83-717

288/8

Объединенный институт ядерных исследований дубна

8-83-717

1983

В.И.Дацков

ТЕХНИЧЕСКИЕ КРИОГЕННЫЕ ТЕРМОМЕТРЫ НА ОСНОВЕ СЕРИЙНЫХ РЕЗИСТОРОВ ТИПА ТВО

Направлено на XIII Симпозиум по физике и технике низких температур /ГДР, г.Гауссиг, март 1984 г./, на Международную конференцию по техническому использованию сверхпроводимости /Ленинград, сентябрь 1983 г./

I. ВВЕДЕНИЕ

Развитие криогенной техники требует надежных, точных и дешевых термометров, работающих в широком диапазоне температур и в сильных магнитных полях, обладающих повышенными эксплуатационными характеристиками. В Лаборатории высоких энергий уже длительное время используют угольные резисторы в качестве низкотемпературных термометров^{/1,2,3}/ /чаще резисторы фирмы Аллен-Бредли и реже - фирмы Спир^{/2/}/, обладающие хорошей стабильностью и повторяемостью показаний. По сравнению с термометрами других типов угольные резисторы обладают следующими преимуществами: большой чувствительностью, малой теплоемкостью, достаточной стабильностью сопротивления в магнитном поле, низкой стоимостью. Недостатками применения вышеназванных угольных резисторов являются: ограниченный измерительный интервал температур /4+80 K/, плохая герметичность термочувствительного элемента и малая доступность.

В криогенном отделе ЛВЭ ОИЯИ в качестве криогенных термометров впервые были использованы отечественные композиционные резисторы типа $\text{TBO}^{/4/}$, имеющие параметры не хуже, чем у резисторов фирмы Аллен-Бредли, а в отношении рабочего интервала температур и стабильности даже лучше.

II. ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ РЕЗИСТОРОВ ТИПА ТВО

Серийные композиционные безындукционные резисторы типа TB0 применяются в радиоэлектронике и представляют собой стержни прямоугольной формы с аксиально-запрессованными выводами $^{/5/}$. Объемный токопроводящий слой композиции защищен стеклокерамической оболочкой. В состав резистора входят: газовая сажа /3+5%/, флюс /борносвинцовое стекло/, корундовый микропорошок. Контакты между проводящей композицией и платинитовыми выводами осуществлены диффузией серебрянного порошка при спекании, поэтому они герметичны и имеют повышенную проточность. Удобными в работе являются резисторы TB0-0,125 с минимальной номинальной мощностью 0,125 Вт, с размерами 2,5 мм x 1,5 мм x 8 мм, массой 0,075 г. При исследовании температурной зависимости резисторов от номинала обнаружено, что малые номиналы плохо чувствуют температуру и лишь начиная примерно с 80 0м начинает резко увеличиваться температурная чувствительность. Для удобства стыковки с измерительной сис-

Diney, Witten (1997) - March Milya

1

темой в качестве оптимального выбран номинал резисторов, равный 1000 Ом, имеющий хорошую температурную чувствительность, показанную в табл.1 в сравнении с аналогичной характеристикой резистора фирмы Аллен-Бредли.

		-				Таблица l	
	Тем тур	ипера- ра	4,2 K	20,4 к	77,4 K	273 К	400 K
Резистор ТВО,1000 Ом	S	Ом/К	714	26,5	3,8	0,8	0,5
Резистор Аллен-Бредли, 100 Ом	S	Ом/К	360	7,0	0,47	0,04	-

Измерения зависимости сопротивления резисторов от температуры производились на градуировочном стенде по 4-проводной схеме с питанием постоянным током 10 мкА, стабильностью не хуже 10^{-5} . Сопротивление определялось по потенциалу с резистора при помощи цифровых вольтметров TR 6515 /Япония/ и В7-28 класса 0,05. Температура контролировалась по германиевому термометру TCF-1 в диапазоне 4,2+30 К с точностью 0,02 К и по платиновому термометру TCFin-3 в диапазоне 30+273 К с точностью 0,05 К.

На рис.1 показаны кривые температурной зависимости резисторов ТВО и фирмы Аллен-Бредли /А-Б/. Кривые похожи друг на друга, поэтому была сделана попытка применить калибровочную формулу резисторов А-Б для резисторов ТВО, имеющую следующий вид^{/6/}:

$$\ln \mathbf{R} = \mathbf{K}_{1} + \mathbf{K}_{2} \cdot \left(\frac{\ln \mathbf{R}}{T}\right)^{n}, \qquad (1)$$

где R - сопротивление резистора, T - температура резистора, K₁ и K₂ - коэффициенты, определяемые графически, n - показатель степени. Формула /1/ для резисторов ТВО может дать хорошую калибровку в узком интервале температур 4+20 К; уже при 30 К ошибка калибровки достигает ~0,2 К. Для одного из резисторов коэффици-енты равны: K₁ = 6,6; K₂ = 1,108; n = 0,4. Для более широкого интервала температур была предложена следующая зависимость^{/7/}:

$$T = \sum_{n=0}^{m} C_n \cdot (R_0 / R)^n$$
, /2/

где коэффициенты C_n определяются методом наименьших квадратов, а оптимальное число коэффициентов n = 7, $R_0 = 1000$. Для аппроксимации температурной зависимости с точностью /по температуре/

.

Рис.1. Зависимость сопротивления резисторов ТВО и фирмы Аллен-Бредли /АВ/ от температуры.

не хуже 0,5% необходимо использовать не менее 8 температурных точек, равномерно распределенных в интервале сопротивлений от R_{273 K}

III. СТАБИЛЬНОСТЬ ПОКАЗАНИЙ ТЕРМОМЕТРОВ

С целью изучения повторяемости и стабильности показаний партия из 10 резисторов ТВО-0,125 с номинальным сопротивлением 0,91 кОм после предварительной калибровки в диапазоне 4,2+300 К была подвергнута 10 циклам испытаний: охлаждению до температуры 4,2 К и отеплению до 300 К. Затем в течение трех лет проводилась периодическая /примерно раз в месяц/ проверка калибровки при трех температурах: 4,2; 77,4; 273 К. В пределах температурной погрешности 0,05 К /1%/ при 4,2 К изменений калибровки не обнаружено.

Дополнительно были проведены серии других испытаний: до 100 циклов - охлаждение в жидком азоте и отепление до 300 К до 10 циклов - нагрев до 150°С /~ по 10 мин/ и охлаждение в жидком азоте,до 10 циклов - охлаждение и нагрев в вакууме 10⁻⁴ Тор. В пределах температурной погрешности 1% показания термометров были стабильными, но при более сильном нагреве лучше работают резисторы с меньшими номиналами /~ 150+400 Ом/. Влияние величины измерительного тока на погрешность показаний термометров, находящихся в жидком гелии и в газе над уровнем жидкого гелия, показано в табл. 2.

					Таблица 2	
Измерительный ток мкА	· 1	10	50	100	300	1000
∆Т, К в жидком гелии	0,003	0,008	0,030	0,081	0,449	2,371
АТ, К в газе	0,021	0,047	0,076	0,149	0,588	2,942

3

Из табл.2 видно, что для точности измерений ~1% надо применять измерительный ток термометров не более 10 мкА.

Для изучения влияния магнитного поля резисторы TBO помещались в апертуру сверхпроводящего магнита, позволяющего получать в центре индукцию магнитного поля до 6 Т. Погрешность показаний термометров в зависимости от индукции магнитного поля приведена в табл.3.

				Таблица З		
Индукция Т	1	2	3	4	5	6
ТВО № 1 АТк . поле	0	0,013	0,023	0,055	0,086	0,123
тво № 2 Д поле Ц	0	0,001	0,010	0,021	0,038	0,059

Из табл. 3 видно значительное влияние ориентации магнитного поля на погрешность показаний термометров. Для сравнения приведем погрешности некоторых других термометров при температуре 4,2 К и поле 6 Т: для терманиевого термометра TCF/9/ $\Delta T \cong 2+3$ К; полупроводникового термометра КГГ/8/ $\Delta T \cong 0,12$ К; для углеродного термометра TCKУМ/8/ $\Delta T \cong 0,35$ К; для резистора фирмы Аллен-Брэдли /9/ /100 Ом/ $\Delta T \cong 0,12$ К.

IV. УНИФИКАЦИЯ ТЕРМОМЕТРОВ

Для диагностики работы крупных сверхпроводящих магнитных систем с большим количеством измеряемых параметров очень большое значение имеет подбор унифицированных партий термометров с одинаковыми параметрами.

В Лаборатории высоких энергий ОИЯИ в связи с поступившими запросами из других организаций проделана статистическая обработка большой партии резисторов /1100 шт./ типа ТВО-0,125 с номинальным сопротивлением 1,1 кОм и заводским разбросом 5%. Для наглядности рассмотрим гистограммы распределения сопротивления резисторов при трех температурах для одной партии /550 шт./: 4,2 К /рис.2/, 77,4 К /рис.3/, 300 К /рис.4/.

На гистограмме при 4,2 К /рис.2/ можно выделить основную группу резисторов /~65% от всей партии/ с разбросом сопротивлений относительно средней номинальной величины ~52% и дополнительную группу /~35% от всей партии/ с разбросом сопротивлений

Рис.2. Гистограмма распределения сопротивлений партии резисторов TBO при температуре 4,2 К.

~ 105%. На гистограмме при 77,4 К /рис.3/ также можно выделить основную группу резисторов /~ 66% от всей партии/ с разбросом сопротивлений относительно средней величины ~ 10% и дополнительную группу /~ 34% от всей партии/ с разбросом ~ 9%. Более детальный анализ гистограмм показал, что дополнительная группа при

4

Рис.4. Гистограмма распределения сопротивлений партии резисторов ТВО при температуре 300 К.

4,2 К формируется в основном из дополнительной группы при 77,4 К, т.е. основную группу резисторов можно формировать уже при 77,4 К. В результате дополнительных исследований рекомендуется применять резисторы из основной группы, как обладающие повышенной стабильностью. Для выясне-

ния температурной погрешности группировки были отобраны группы резисторов по 10 штук с 1%-ным разбросом сопротивлений при трех температурных уровнях. После анализа градуировочных таблиц оказалось, что температурная погрешность в 1-й десятке равна: 0,5% при 4,2 К; 1,5% при 77,4 К; 2,5% при 300 К. Экстраполируя полученные данные на все резисторы /1100 шт./, можно сделать следующие выводы:

а/ из 1100 штук резисторов с 5%-ным заводским разбросом можно отобрать ~ 24 группы по 10 штук и более термометров с близкими параметрами;

б/ разбиение на группы будет более успешным, если использовать партию резисторов с 1%-ным разбросом сопротивлений;

в/ для формирования групп по 10 одинаковых датчиков необходимо взять начальную партию резисторов в количестве не менее 1000 шт.

V. ТЕПЛОФИЗИЧЕСКИЕ ПАРАМЕТРЫ ТЕРМОМЕТРОВ

Особенностью диагностики работы сверхпроводящих магнитных систем является регистрация нестационарных или динамических тепловых процессов. Точность измерения истинной температуры в таких процессах зависит от многих факторов, в том числе от тепловой инерции и теплоемкости самого термометра. В криогенном отделе ЛВЭ ОИЯИ были проведены измерения вышеназванных параметров для низких температур /4+10 K/ /10/.

На рис.5 представлена зависимость тепловой инерции r₀ резисторов TBO /номинал 1 кОм/ и фирмы Аллен-Брэдли /номинал 50 Ом/ от температуры. Наибольшим быстродействием обладает TBO, у кото-

Рис.5. Зависимость величины тепловой инерции то резисторов ТВО и фирмы Аллен-Бредли от температуры.

Рис.6. Зависимость теплоемкости резисторов ТВО и фирмы Аллен-Бредли от температуры.

рого τ_0 при 4,2 К равно ~ 1 мс, в то время как у резистора Аллен-Бредли $\tau_0 \approx 8$ мс. Это отчасти можно объяснить различной геометрией обоих типов резисторов и особенностью отвода тепла от термочувствительных элементов в окружающую среду. На рис.6 показана зависимость теплоемкости ТВО от температуры в сравнении с графитом и пирексом. Судя по составу резистора ТВО кривая теплоемкости соответствует положению между графитом и пирексом, а ее можно представить в аналитическом виде:

$$C_{T} = (AT + BT^{3}) \cdot 10^{-6} \left[\frac{\beta_{K}}{\Gamma \cdot K}\right], \qquad (3)$$

где C_T - теплоемкость при температуре T; T - температура; A и B - коэффициенты, получаемые графически.

Для резистора ТВО получены следующие коэффициенты: A = 0,99;R = 1,70. Теплоемкость резистора ТВО при 4,2 К равна ~1,3.10⁻⁴ Дж/г.К.

VI. ЗАКЛЮЧЕНИЕ

По своим параметрам резисторы типа ТВО в качестве криогенных термометров вполне удовлетворяют требованиям технического экспе-

римента на криогенных установках в широком интервале температур 4,2+450 К. Они вполне могут стать массовыми рабочими криогенными термометрами с точностью измерения температуры не хуже 1%. Криогенные термометры такого типа получили широкое распространение и используются в ОИЯИ, СКБ МП /г.Львов/ /11/, ИАЭ им:И.В.Курчатова для диагностики сверхпроводящих магнитных систем.

ЛИТЕРАТУРА

- 1. Роуз-Инс А. Техника низкотемпературного эксперимента. "Мир", М., 1966, с.158.
- Уайт Г.К. Экспериментальная техника в физике низких температур. Изд-во физико-математической литературы. М., 1961, с. 150.
- 3. Фастовский Е. . Криогенная техника. "Энергия", М., 1974, с.412-419.
- 4. Дацков В.И. ПТЭ, 1981, № 4, с.253.
- 5. Гребенкина В.Г. и др. Объемные резисторы. Издательство "Наукова думка", Киев, 1976, с.26-37.
- 6: Менке Х., Цвинева Г.П. ОИЯИ, Р8-9055, Дубна, 1975.
- 7. Дацков В.И. и др. ОИЯИ, 10-81-200, Дубна, 1981.
- 8. Хлопкин М.Н. и др. ИАЭ-2988, Москва, 1978.
- 9. Вепшек Я. Измерение низких температур электрическими методами. "Энергия", М., 1980.
- 10. Дацков В.И. и др. ОИЯИ, 8-83-45, Дубна, 1983.
- Тезисы докладов конференции "Криогенная техника-82", ЦИНТИхимнефтемаш, М., 1982, с.233-234.

Рукопись поступила в издательский отдел 17 октября 1983 года

Дацков В.И.

Технические криогенные термометры на основе серийных резисторов типа ТВО 8-83-717

Предложено использовать отечественные серийные композиционные резисторы Т80-0,125 в качестве технических криогенных термометров в диапазоне 4,2 + 450 К и в магнитных полях до 8 Т. Для измерений в интервале температур 4,2 + 300 К в качестве оптимального выбран номинал резисторов, равный 1 кОм. Воспроизводимость градуировки термометров, измерявшаяся периодически в течение 4 лет, составляет ~ 0,02 К /при температуре 4,2 К/. Погрешность показаний термометров в магнитном поле при В = 5 T /4,2 К/ составляет ~ 0,07 К. Описана калибровочная формула для работы в интервале 4,2 + 300 К. Предложена методика предварительной разбивки термометров на группы с одинаковыми характеристиками. Представлены результаты измерения тепловой инерции

и теплоемкости резистора ТВО при низких температурах /4 + 10 К/. Работа выполнена в Лаборатории высоких энергий ОИЯИ

Препринт Объединенного института ядерных исследований. Дубна 1983

Datskov V.I. Technical Cryogenic Thermometers on the Basis of Commercial TVO Resistors

8-83-717

Commercial serial composition resistors TV0-0.125 are proposed to use as technical cryogenic thermometers within the 4.2-450 K temperature range and in magnetic fields up to 8 T.For measurements within the 4.2-300 K temperature range optimum nominal value is chosen equal 1 k0hm. Thermometer graduation reproducibility measured during 4 years equals 0.02 K /4.2 K/. Errors of thermometer responses in magnetic field at W = 5 T /4.2 K/ equals 0.07 K. The calibration formula for operation within the 4.2 - 300 K is described. Method for preliminay dividing the thermometers into groups with equal characteristics are proposed. The results of measuring inertia and heat capacity of TV0 resistor for low temperatures 4 - 10 K are presented.

The investigation has been performed at the Ladoratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой

=