F-657

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3979/2-74

8-8015

И.Н.Гончаров, Г.Л.Дорофеев, А.Никитиу, Л.В.Петрова, Д.Фричевски, И.С.Хухарева

ИССЛЕДОВАНИЕ $ho_{\mathbf{f}}$ (**H,T**)
СВЕРХПРОВОДНИКОВ ВТОРОГО РОДА

1974

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

И.Н.Гончаров, Г.Л.Дорофеев, А.Никитиу, Л.В.Петрова, Д.Фричевски, И.С.Хухарева

ИССЛЕДОВАНИЕ $ho_{\mathbf{f}}$ (H,T) СВЕРХПРОВОДНИКОВ ВТОРОГО РОДА

Направлено в ЖЭТФ

ВВЕЛЕНИЕ

По характеру зависимости дифференциального сопротивления /ДС/ от виешнего магнитного поля при постоянной температуре весь интервал от О до $H_{c2}(t)$ условно можно разделить на три части. В малых полях наблюдается линейная зависимость, хорошо описываемая теорией, рассматривающей движение под действием транспортного тока не взаимодействующих друг с другом вихрей. Для этой области полей в теоретических работах /1-5/ при упрощающем предположении отсутствия сил сцепления было получено в явном виде выражение

эффективной проводимости
$$\sigma_{\mathbf{3} \mathbf{\varphi} \mathbf{\varphi}} = \rho_{\mathbf{f}}^{-1} = (\frac{\mathbf{d} \, E}{\mathbf{d} \, \mathbf{j}})^{-1}$$
 через

температуру и среднее магнитное поле в образце.

В другом предельном случае $H \to H_{c2}(t)$ также имеет место линейная зависимость ДС от H. Микроскопическая теория, описывающая поведение эффективной проводимости в этой области, построена в предположении бесщелевой сверхпроводимости $H_{c2}(t)$ и поэтому применима, строго говоря, только в очень уэкой окрестности $H_{c2}(t)$. При эксперименте линейный участок занимает достаточно заметный интервал полей, однако его наклон меняется с температурой в хорошем согласии с теоретически пред-

сказанной зависимостью
$$\mathbf{r}'(\mathbf{t}) \equiv \left[\frac{H}{\rho_n} \frac{\partial \rho_f}{\partial H}\right]_{H=H_{c2}(\mathbf{t})}^{7-11/}$$
.

Наименее изученной, как экспериментально, так и теоретически, является область средних полей. В ряде работ $^{/8-11/}\rho_f$ / ρ_a измеряли во всем диапазоне магнитных

полей, но при этом подробно исследовали закономерности поведения только в одном из предельных случаев: Н - 0 или H → H_{0.2} (t) . В непосредственной близости к Т для

полей, удовлетворяющих условню $1>>(1-\frac{H}{H_-(t)})>>(1-t)$, была получена зависимость /4,12/

Однако условие применимости этой формулы даже для t = 0.995 не позволяет перекрыть всего интервала сред-

них полей, т.к. ограничение $(1 - \frac{H}{H_{co}(t)}) \ll 1$ в лучшем слу-

чае соответствует $\frac{H}{H_{c2}(t)} > 0.7$. В работе /13/ для темпе-

ратур $\approx T_c$ вычислили ho_f (H) /для всех значений H от H₁(t) до H₂(t) / из нестационарных уравнений Гинзбурга-Ландау, пренебрегая так называемыми аномальными членами. В случае сверхпроводников без парамагнитных примесей, но с $\ell < \xi$ значения ho_f для малых полей совпадают с вычисленными в $^{/2/}$, а при ${\rm H} \cong {\rm H}_{\rm c2}$ (t) получается результат Маки 16/. Учет аномальных членов, по мнению авторов, должен приводить к уменьшению ρ_i при заданном поле.

До сих пор речь шла об электромагнитном механизме диссипации, вызванной движением флюксондов под действием транспортного тока. Клемом был предложен дополнительный, тепловой механизм диссипации, объясняющий появление у сверхпроводящих сплавов с малой длиной пробега минимума на кривой $\rho_{\rm f}$ (T) $^{/14, 15/}$; при этом рассматривался одиночный, изолированный вихрь. Последующее усовершенствование модели состояло в учете взаимодействия вихрей через электрические поля, связанные с их движением /16/ что дало качественное объяснение экспериментально полученной зависимости температуры минимума от H ^{/17}, ¹⁸/.

В настоящей работе проведено измерение ДС на сплаве Nb с большим содержанием Zr при температурах от 1,0 K до T_c во всем интервале магнитных полей от нуля до $H_{c2}(t)$. При фиксированных значениях температуры снималась зависимость ρ_f/ρ_n от поля, либо при фиксированных значениях магнитного поля делались проходы по температуре. Полученные результаты использовались для определения температурий зависимости коэффициента вязкости движущихся вихрей /КВДВ/ и сравнения ее с теорией. Проведено также сравнение с теорией зависимости ρ_f/ρ_n от H для разных температур. Распространяя идею теплового механизма диссипации на совокупность движущихся вихрей и пренебрегая их электромагнитным взаимодействием, мы рассчитали зависимость глубины минимума на кривой $\rho_f(t)$ от магнитного поля и провели сравнение с экспериментальными результатами.

МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве образцов использовались полоски фольги размером O,O1xO,16x5 см 3 из сплава Nb — 80 % Zr, подвергнутого после механической обработки рекристаллизационному отжигу при 1000° С с последующей быстрой закалкой /19 / Для измерения вольт-амперных характеристик /ВАХ/ образец крепился в держателе с прижимными потенциальными контактами, помещенном и магнитное поле, перпендикулярное плоскости образца и транспортному току. ВАХ записывали на двухкоординатносамописце, используя фотоэлектронный усилитель типа Ф-118. ДС определяли графически по наклону линейного участка ВАХ. Однако в некоторых случаях наличие линейного участка не исключает интегрального нагрева образца за счет выделяющейся в нем мощности и влияния этого нагрева на величину ДС /20 Поэтому в соответствующие значения ДС были внесены поправки, зависящие

главным образом от I_c , $\frac{\partial I_c}{\partial T}$ и козффициентов теплопроводности и теплопередачи. При вычислении поправок в Hell использовалось значение коэффициента теплосо-

противления $R_{K}^{II} = \frac{25}{T^{3}} \frac{\left({}^{\circ}K\right) {}^{4}cm^{2}}{\pi}$, что близко к масимально

возможному для $Nb = 80 \% Zr^{-/21}$. В He~I непользовался линейный по температуре коэффициент теплосопротивле-

ння, принимающий значения $R_K^I = 5 \frac{\dot{K} \text{ cm}^2}{W}$ при T = 4,2K н $R_K^I = 20 \frac{\dot{K} \text{ cm}^2}{W}$ при $T = 2,2K^{-/20}$ / В области T > 4,2K, где измерения производились в парах, использовалось

значение $R_{K}^{\text{пар}} = 220 \frac{K \text{ cm}^2}{W}$, вычисленное из сопоставления

ВАХ образца для T=4,2K, снятых в жидкости и паре. Ниже приведены относительные значения тепловых поправок для трех температур в различных магнитных полях /в %/:

T/H	24 x3	18 кЭ	14 x9	8,3 кЭ
1K	3,5%	5,5	7,0	9,5
2,2K	3,0	4,0	4,5	6,0
4,3K	5,0	•	20,0	35,O

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

1. Зависимость дифференциального сопротивления от поля

На рис. I представлены результаты нэмерення ρ_1/ρ_n от H при разных фиксированных значениях температуры. Можно отметить ряд характерных особенностей, проявившихся в этих измерениях. Во-первых, в области инзких полей /рис. 16/ для всех температур хорошо выполняется линейный закон зависимости ρ_1 (H). Во-вторых, в интервале полей от нуля до 60 κ 3 для инзких температур наблюдается характерный "горб", ранее отмечавшийся Кимом B у сплавов с высокими κ . В-третьих, вблизи

 $H_{c2}(t)$ наблюдается тенденция к минимуму $ho_i/
ho_n$ /кривые 3',4,6 на ho_u с. 1a/,соответствующему пик-эффекту на кривых $j_c(H)$. Просветы на кривых означают места возможного наблюдения подобных минимумов.

Наличне линейной зависимости ρ_i / ρ_n от H в малых полях позволяет на основании этих измерений определить КВДВ(η) и его зависимость от температуры. Действительно, КВДВ и ДС связаны простым соотношением/8/.

$$\eta(t) = \frac{\Phi_0 \cdot H}{c^2 \rho_f(t)} \cdot \mathbf{Ecns} \cdot \frac{\rho_f(t)}{\rho_n} = \frac{b_0(t) \cdot H}{H_{c2}(0)}, \quad \text{To}$$

$$\eta(t) = \frac{1}{b_0(t)} \cdot \frac{\Phi_0 H_{c2}(0)}{c^2 \rho_n}.$$

 b_0 для фиксированной температуры определяется графически по наклону начального линейного участка в экспериментальной зависимости $ho_{\rm f}$ / $ho_{\rm n}$ от H; $h_0(t)$ полностью описывает температурное изменение КВДВ. В литературе часто используется другая форма записи, а именно:

$$\frac{\rho_{t}(t)}{\rho_{n}} = \frac{b(t) H}{H_{c2}(t)}$$
 . Тогда $\eta(t) \sim \frac{H_{c2}(t)}{b(t)}$. В теоретических

работах $^{/1-5/}$, рассматривающих движение одиночных вихрей под действием транспортного тока, получения зависимость $\sigma_{\phi \bar{\phi} \bar{\phi}}$ (H,T) представляется в общем виде:

$$\frac{\sigma_{\rm s} \phi \phi}{\sigma_{\rm n}} = \beta(t) \frac{\dot{H}_{\rm c2}(t)}{H}$$
 . $\beta(t)$ определено в двух пре-

дельных случаях: T → T_c и T=0. Нетрудно видеть, что

$$\beta(t) = \frac{1}{b(t)} = \frac{1}{b_0(t)f(t)} = \frac{\eta(t)}{f(t)}, \text{ rge} \qquad f(t) = \frac{H_{c2}(t)}{H_{c2}(0)} .$$

Кривая 1 рис. 2а рассчитана по формуле $^{/3}$ /; β (t) = =i,1(1 - t) $^{-1/2}$, 2 - соответствует β (t)=1,47 $^{/2}$ /, точка на оси t = 0 есть β (0)=0,9 $^{/5}$ /. На рис. 2а нзображены также экспериментальные значения 1/b(t) разных авторов. Отметим, что часть точек получена нами из кривых ρ (H) $/\rho$, приведенных в публикациях, чем объясняется в некоторой степени их разброс. Однако различне

в температурной зависимости 1/b(t) разных сплавов выходит за пределы этого разброса и, возможно, объясняется разницей в температурной зависимости $H_{c2}(t)$, которая наряду с $\eta(t)$ входит в определение b(t). В области t>0,6 можно видеть некоторую корреляцию между положением кривой 1/b(t) и величиной параметра $\kappa_1(1)$, значения которого для данных образцов приведены в таблице:

Образец	Nb 20 Zr80	Pb ₇₆ In ₂₄	Nb ₈₀ Mo ₂	0 V-B	V – A
к ₁ (1)	64	4,8	4,1	2,3	1,9
Источник	наст.раб.	9	11	10	10

Как видио из рисунка, экспериментальная зависимость 1/b(t) для Nb = 80% Zr достаточно хорошо соответствует теории $^{/3}$, 5 / при $t \rightarrow 0$ и $t \leq 0.95$. В непосредственной близости к T_c обнаружен резкий спад на кривой

Рис. 1. Экспериментальная зависимость $\rho_{\rm f}/\rho_{\rm h}$ от]] для фиксированных значений температуры: 1. T=7.6 K, 2. T=7.1 K, 3. T=6.5 K: 4. T=4.2K; 5. T=3.4K; 6. T=2.0 K; 7. T=1.37K: 3′. T=6.0 K.

1/b(t) / 23 / , так что при 1-0 экспериментальные точки приближаются к предельному значению 1/b = 1,47. Если учесть, что формула, определяющая кривую /1/, получена из рассмотрения только аномальных членов в выражении для проводимости, а предельная оценка сделана путем их отбрасывания, то следует предположить, что при приближении к Т_с начинает работать механизм, который сильно подавляет вклад аномальных членов /по крайней мере в случае наших образцов/.

На puc. 26 для разных образцов приведена зависимость $b_0(t) \sim 1/\eta(t)$. Как упоминалось выше, b_0 для фиксированной температуры определяется экспериментально по наклону начального линейного участка кривой $\rho_f(H)$. Характерной особенностью поведения $b_0(t)$, ипервые отмеченной в $^{/8}/$, является стремление к постоянному зна-

чению в области низких температур. Для ${\rm Nb}_{50}$ ${\rm Ta}_{50}$, например, соотношение ${\rm b}_0({\rm t})={\rm const}$ сохраняется вплоть до ${\rm t} \approx 0$,7. Для всех образцов постоянное значение ${\rm b}_0$ близко к единице. Теоретическая оценка дала ${\rm b}_0(0)={\rm l}_1/^5 {\rm c}_1^5$ в работе ${\rm const}_0(0)={\rm l}_1/^5$ в работе ${\rm l}_1/$

На рис. З представлена для разных температур зависимость ρ_f/ρ_n от приведенного поля во всем интервале от О до 1. Кривая 1 воспроизводит результаты расчета ρ_f из нестационарных уравнений Гинзбурга-Ландау путем пренебрежения аномальными членами для температур порядка $T_c/13$. Эта кривая имеет асимптоты: в низких полях 0.68/b=1.47/2/, в высоких -2.5/6/. 2a.6. в рассчитаны соответственно для температур t=0.924; 0.977; 0.989 по формуле:

Рис. 2. Зависимость коэффициента вязкого трения овижущихся вихрей от температуры: 1, теоретическая кривал 3 /; 2. - теоретическая оценка 2 /; * при t=0 - теоретическая оценка 5 /; Nb_{20} Nb_{20} Nb_{20} - осиная работа; Nb_{20} Nb_{20} Nb_{20} - работа 10 /; Nb_{20} $Nb_$

 $\frac{\sigma \ \text{s} \phi \phi}{\sigma_{\text{m}}} - 1 = 0.18 \, \text{x}^{3/2} \quad (1 - t)^{-1/2} + 1.25 \, \text{x} + 0.27 [\, \text{x} (1 - t)]^{1/2}$

$$\times \ \ell n \, \frac{5 \, x}{1-t} + \, \alpha_1 \, x \, (\frac{x}{1-t})^{1/10} \, + 0 \, , \\ 1 \, \alpha_2 \, \, x (\frac{x}{1-t})^{1/5} \ ,$$

справедливой для
$$(1-t) << x << 1$$
, где $x = \frac{1 - H/H_{c2}}{1 - 1/2\kappa^2}$,

 a_1 и a_2 - порядка единицы. В области малых полей для тех же температур приведены асимптоты, рассчитанные по формуле:

$$\frac{\langle H \rangle}{H_{c2}} \frac{\sigma_{9\varphi\varphi}}{\sigma_{n}} = 1,1(1-t)^{-1/2} + 0.81[1 + \alpha_{3}(1-t)^{-1/10} + \alpha_{4}(1-t)^{-1/5}],$$

 a_3 , a_4 - порядка единицы $^{1/4}$. Соответствующие значения b лежат выше кривой 1 puc. 2a /см. $^{1/23}$ /. К сожалению, большой разброс экспериментальных точек в полях, близких к $H_{c2}(t)$ /это частично связано с проявлением пик-эффекта/ не позволяет провести сравнение с теорией в этой области. Однако надоотметить, что для согласования расчетных кривых 2 с соответствующими асимптотами в низких полях, очевидно, необходимо ограничить их снизу еще более высокими значениями $H/H_{c2}^{T,T,AT}(t)$, чем это сделано на рисунке, где принято

$$1>(1-H/H_{c2}^{\Gamma \pi a \Gamma}(t))_{MaKC}=0,3.$$

Экспериментальные точки $t=0,989\ /\ T=7,77 K/$ и $t=0,535\ /\ T=4,2 K/$ достаточно хорошо согласуются с предельной теоретической оценкой /кривая 1/. Систематическое отклонение к более высоким значениям $\rho_{\rm f}/\rho_{\rm n}$ в случае t=0,535 объясняется проявлением эффекта парамагнитного распаривания $^{19},^{24}/$. Отклонение от кривой 1 к более низким значениям $\rho_{\rm f}/\rho_{\rm n}$ экспериментальных точек t=0,977 и t=0,924 происходит в соответствии с предсказанным в $^{/13}/$. Действительно, как видно из рис. 2a, вклад аномальных членов увеличивается с ростом температуры /до максимума/ и соответственно при заданном поле точки t=0,977 отклоняется от кривой 1 сильнее, чем t=0,924.

II . Зависимость дифференциального сопротивления от температуры

Так как энтропии сверхпроводящей и нормальной фаз не равны, переход из одной фазы в другую под действием

магнитного поля ведет к изменению температуры. Позтому движение нормальных областей в сверхпроводнике /например, магнитного пятна с размерами много больше длины когерентности/ сопровождается возникновением температурных граднентов с необратимыми потерями ^{/25/}. Можно предположить, что в случае грязных сверхпроводников второго рода возникают подобные градненты на движущихся вихрях, т.к. геометрическая неопределенность источников тепла равна длине свободного пробега нормальных электронов, а в данном случае выполняется условие $\ell <\!\!< \xi$. Тогда должен иметь место и тепловой механизм диссипации, аналогичный возникающему при движении больших областей нормальной фазы в сверхпроводниках первого рода. Для оценки вклада тепловой диссипации Клем рассмотрел модель, в которой одиночный движущейся вихрь представляется в виде цилиндра /14/. Уравнение теплопроводности для одного цилиндра, записанное с точностью до линейных по сколости членов имеет решение:

$$T(\vec{r}) = T_0 - \frac{T_0 \ a(S_n - S_s)}{K_n + K_s} \begin{cases} \frac{\vec{r} \cdot \vec{v}}{a}, & |\vec{r}| \leq a \\ \frac{(\vec{r} \cdot \vec{v}) \ a}{|\vec{r}|^2}, & |\vec{r}| \geq a \end{cases} / 1 /$$

где \vec{r} - радвус-вектор из центра цилиндра, a - радиус цилиндра, \vec{v} - его скорость, S_n , S_s - энтропия на единицу объема внутри и вне цилиндра, T_0 - средняя температура образца, K_n , K_s - теплопроводность внутри и вне цилиндра.

Необратимые тепловые потери на единицу длины цилиндра в единицу времени будут:

$$W_{q} = 2 \int_{-\pi/2}^{+\pi/2} \frac{T_{0} a^{2} (S_{n} - S_{s})^{2} v^{2} \cos^{2} \phi d\phi}{K_{n} + K_{s}} = \frac{\pi a^{2} T_{0} (S_{n} - S_{s})^{2} v^{2}}{K_{n} + K_{s}} = \eta_{q} v^{2};$$

где $\eta_{\rm q}$ — коэффициент тепловой вязкости на единицу длины цилиндра, ϕ - угол между раднусом-вектором из центра цилиндра и скоростью в плоскости, перпендикулярной цилиндру. Увеличение магнитного поля приводит к росту плотности вихрей и, следовательно, к уменьшению температурных градиентов на вихре из-за уменьшению температурных градиентов на вихре из-за уменьшения расстояний между источниками и поглотителями тепла - поверхностями цилиндров. Следовательно, формула /2/ определяет верхнюю границу величных тепловой диссипации в пределе $H \to 0$. Рассмотрим зависимость теплового коэффициента вязкости от величины магнитного поля. Вначале для простоты положим $K_s = K_n$. Тогда ввиду линейности уравнения теплопроводимости по источникам распределение температуры для решетки нормальных цилиндров будет суммой распределений для отдельных цилиндров:

$$T(\vec{r}) = T_0 - \frac{T_0 a (S_n - S_s)}{2K_n} \{ \sum_{ij = -\infty}^{+\infty} \frac{\vec{v} \cdot (\vec{r} - \vec{r}_{ij})}{a} \times [1 - \theta (|\vec{r} - \vec{r}_{ij}| - a)] + \frac{\vec{v} \cdot (\vec{r} - \vec{r}_{ij}) a}{|\vec{r} - \vec{r}_{ij}|^2} \theta (|\vec{r} - \vec{r}_{ij}| - a) \},$$

$$\theta(x) = \{ 1, x \ge 0, x \le 0, x \le 0 \},$$
/3/

Множество векторов $\{\vec{r}_{ij}\}$ описывает положение центров нормальных цилиндров.

Для треугольной решетки:

$$\frac{a^{2}}{d \frac{2}{\phi}} = \frac{\sqrt{3}}{4\pi} \cdot \frac{H}{H_{c2}(t)}, \qquad a^{2} = \frac{\Phi_{0}}{2\pi H_{c2}(t)}$$

$$d \frac{2}{\phi} = \frac{2\Phi_{0}}{\sqrt{3} H}, \qquad /4/$$

где \mathbf{d}_{ϕ} - расстояние между центрами цилиндров, \mathbf{H} - среднее магиитное поле внутри образца, Φ_0 - квант потока.

При выполнении условия $\frac{d_{\phi}^{2}}{(2a)^{2}} \gg 1$ можно ограни-

чить сумму ближайшими цилиндрами. Тогда для температуры на поверхности цилиндра получим выражение:

$$T(\phi) = T_0 - \frac{T_0 a v(S_n - S_s)}{2K_n} \{1 - 4 \frac{a^2}{d_{\phi}^2}\} \cos \phi, \qquad /5/$$

из которого следует:

$$\eta_{\rm q} = \frac{\pi a^2 \, {\rm T}({\rm S}_{\rm n} - {\rm S}_{\rm s})^2}{2{\rm K}_{\rm n}} \left\{1 - \frac{\sqrt{3}}{\pi} \, \frac{{\rm H}}{{\rm H}_{\rm c2}({\rm t})}\right\} \,. \qquad /6/$$

Если положить $K_s=0$, распределение температуры на данном цилиндре не будет зависеть от соседних и тепловой коэффициент вязкости соответственно не должен зависеть от величины магнитного поля, как и в случае одиночного вихря и произвольных значений K_n и K_s . Спедовательно, при изменении теплопроводности K_s от

нуля до $K_{\rm n}$, $\eta_{\rm q}$, будет меняться от $\frac{\pi a^2 T \, (S_{\rm n} - S_{\rm s})^2}{K_{\rm n}}$ до

$$\frac{\pi a^{2} T (S_{n} - S_{s})^{2}}{2 K_{n}} (1 - \frac{\sqrt{3}}{\pi} - \frac{H}{H_{c2}(t)}),$$

Для оценки относительного вклада теплового механизма рассмотрим величину $\eta_{\rm q}/\eta\left(0\right)$, где $\eta(0)=\frac{\Phi_0 H}{c^2 \rho_{\rm f}}=\frac{\Phi_0 H_{\rm c} g(0)}{c^2 \rho_{\rm n}}$ электромагнитный коэффициент вязкости, определенный из эмпирического соотношения $\frac{h}{\rho_{\rm f}} \neq \rho_{\rm n} \frac{H}{H_{\rm c2}\left(0\right)}$, справедливого в малых полях при инзких температурах:

$$\frac{\eta_{\mathbf{q}}(t)}{\eta(0)} = \frac{\frac{\pi a^2 T(S_n - S_s)^2 c^2 \rho_n}{(K_n + K_s) \Phi_0 H_{c2}(0)}}{\frac{\pi a^2 T(S_n - S_s)^2 c^2 \rho_n}{(K_n + K_s) \Phi_0 H_{c2}(0)}} [1 - \frac{\sqrt{3}}{\pi} \frac{H}{H_{c2}(t)}]$$

$$K_s \to K_n.$$
 /7/

Принимая:

$$a = \xi$$
; $H_c(t) = H_c(0)(1 - t^2)$; $\xi^2 = \frac{\Phi_0}{2\pi H_{c}(t)}$;

$$H_{c2}(t) = H_{c2}(0)(1-t^2); S_n - S_s = -\frac{H_c(t)}{4\pi} \cdot \frac{dH_c(t)}{dt} \cdot \frac{1}{T_c}$$

и для грязных сверхпроводников второго рода:

$$H_c(0) = 2.42 \gamma^{1/2} T_c$$
; $H_{c2}(0) = 3.06 \cdot 10^4 \rho_n \gamma_n T_c$;

 $\kappa = 7.5 \cdot 10^{3} \rho_{n} \, \gamma_{n}^{1/2}$ н выражая ρ_{n} через теплопроводность нормальных электронов с помощью закона Видемана-Франца, формулу /7/ можно привести к виду, удобному для сравнения с экспериментальными результатами:

$$\frac{\eta_{\mathbf{q}}(t)}{\eta(0)} = \begin{cases} 2.115 \frac{(1-t^2) t^2 K_{en}}{K_n + K_s} & K_s \to 0 \\ \\ 2.115 \frac{(1-t^2) t^2 K_{en}}{K_n + K_s} [1-0.55 \frac{H}{H_{c2}(t)}] & /8/s \end{cases}$$

В случае нашего сплава измеренная при $T=T_c$ полная теплопроводность * практически совпала с K_{en} , вычисленной по закону Видемана-Франца. На основании этого мы положили и для более низких температур $K_n \cong K_{en}$. Кроме того, для оценки минимального значения $\eta_{\bf q}$ (t) было принято $K_s = K_n \cong K_{en}$.

^{*}Измерения теплопроводности были проведены Л.П. Межовым-Деглиным с сотрудниками в Институте физики твердого тела АН СССР, за что авторы выражают им глубокую благодарность.

Из формулы /8/видно, что относительный вклад теплового механизма диссипации, равный нулю при t=0 и t=1, может достигать значительных величин /50%/ при средних температурах.

На рис. 4 представлена зависимость $\rho_{\rm f}$ / $\rho_{\rm n}$ от Т для разных значеней магнитного поля. Пунктирные кривые проведены по экспериментальным точкам после внесения соответствующих поправок, о которых говорилось выше. Сплошные линии - результат расчета по формуле:

$$\rho_{\rm f}/\rho_{\rm n} = \frac{\rm H}{\rm H_{c2}(0)} \cdot \frac{1}{1 + \eta_{\rm g}(t)/\eta(0)} \,,$$

где $\eta_{\rm q}({\rm t})/\eta(0)$ по формуле /8/ для ${\rm K_s} \cdot {\rm K_n}$. Как видно из рисунка, экспериментальные минимумы $\rho_{\rm f}$ находятся при более низких температурах, чем расчетные. Это расхождение, очевидно, объясняется тем, что при расчете не учитывалась температуриая зависимость части $\rho_{\rm f}$, обусловленной электромагнитной диссипацией.

На рис. 5 проведено сравнение относительной глубины минимума, полученной экспериментально $^{(9,15,17,18)}$ с расчетной величиной. По оси абсцисс отложено приведенное поле, по оси ординат - величина $\Delta_{\eta}/\eta(0,1)$, которая определялась из экспериментальной зависимости $\rho_{\mathfrak{g}}(\mathfrak{t})$ по формуле:

$$\frac{\Delta\eta}{\eta\,(0\,,\,1)} = \frac{\rho_{\,f}\,\,(0\,,1)}{\rho_{\,f\,\,min}} - 1 \ .$$
 Расчетное значение
$$\frac{\Delta\eta}{\eta\,(0\,,1)} = \frac{\eta_{\,q\,\,max} - \eta_{\,q}(0\,,1)}{\eta_{\,q}\,(0\,,1) + \eta\,(0)}, \, \text{где} \quad \eta_{\,q}\,\,(\,t\,)$$

получено по формуле /8/. Ведно, что модель теплового механизма хорошо объясияет абсолютное значение глубины минимума $\rho_f(t)$ в области незких полей и сельно расходится с экспериментальной зависимостью $\Delta \eta/\eta(0,1)$ при повышение поля. Это связано, главным образом, с тем, что /как уже указывалось выше/ при более высоких H та часть ρ_f , которая обусловлена электромагнит-

Рис. 4. Зависимость $\rho_{\rm f}/\rho_{\rm n}$ от температуры: 1. Н = = 8,34 кЭ; 2. Н =13,9 кЭ; 3. Н =18 кЭ; 4. Н =24 кЭ. Штриховые линии - эксперимент, сплошные - расчет по формуле /8/ при $K_{\rm s} \to K_{\rm n}$.

ным механизмом диссипации, начинает возрастать с температурой, тем самым частично компенсируя уменьшение полного ДС за счет теплового механизма. Начиная с не-

которого поля, минимум на $ho_{
m f}^{
m SKCH}$. (t) $vert_{
m H/H_{c2}(0)}$ вообще

не наблюдается. Однако в данном расчете это возрастание не учитывалось, вследствие чего сравнение с ним следует делать лишь в относительных небольших H/H^{TAG}. (0).

ЗАКЛЮЧЕНИЕ

Подробное исследованне ρ_f (H, T) в образцах с высокими κ , проведенное в настоящей работе, позволяет сделать следующие выводы. Во-первых, показано, что в области относительно небольших $H/H_{c2}^{r,ner}(t)$, где взаимодействие между вихрами невелико и возможно

Рис. 5. Зависимость глубины минимума от магнитного поля: lacktriangledown Nb20 Zr80 - данная работа; \Box Pb 76 ln 24 - работа /9 ; \bullet Pb 60 Tl 40 - работы /15,18 / ; Δ Pb 50 ln 50 } ∇ Pb 90 ln 10 }

определение КВДВ, вплоть до температур, отличающихся на несколько процентов от $T_{\rm c}$, современная микротеория /3,4/ дает правильную зависимость $\eta(t)$, но численные коэффициенты теории требуют уточнения. При еще более высоких температурах наблюдается существенное

расхождение между экспериментом и теорией и в температурной зависи пости Последнее обстоятельство, возможно, связано с наличием в наших образцах 19 частиц ω -фазы, отличающейся по составу от матрицы) При $T \to 0$ обнаружено хорошее количественное совпадение теоретических и экспериментальных значений КВДВ.

Во-вторых, достоверно установлено, что в области самых незких температур в полях $H/H_{\rm c,2}(0)>0,2-0,3,
ho_{\rm f}(H)$ отклоняется вниз от начальной линейной зависимости

с наклоном
$$b_0 = \frac{\rho_f / \rho_n}{H/H_{c2}(0)} = 1, 1, причем касательная к кри-$$

вой $\rho_{\rm f}$ [H/H $_{\rm c2}$ (0)], проходящая через начало координат, имеет наклон \approx 0,9. Такое поведение не имеет пока теоретического объяснения. В-третьих, обнаружено, что вблизи ${\rm H^{\circ}K^{CRep}}$ (t), где на кривых ${\rm j_c}$ (H) имеется пик, существенно замедляется рост $\rho_{\rm f}$ (H), которое, по-видимому, даже проходит через узкий минимум. Такое поведение $\rho_{\rm f}$ выявляет важную особенность динамической связи между движущимися вихрями и пиниингцентрами.

В-четвертых, для описания наблюдающегося экспериментально минимума на $\rho_{\rm f}({\rm T})|_{{\rm H}={\rm const}}$ в рамках фено-

менологической модели $^{/14/}$, описывающей дополинтельный механизм диссипации из-за появления локального температурного градиента на одиночном движущемся вихре, сделан расчет,в котором учтено влияние соседних вихрей. В предположении, что теплопроводность внутри и вне вихря одинакова, получены явные выражения для $\rho_f(t)$, включающие зависимость от магнитного поля. Сравнение с экспериментом показало, что в относительно небольших $H/H_{\rm c2}^{\rm TMF}$. (0) имеется неплохое согласие, а при более высоких полях расчетная глубниа минимума оказывается больше наблюдаемой. Это указывает на необходимость учета температурной зависимости также и той части ρ_f , которая обусловлена электромагнитным механизмом диссипации.

В заключение авторы выражают искреннюю признательность Б.Т.Гейликману, В.В.Данилову, Н.Б.Копинну, В.З.Кресину, М.Ю.Куприянову, К.К.Ликареву, Ю.Н.Овчиннекову за плодотворные дискуссии.

Литература

- 1. Л.П.Горьков, Н.Б.Копнин. ЖЭТФ, 60, 2331 /1971/.
- 2. М.Ю.Куприянов, К.К.Лихарев. Письма ЖЭТФ, 15, 349 /1972/.
- 3. Л.П.Горьков, Н.Б.Копнин. ЖЭТФ, 64, 360 /1973/. 4. Ю.Н.Овчинников. ЖЭТФ, 65, 290 /1973/.
- 5. Л.П.Горьков. Н.Б.Копнин. ЖЭТФ. 65. 396 /1973/.
- C.Caroli, K.Maki. Phys. Rev., 159, 306 (1967).
 K.Maki. Phys. Rev., 169, 381 (1968).
- 7. И.Н.Гончаров, И.С.Хухарева. Письма ЖЭТФ, 17, 85 /1973/.
- Y.B.Kim, C.F.Heampstead, A.R.Strnad. Phys.Rev., 139, A1163 (1965), Phys.Rev.Lett., 13, 794 (1964).
- 9. Н.Я.Фогель. ЖЭТФ, 63, 1371 /1972/.
- N.Usui, T.Ogasawara, K.Yasukochi and S.Tomada. J.Phys.Soc.Japan, 27, 574 (1969); Phys.Lett., 27A, 529 (1968).
- К.Noto, К.Mori, Ү.Миto. Доклад на сов.-яп. совещании по физике низких п-р, Новосибирск /1969/, Physica. 55. 362 (1971).
- 12. А.И. Ларкин, Ю.Н.Овчинников. ЖЭТФ, 64, 1096/1973/.
- 13. В.В.Данилов, М.Ю.Куприянов, К.К.Лихарев. ФТТ, 16, 935 /1974/.
- 14. John R.Clem. Phys.Rev.Lett., 20, 735 (1968).
- 25. Carl Y.Axt and W.C.H.Joiner. Phys.Rev.Lett., 21, 1168 (1968).
- 16. W.S.Chow. Phys.Rev., 188, 783 (1969); Phys.Rev., B1, 2130 (1970).
- 17. J.Gilchrist and R.Monceau. J.Phys.Chem.Solids, 32, 2101 (1971).
- 18. W.C.H.Joiner, J. Thompson. Solid State Comm., 11; 1393 (1972).
- 19. И.Н.Гончаров, И.С.Хухарева. ЖЭТФ, 62, 627 /1972/. 20. И.Н.Гончаров, Г.Л.Дорофеев, Л.В.Петрова, И.С.Ху-
- харева. Преприн**ж ОЙЯИ**, P8-626O, Дубна, 1972. 21. N.S.Snyder. Cryagenics, 10, 89 (1970).
- 21. м.з.злучит. Ступдентся, ю, вз (1970), К.Н.Зиновьева. ЖЭТФ, 60, 2243 /1971/.
- 22. N.D.Reeber. J.Appl.Phys., 34, 481 (1963), A.P.Dorey. Cryogenics, 5, 146 (1965),
 - И.Н. Гончаров и др. Преприн**ж ОИЯИ, Р8-4558,** Дубна, 1969.

- 23, И.Н.Гончаров, И.С.Хухарева. Препринт ОИЯИ, 8-7718, Дубна, 1974. 24. E.Heifend, N.R.Werthamer. Phys.Rev., 147, 288 (1966).
- 25. А.Ф.Андреев, Ю.К.Джикаев. ЖЭТФ, 60, 298 /1971/.

Рукопись поступила в издательский отдел 13 июня 1974 года.