датчика холловского магнитометра. Экспериментально найденная точность измерения среднегс поля H (r) составляла 1,5·10⁻⁴, а амплитуды основной гармоники 5.10⁻⁴ H (г). Обработка экспериментальных данных измерения производилась на ЭВМ СДС -1604А.

В процессе итерационной процедуры, состоящей из последовательных циклов модельных измерений, анализа данных с помощью созданной системы подпрограмм на ЭВМ и улучшения параметров, было сформировано поле, отклонения характеристик которого от требуемых представлены на рис. 3. Из рисунка видно, что неточность формирования среднего поля составляет Δ H_{max} =±70 э, амплитуды основной гармоники Δ H_{4 max} =300 э, градиента фазы максимума этой гармоники $|\Delta \frac{d\phi_4}{dr}| \leq 4,6.10^{-3}$ рад/см. Требуемая величина вариации поля создана, начиная с г =2,9 см.

При вычислении по аналитическим выражениям частот свободных колебаний частиц (рис. 4) для требуемого среднего поля Q_z (H_T), Q_r (H_T) и для реально-созданного среднего поля Q_z (H_p), Q_r (H_p), а также показателя роста созданного среднего поля $n = \frac{r}{H} \frac{dH}{dr}$, оказалось, что а) значение n находится в допусках для области r = (25-51,724) см;

б) величины Q_z (H_T), Q_r (H_T) удовлетворяют поставленным требованиям во всем диапазоне радиусов.

Значительные отклонения ΔH и связанный с этим характер кривых $\frac{\Delta n}{n}$, $Q_z(H_p)$, $Q_r(H_p)$ в центральной зоне должны быть скорректированы с помощью элементов тонкой коррекции: токовых обмоток и секторных шимм (рис. 2)^{/7/}. Достигнутая экспериментальная точность моделирования магнитного поля с помощью основных элементов системы близка к предельно возможной ΔH_{npeg} =30-40 э, определяемой геометрическими ошибками изготовления и сборки элементов модели.

6

Расчёт требуемых ампер-витков токовых обмоток методом наименьших квадратов для компенсации ΔH (r) и $\Delta \frac{dH}{dr}$ показал, что в центральной области они пригодны для небольших (±30 э) изменений уровня поля.

Оптимальный набор секторных шимм для компенсации

 Δ H _{экс} (r) относительно уровня поля 100 э (рис. 5) находился путем расчёта на ЭВМ. Шиммы, оказавшиеся необходимыми для компенсации Δ H (r) _{экс}, на рисунке заштрихованы. Отклонение результирующей кривой (Δ H _{экс} + H _ш) от требуемых величин во всей области формирования, кроме района г =0-2 см, не превышает величины <u>+</u>10 э.

В средней части рисунка приведены распределения полей для различных слоев секторных шимм. Эксперименты на модели 1:5,22 с применением секторных шимм показали, что такие шиммы позволяют компенсировать значительные возмущения среднего поля (≈ 80 э). Однако при этом следует учитывать заметное (≈ 120 э) снижение амплитуды основной гармоники поля.

Создание поля в области г =0-2 см производилось путем подбора экспериментальным путем формы центральной кольцевой шиммы.

Моделирование магнитной системы производилось на базе магнита СП-57, размеры ярма и положение обмоток которого существенно отличаются от магнита Е-1 установки "Ф". Для выяснения влияния указанных эффектов на результаты моделирования поля был произведен расчёт на ЭВМ обоих электромагнитов методом нерегулярной треугольной сетки ¹⁸¹. Основные результаты расчёта представлены на рис. 6, из которого видно, что относительные кривые спада полей обоих магнитов при плоском зазоре совпадают с точностью до ≈ 0,5% в рабочем диапазоне радиусов.

В результате выполненной работы решены все основные вопросы разработки магнитной системы ускорителя. Проведенные исследования показывают, что в системе с натуральными размерами магнитное поле будет сформировано с требуемыми допусками.

Литература

- 1. H.G. Blosser. IEEE Trans. on Nuclear Science NS-16, No 3, p. 405 (1969).
- 2. А.А. Глазов и др. Препринт ОИЯИ, 9-3951, Дубна, 1968.
- С.Б. Ворожцов, Н.И. Дьяков, Н.Л. Заплатин. Сообщение ОИЯИ, 9-4517, Дубна, 1969.
- Ю.Г. Аленицкий, С.Б. Ворожцов, Н.Л. Заплатин, Л.К. Лыткин. Сообщение ОИЯИ Р9-5246, Дубна, 1970.
- 5. V.P. Dmitrievsky et al. Intern. Conf. on Cycl. Oxford (1969).
- 6. В.Н. Аносов, Ю.Н. Денисов, П.Т. Шишлянников. Сообщение ОИЯИ 10-4930, Дубна, 1970.
- 7. Ю.Г. Аленицкий, С.Б. Ворожцов, Н.Л. Заплатин. Сообщение ОИЯИ Р9-5590, Дубна, 1971.
- С.Б. Ворожцов, Л.Т. Закамская, Н.Л. Заплатин. Сообщение ОИЯИ Р9-5013, Дубна, 1970.

Рукопись поступила в издательский отдел 2 февраля 1971 года.

CNCTEMbl магнитной модели наконечника Вид полюсного -Рис.

Рис. 3. Наилучший экспериментальный результат формирования поля на модели магнитной системы.

**

1. 1. 1 d.

Рис. 5. Расчётное шиммирование среднего поля с помощью секторных шимм.

12

114

12

13

1.4

Рис. 6. Сравнение расчётных и экспериментальных кривых спада для магнитов СП-57 и Е-1.