8302

8302

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Эка. JHT. Зала - 8302 8

И.Н.Гончаров, А.Никитиу, И.С.Хухарева

К РАСЧЕТУ ПОТЕРЬ И ВЫБОРУ ТИПА ПРОВОДНИКА ДЛЯ СВЕРХПРОВОДЯЩИХ ИМПУЛЬСНЫХ МАГНИТОВ НУКЛОТРОНА

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

8 - 8302

И.Н.Гончаров, А.Никитиу,* И.С.Хухарева

К РАСЧЕТУ ПОТЕРЬ И ВЫБОРУ ТИПА ПРОВОДНИКА ДЛЯ СВЕРХПРОВОДЯЩИХ ИМПУЛЬСНЫХ МАГНИТОВ НУКЛОТРОНА

> Научно-техническая библиотека ОИЯИ

Институт атомной физики, Бухарест.

При разработке проекта ускорителя релятивнстских ядер - нуклотрона /1/ одной из важнейших задач является выбор типа проводника для импульсных дипольных магнитов, т.к. он в значительной мере определяет стоимость всего ускорителя. В частности, требуется заранее определить, необходимо ли для снижения потерь введение в проводник мельхиоровых перегородок той или иной конфигурации, что существенно усложняет технологию и повышает стоимость проводника.

Потери мощности в сверхпроводящей обмотке импульсного магнита в основном складываются из гистерезисных потерь и потерь за счет вихревых токов /токов Фуко/. Мы рассчитали те и другие потери для случая проводника с медной матрицей, не имеющей мельхиоровых перегородок, сравнили их между собой и оценили потери на метр длины импульсного дипольного магнита нуклотрона

Исходные данные

Максимальная индукция в диполе Скорость изменения индукции в апертуре Время нарастания и спада индукции

 по 5 сек/изменение по линейному закону/.

 $-B_{MAKC} = 5 T$

- $B = 1 T/ce\kappa$

Сверхпроводящий провод /кабель/ состонт из М проволок, каждая из которых /см. рис. 1 и табл. 1/ содержит N сверхпроводящих нитей /СПН/ из НТ-50 с днаметром d = 10 мкм, размещенных в медной матрице.

Гончаров И.Н., Никитиу А., Хухарева И.С.

같이 (Herein)

8 - 8302

К расчету потерь и выбору типа проводника для сверхпроводящих импульсных магнитов нуклотрона

Сделана оценка потерь мощности в сверхпроводящем проводнике для импульсных магнитов нуклотрона. Проведено сравнение относительного вклада гистерезисных потерь и потерь на токи Фуко.

·黑教教师,使用家族教师的教育教育、教育、社

Сообщение Объединенного института ядерных исследований Дубна, 1974 Шаг скрутки проволоки – ℓ_p , критическая плотность тока в сверхпроводнике $J_c = 1,05.10^5 A/cm^2$ при B = 5 T.

Потери на вихревые токи на 1 *м* проволоки за 1 *сек* рассчитываются по формуле ^{/2,3/}

$$\frac{P_e}{L_{np}} = A(\frac{1}{\rho_{\text{odd}}''} + \frac{C}{\bar{R}} \cdot \frac{1}{\rho_{\text{cu}}'}) / B\pi/M/, /1/$$

где

$$A = \frac{\pi}{4} (2R_i)^2 \frac{(\dot{B}\ell_p)}{12 \cdot 4}^2 = 1,65 \cdot 10^{-6} R_i^2, /2/$$

 $R_i = R_e - C$, $\overline{R} = R_e - \frac{C}{2}$ /см. рис. 1/, ρ - удельное сопротивление матрицы.

Рис. 1. Схематический разрез проволоки со сверхпроводящими нитями в матрице из нормального металла.

$$\rho_{3\phi\phi}'' = \rho_{\phi\phi}' \left(\frac{w}{w-d}\right)^{-1}$$
 /3/

где $\rho_{9\dot{}\phi\dot{}\phi}$ - эффективное удельное сопротивление матрицы с учетом повышенного сопротивления переходного слоя между сверхпроводящими нитями и матрицей, W-расстояние между центрами СПН, которое определяется из исходных данных следующим образом /при предположении, что СПН распределены равномерно внутри круга диаметром 2 R_i /.

Как видно из рис. 2, площадь шестиугольника

 $S_{f} = \frac{6}{\sqrt{3}} \left(\frac{w}{2}\right)^{2}$

Площадь сечения проволоки /без медного чехла, не содержащего СПН/

$$S_{np}^{i} = N \cdot S_{f} = \pi (R_{i})^{2},$$

N= - число СПН в проволоке.

Отсюда

Ħ

$$5 = \frac{6}{\sqrt{3}} \left(\frac{w}{2}\right)^2 = \frac{\pi (R_i)^2}{N}$$

 $w = \sqrt{\frac{2\pi}{\sqrt{3}}} R_i .$

/4/

D

 $\rho'_{3\phi\phi}$ определяется экспериментально и поэтому для рассматриваемых нами проводов точно неизвестно. Из работ $^{/3,4/}$, где $\rho'_{3\phi\phi}$ вычислялось из измерений потерь в многожильных ниобий-титановых проводах с медной матрицей, следует, что эта величина лежит в пределах $^{/5\div15/.10^{-10}}$ Ом.м. При этом $\rho'_{3\phi\phi}$ имеет тенденцию возрастать с увеличением коэффициента заполнения λ /т.е. отношения поперечного сечения сверхпроводника к сечению провода/ от 0,25 до 0,9. В своих расчетах мы приняли $\rho'_{3\phi\phi} = 7.10^{-10}$ Ом.м, т.е. величину, близкую к нижней границе. Тем самым мы определили верхний предел для потерь за счет вихревых токов. При с/ $\overline{R} \le 0,1$ второй член в формуле /1/ дает вклад в эти потери $\le 10\%$.

Отметим между прочим, что в формуле /4.1.51/ работы $^{/2/}$ для величины $\rho^{\prime\prime}$ содержится опечатка: множитель в скобках не возведен в степень /-1/. Мы признательны И.Гласнику, указавшему на эту ошибку.

Гистерезисные потери на 1 *м* проволоки за цикл рассчитываются по формуле ^{/2/}:

			_			
NOK	ע גראדאין דעא אדע אדע ד [A] אין גראדאין	276	УУ	3		
СВЕРХПРОВОДЯЩИХ ПРОВС	RANTNYECKAR	2,2	00	- , -		
	.ФФЕОУ «	0,40	670	0,42		
	PACCTORHME VICYCTORHME VICHTPAMN E E HTD	13,5	0.01	C671		
		- <i>0</i> 1	Ur	2		
	- СШЭ бурин Z	3355	101.5	104-0		
ГЕРИСТИКА	RRHILIAO AHNIII NOT OTOHILIAM ANXIP	20	R			
	E TROBOACKN	0,916	0,500			
AK	S CK DALKN	5	5	3		
XA	THI TPOBOAOKN	d	Q	U		

$$\frac{\Psi_{h\ell}}{L_{np}} = \frac{I_0 B_0}{2} \cdot d \cdot \ln\left(\frac{B_{Makc} + B_0}{B_{MUH} + B_0}\right) / \underline{\mathcal{I}} \boldsymbol{x} / \underline{\boldsymbol{u}} \boldsymbol{x} \boldsymbol{n} \boldsymbol{M} / .$$
 (5)

I0^B0 - характеризует критический ток в сверхпроводнике, зависимость которого от индукции достаточно хорошо аппроксимируется формулой Кима /5/:

 $I_{c}(B) = \frac{I_{0}B_{0}}{B_{c} + B_{0}},$ /6/

где $I_0(T) = 2I_c$ (при $B = B_0$) и $B_0(T)$ - постоянные, зависящие от температуры. Из экспериментальной зависимости $J_c^{-l} = f(B)$ для HT-50 при 4,2°К получается $B_0 = 2,2$ *Т* при $B = 1 \div 3T$ и $B_0 = 1$ *T* при $B \cong 5$ *T*. Разница в I_0B_0 для $B_0 = 1T$ и 2,2 T не превышает 5%, поэтому в дальнейшем принято $B_0 = 1 T$, $I_0 = 1660 A$ для проволоки с 3355 СПН и I₀= 516 А для проволоки с 1045 СПН.

Результаты расчета потерь на 1 м проволоки приведены в табл. 2.

Из таблицы видно, что потери за счет токов Фуко в проволоке "с " значительно меньше, чем в"ь". Это связано с уменьшением шага скрутки. Следует учесть также, что желательно выполнение условия $\ell_p \leq \ell_c$, т.к. СПН может переходить в резистивное при l_р ~ 4l_с состояние из-за больших наведенных токов, вследствие чего возникнут значительные добавочные потери при протекании по проволоке рабочего тока магнита.

В правом столбце таблицы дается приведенная энергия

позволяющая сравнивать потери в раз- $L_{np} I_{c} (5 T)$

личных материалах.

На основании полученных данных сделаны оценки потерь в обмотках сверхпроводящих дипольных магнитов нуклотрона для двух случаев:

1. Когда во всех частях обмотки магнита индукция меняется от О до $B_{Mak\overline{C}} 5 T$.

•	A L	 <!--</th--><th></th><th>A T</th><th>7</th><th></th><th></th><th></th><th>-</th>		A T	7				-
	Acyl	ETA	TOT	EPb	НA	1m	UPOE	BONO	КИ
N		g			മ			υ	
	ЯЛЭОНШОМ	RN79742HE	SHEPFNS	עסוו <i>ואסכנא</i> ם	RNJ94EPLN9	, SHEPTNS ELIPUB.	WOTTHOCL19	RNJ942H6	. HEPUB.
· · ·	/Lap	1/1-10	71-11 [10 03-14 [M.A.U.	7/Lmp [10_BT]	7 L	7/L 1 [10 []		7/ 1-mp [<u>10 11-mp</u> [<u>M. U.WKJ</u>	1
۱Ľ	1,49	14,9	54,0	0,462	4,62	54,0	0,462	4,62	54,0
7 DB	1,66	16,6	61,5	0,556	5,56	66,0	661'0	1,99	23,2
	3,15	31,5	115,5	1,018	40,48	420,0	0,661	6,61	17,2

2. Когда в 1/3 части обмотки индукция меняется от О до 5 Т, в 1/3 части - от О до 3Т и в 1/3 части - от О до 1Т. Этот случай более близок к реальному, чем 1. Для точного расчета потерь надо знать B(x,y,z) всей обмотке и провести аккуратное интегрирование. Результаты представлены в табл. 3.

При расчете принято, что верхняя и нижняя половины диполя имеют по 13О витков провода, состоящего из М проволок с указанными выше параметрами; цикл =10 сек; В _{макс} = 5*T*; поперечное сечение проводника в плоскости, перпендикулярной длине магнита, равно ~31,5x10⁻⁴ м² Результаты оценок неплохо согласуются /после соот-

ветствующего пересчета/ с экспериментально измеренными потерями в различных кабелях и дипольных магнитах /6-11/

Выводы

Проведенные расчеты позволяют сделать следующие

выводы: 1. Потери за счет вихревых токов Фуко в обмотке импульсного дипольного магнита нуклотрона при использовании проводника с медной матрицей, не содержащей мельхнора, и диаметре нитей из ниобий-титанового спла-

ва 10 мкм не превышают гистерезисных потерь.

2. Существенного уменьшения потерь за счет вихревых токов в кабеле без мельхноровых перегородок можно и длительности цикла/ достичь /при том же В макс путем уменьшения шага скрутки от 5 до 3 мм, что повидимому, повлечет за собой уменьшение диаметра проволоки от 1 до О,5÷О,6 мм.

3. Вклад в эти потери за счет медного чехла, не содержащего СПН, оказывается порядка отношения его толщины к раднусу проволоки.

В заключение авторы выражают признательность А.Г.Зельдовичу и Л.Г.Макарову за постановку задачн и обсуждения.

		_	_	_			_				_	
	ΛTA			BHEPLNG	W/L_{M}	MAN MAN	84,0	36,2	120,2	56,0	12,1	68,1
	MALH	35	U	MOLLHOCTB	P/L	[DT/M]	8,40	3,62	42,02	5,60	1,21	6,81
	A 1m	= W =	0	<i>БИ.І.І.ЭНЕ</i>	W/Lw	LLOIC/M-LUKAJ	84,0	101,0	185,0	56,0	33,6	89,6
A 3	EPb H		1	мощность	P/L	[DT/M]	8,40	10,10	18,50	5,60	3,36	8,96
Ц 2 2	PACYETA NO1	14	۲.	BHEPTNG	W/Lw	ДЭК/АЛ-ЦИКЛ	85,2	95,0	180,2	26,8	31,6	88,4
D A		= <i>M</i>	U	мощность	P/L	[BT/M]	8,52	9,50	18,02	5,68	3,16	8,84
	PE3YAbTATb	O IPOBOAOK	проволоки				FUCTEPE3NCHWE NOTEPU	ПОТЕРИ ЗА СЧЕТ ВИХРЕВЫХ ТОКОВ	CYMMAPHWE NOTEPU	ГИСТЕРЕЗИСНЫЕ ПОТЕРИ	ПОТЕРИ ЗА СЧЕТ ВИХРЕВЫХ ТОКОВ	CYMMAPHBIE NOTEPN
		ЧИСЛ	TWD				lsno r	s=(z') I∀h∕		1suc C I	¢≠(z מ¥h	

H

Литература

- В.П.Алексеев, А. М.Балдин, Ю.Д.Безногих и др. Перспективы исследований по релятивистской ядерной физикев ЛВЭ ОИЯИ /Соображения по развитию ускорительного комплекса/. Сообщения ОИЯИ, 9-7148, Дубна, 1973.
- 2. H.Brechna. Superconducting Magnet Systems, Springer-Verlag, Berlin, 1973.
- 3. A.H.Spurway, J.D.Smith, M.N.Wilson, J.Phys.D. Appl.Phys., 3, 1517 (1970).
- 4. P.R.Critchlow, B.Zeitlin. J.Appl.Phys., 4I, 4860 (1970).
- 5. Y.B.Kim, C.F.Hempsted and A.R.Strnad. Phys.Rev., 131, 6, 2486 (1960).
- 6. G.Ries, K.P.Jungst. Preprint IEKP, KFK, 1354, 1971.
- 7. W.Heinz. Preprint IEKP, KFK 3/72-5, 1972.
- 8. G.Ries, H.Brechna. Preprint IEKP, KFK, 1372, 1972.
- 9. G.Bronca et al. Report on the 4th Int. Conf. on Magnet Technology, Brookhaven, Sept. 1972.
- 10. Towards a European Superconducting Synchrotron. Report GESSS, I (1972); Report GESSS, 2 (1973).
- II. A.D.McInturff et al. Brookhaven National Lab., Accel. Dept. Internal Report - AADD-179, CRISP 71-13, 1971.

Рукопись поступила в издательский отдел 3 октября 1974 года.