ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ АУБНА

24/10-78

1868/2-78

8 - 11236

Н.Н.Агапов, А.И.Агеев, В.А.Белушкин, А.Г.Зельдович, В.В.Крылов

ИССЛЕДОВАНИЕ

СТРУЙНОГО НАСОСА ЖИДКОГО ГЕЛИЯ

для циркуляционных систем

КРИОСТАТИРОВАНИЯ

8 - 11236

Н.Н.Агапов, А.И.Агеев, В.А.Белушкин, А.Г.Зельдович, В.В.Крылов

исследование

•

СТРУЙНОГО НАСОСА ЖИДКОГО ГЕЛИЯ

ДЛЯ ЦИРКУЛЯЦИОННЫХ СИСТЕМ

КРИОСТАТИРОВАНИЯ

Направлено в "Cryogenics"

Агалов Н.Н. и др.

B - 11236

Исследование струйного насоса жидкого гелия для циркуляцконных систем криостатирования

Описана принципиалькая схема криостатирования с циркуляцией жидкого гелия при помощи струйного насоса. Выведены уравнения для расчёта струйных аппаратов, работающих на жидком гелии.

В экспериментальной установке со струйным насосом получен расхол жилкости, в 5⁺10 раз больший, чем расход сжатого газа в прямом потоке рефрижератора. Напор струйного насоса составил (0,15⁺0,40)·10⁵ Н/м². Циркуляционный погок жилкого гелия при сверхкритическом давленик, воспринимая тепловую нагрузку, соответствующую холодопроизводительности рефриржератора, изгревался на 0,15⁺0,25 К.

На основе проведенных исследований составлена таблица для определения параметров икркуляционного контура и основных геометрических размеров струйного насоса.

Вабота выполнена в Лаборатории высоких энергий ОИЯИ,

Препрант Объединенного института ядерных исследования. Дубна 1978

🕲 1978 Объединенный институт ядерных исследований Дубиа

введение

Наряду с широко распространенным способом крпостатирования сверхпроводящих магнитов потружением в кинящий гелий может быть использован также я циркуляционный способ, при котором жидкий гелий прокачивается по расположенным виутри объекта каналам. В этом случае в криотенной системе содержится существение меньшее количество жидкого гелия, упрощается конструкция криостатов и облегчается доступ к сверулроводящим магнитам, отпадает необходимость регулировать уровень кипящей жидкости, а при давлениях телия выше критического устраняется позможность локального повышения температуры в результате нагрева паровой фазы.

На рис. І показана принципнальная схема циркуляционной системы криостатирования с механическим насосом. При сверхкритическом давлении в отсутствие фазового перехода подвод гепла от объекта к жидкому гелию в процессе 4-2 происходит с повышением температуры. Из-за снижения кригической плотности тока в сверхпроводнике приемлемой разностью температур VT $T_2 - T_3$ можно считать величину не более нескольких десятых градуса. При этом условии циркуляцюнный поток должен в несколько раз превышать поток в рефрижераторе G₁, чем и вызвана необходимость применения насоса. Отметим, что при такой схеме часть холодопроизводительности рефрижератора расходуется на комленсацию вносимой в цикл работы насоса:

 $G_{1}(i_{0}-i_{1}) = Q + L^{i}$,

где Q - тепловая нагрузка, L'- рабога насоса.

Рис. 1. Принципиальная схема циркуляционной системы криостатирования с механическим насосом.1 - криостатируемый объект; 11 - сборник жидкого гелия, 111 - механический насос, IV - теплообменник рефрижератора.

Для циркуляции жидкого гелия может быть использован также и струйный насос. Этот аппарат исключнтельно прост, имеет ничтожную стоимость, обладает практически неограниченным ресурсом и не требует обслуживания в процессе эксплуатации. Схема криостатирования с использованием струйного насоса показана на рис.2.Поток G₁,выходящий из концевого теплообменника рефрижератора, разгоняется в сопле струйного насоса и при дальнейшем движении увлекает за собой инжектируемый поток G₂. Выходящий из струйного насоса Эмешанный поток G₃ после охлаждения в погруженном в жидкий гелий змеевике подается в крностатируемый объект. На выходе из объекта поток разделяется на две части, одна из которых направляется в струйный насос, а другая, равная G₁, дросселируется в сборник. В отличие от схемы с механическим насосом в данной схеме дополантельная работа в цикл не вносится. Циркуляция осуществляется за счет энергии выходящего из теплообменника рефрижератора сжатого газа, и, следовательно.

Рис. 2. Принципиальная схема циркуляционной системы криостатирования со струйным насосом. I - криостатируемый объект, II - сборник жидкого гелия, III струйный насос, IV - теплообменник рефрижератора.

холодопроизводительность равна тепловой нагрузке объекта:

 $G_{1}(i_{0}-i_{1}) = Q.$

Для получения данных, необходимых при проектировании подобных криогенных систем, нами проведены теоретические и экспериментальные исследования струйного насоса жидкого гелия. В настоящей работе описаны результаты этих исследований.

УРАВНЕНИЕ ХАРАКТЕРИСТИКИ СТРУЙНОГО НАСОСА

При выводе уравнения характеристики струйного насоса использовались следующие обозначения:

- d днаметр,
- f площадь сечения потока,
- G массовый расход,
- і энтальпия,
- * расстояние от выходного сечения сопла "а" до входного сечения цилиндрической камеры смещения "b",
- р давление,
- Т температура,
- и коэффициент инжекции, и С₂/С₁.
- v удельный объем,
- w скорость,
- \p напор струйного насоса,
 - ρ плотность,

ф₁, ф₂, ф₃, ф₄ - коэффициенты скоростей сопла, камеры смешения, диффузора и входного участка камеры смешения.

Переменные с простыми цифровыми индексами /кроме коэффициентов скоростей / обозначают параметры торможения потока в соответствующих точках. В схемах со струйным насосом нидекс 1 относится к рабочему потоку перед соплом, 2 - к инжектируемому потоку, а 3 - к смешанному. В сложных индексах цифра обозначает поток, а буква - сечение струйного алпарата. Например, р_{им} - давление инжектируемого потока на входе в камеру смешения /т.е. в сечении "b" апларата - см. рис. 3/.

При анализе уравнений для циркуляционного струйного насоса мы основывались на теории струйных аппаратов. изложенной в 1 , однако при этом учитывалась особенность работы в области низких температур, заключающаяся в существенном отклонении поведения рабочего потока от поведения идеального газа или идеальной жидкости, что не позволяет получить такие уравнения, в которые параметры торможения p_1 и T_1 входили бы в явном виде.

Ниже приводнтся вывод уравнения характеристики сгруйного насоса, в когорое входят скорость и плотность рабочего потока на выходе из сопла. Эти величины легко могут быть определены по параметрам торможения при помощи термодинамических таблиц или диаграмм и использовании уравнения течения реального газа с трением

$$w_{1a} = \phi_1 \sqrt{2 \Lambda i_s}$$
, /1/

где \1, - разность энгальпий рабочего потока при изоригропном течении в сопле.

Рис. 3. Схема струйного насоса. I - сопло, II - камера смешения, III - диффузор.

Если пренебречь взаимодействием рабочего и инжектируемого потоков при их течении до входного сечения "b" цилиндрической камеры смешения / puc. 3/, уравнение импульсов для участка между сечениями "b" и "c" можно записать в виде

$$\begin{split} \phi_2 &(G_1 w_{1b} + G_2 w_{2b}) - (G_1 + G_2) w_{3c} \\ &(p_{3c} - p_{1b}) f_{1b} + (p_{3c} - p_{2b}) f_{2b} \end{split}$$

При отсутствии взаимодействий между потоками ло сечения "b" справедливы также следующие соотношения:

С учетом /3/ имеем

Отметим, что для цилиндрической камеры смешения $f_{2b} = f_{3c} - f_{1a}$. /5/

Считая гелий в инжектируемом потоке несжимаемой жидкостью, выражение для скорости w_{2b} можно получить из уравнения Бернулли для изоэнтролного течения:

$$(w_{2h})_{s} = \sqrt{\frac{2(p_2 - p_{2h})}{\rho_2}}$$
 /6/

Введя коэффициент скорости ϕ_4 , учитывающий потери во входном участке камеры смешення, имеем

$$w_{2b} = \phi_4(w_{2b})_s = \phi_4 \sqrt{\frac{2(p_2 - p_{2b})}{\rho_2}}$$
. /7/

ļ

Используя уравнение неразрывности

$$G_2 = f_{2b} \rho_2 w_{2b}$$
, /8/

можно получить другое выражение для W_{2h} :

$$W_{2b} = \frac{G_2}{f_{2b} \rho_2} = \frac{u G_1}{f_{2b} \rho_2}$$
 /9/

Из /7/ н /9/ определим статическое давление инжектируемой среды в сечении "b" на входе в цилиндрическую камеру смешения:

$$P_{2b} = P_{2} - \frac{u^{2}G_{1}^{2}}{2\phi_{4}^{2}f_{2b}^{2}\rho_{2}} - \frac{10/2}{2\phi_{4}^{2}f_{2b}^{2}\rho_{2}}$$

Аналогично из уравнений

$$W_{3c} = \frac{1}{\phi_3} \sqrt{\frac{2(p_3 - p_{3c})}{\rho_3}} / 11/$$

И

$$w_{3c} = \frac{G_1 + G_2}{f_{3c} \rho_3} = \frac{(1 + u)G_1}{f_{3c} \rho_3}$$
 /12/

получим статическое давление смешанного потока в сечении "с" на выходе из цилиндрической камеры смешения:

$$P_{3c} = P_{3} - \frac{\phi_{3}^{2}(1+u)^{2} G_{1}^{2}}{2f_{3c}^{2}\rho_{3}}.$$
 /13/

Подставив /9/, /10/, /12/ и /13/ в уравнение /4/, обозначив напор струйного насоса $p_3 - p_2$ \р и используя уравнение неразрывности

$$G_1 = \rho_{1a} w_{1a} f_{1a}$$
, /14/

получим уравнение характеристики

$$\Delta \mathbf{p} = \rho_{1a} \mathbf{w}_{1a}^2 \frac{f_{1a}}{f_{2b}} \left[\frac{\mathbf{p}_{1a} - \mathbf{p}_3}{\rho_{1a} \mathbf{w}_{1a}^2} + \phi_2 + u^2 \frac{f_{1a}}{f_{2b}} \frac{\rho_{1a}}{\rho_2} (\phi_2 - \frac{\theta_{25}}{\phi_2^2}) - (1 + u)^2 \frac{f_{1a}}{f_{3c}} \frac{\rho_{1a}}{\rho_3} (1 - 0.5 \phi_3^2) \right].$$

$$(15/10)$$

Если заменить плотности соответствующими удельными объемами, а вместо p_3 в качестве переменной использовать p_2 , можно получить иную форму записи этого уравнения:

$$\begin{split} & \Lambda p = \frac{w_{1a}^2}{v_{1a}} \frac{f_{1a}}{f_{3c}} \left[\frac{v_{1a}}{w_1^2} (p_{1a} - p_{2c}) + \phi_2 + u^2 \frac{f_{1a}}{f_{2b}} \frac{v_2}{v_{1a}} (\phi_2 - \frac{0.5}{\phi_2^2}) - (1 + u)^2 \frac{f_{1a}}{f_{3c}} \frac{v_3}{v_{1a}} (1 - 0.5 \phi_3^2) \right]. \end{split}$$

В расчетном режиме, а также в условиях дозвукового истечения из сопла $p_{1:i} \cdot p_2$. В этом случае уравнение характеристики упрощается и имеет вид

$$\Delta p = \frac{w_{1a}^2}{v_{1a}} \frac{f_{1a}}{f_{3c}} \left[\phi_2 + u^2 \frac{f_{1a}}{f_{2b}} \frac{v_2}{v_{1a}} \left(\phi_2 - \frac{0.5}{\phi_4^2} \right) - (1+u)^2 \frac{f_{1a}}{f_{3c}} \frac{v_3}{v_{1a}} (1-0.5\phi_3^2) \right].$$
(17/

При расчете схем со струћными насосами величины удельных объемов заранее неизвестны. В первом прибли-

жений можно принять v₂ ·v₃ = v_{1a} . а в дальнейшем уточнить эти параметры методом последовательных приближений.

ОПТИМИЗАЦИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ СТРУЙНОГО НАСОСА

Обозначим

$$\begin{aligned} & \frac{f_{1a}}{f_{3c}} = \psi , \\ & u^2 \frac{v_2}{v_{1a}} \left(\phi_2 - \frac{0.5}{\phi_4^2} \right) = B , \\ & (1+u)^2 \frac{v_3}{v_{1a}} \left(1 - 0.5 \phi_3^2 \right) = C , \end{aligned}$$

тогда с учетом /5/ из /17/ получим

$$Np = \frac{w_{1a}^2}{v_{1a}} (\psi \phi_2 + \frac{\psi^2}{1 - \psi} B - \psi^2 C).$$
 (18/

Оптимальную величину ψ_0 , соответствующую максимальному напору, определим из условия $\frac{d}{d\psi}(\Lambda p) < 0$. После преобразований имеем

$$\phi_{2} + B\left[\frac{1}{(1-\phi_{0})^{2}}-1\right]$$

$$\psi_{0} = \frac{2C}{2C} \cdot \frac{1}{19/2}$$

Наименьший из трех корней дает нужное решение. Это решение можно получить итерационным методом, принимая начальное приближение равным нулю.

Разложив функцию $F(\psi_0) = \frac{1}{(1-\psi_0)^2} - 1$ в ряд Маклорена F $(\psi_0) = 2\psi_0 + 3\psi_0^2 + \dots$ получим приближенные формулы, в которых величина ψ_0 выражена в явном внде. Поскольку $\psi_0 > 1$ можно ограничиться одним или двумя членами разложения. В первом случае имеем

$$\psi_0 = \frac{0.5\phi_2}{C-B},$$
 /20/

во втором

$$\psi_0 = \frac{C - B - \sqrt{(C - B)^2 - 3\phi_2 B}}{3 B}$$
 /21/

Достижимый напор при заданном коэффициенте инжекции определяется путем подстановки в /18/ величины ^ио.

МЕТОДИКА И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Схема экспериментального стенда показана на рис.4. Низкотемпературное оборудование размещено внутри криостата, связанного с рефрижератором двумя трубопроводами с экранно-вакуумной изоляцией. Вентиль В1 предназначен для сокращения пускового периода, вентилем В2 регулировалось давление в циркуляционном контуре, а при помощи залзижки В3 изменялось его гидравлическое сопротивление. Точки замера температуры и давления обозначены цифрами 0,1,2,3,4.

В качестве датчиков температуры использовались угольные резисторы Аллен-Бредли с номинальным сопротивлением 100 Ом. Погрешность измерения составила О,01 К. Датчики были прокалиброваны по германиевому термометру; при расчете калибровочных таблиц использовались программы, описанные в '2'. Сопротивление датчиков в рабочих условиях определялось при помощи стабилизированного источника тока и цифрового вольтметра. Чтобы исключить влияние теплопритоков по измерительным проводам, те из них, которые имеют на одном из концов температуру окружающей среды, на длине около 5 м находятся в тепловом контакте с медной трубой, погруженной в жидкий гелий. Для того,

Рис. 4. Схема экспериментального стенда. 1 - фильтр, 11 - струйный насос, 111 - электронагреватель, IV - змеевик.

чтобы устранить погрешность, связанную с нагревом термодатчиков, измерения проводились при различных величинах измерительного тока. Результаты измерений при 10 и 100 мкА отличались не более чем на 0,003 К.

Давление измерялось манометрами с погрешностью О,6%, напор - дифманометром с погрешностью 2%.

Во время измерений режим поддерживался таким образом, что уровень жидкого гелия в криостате оставался постоянным. Регулирование уровия осуществлялось электронагревателем, а выделяемое им количество тепла определялось по ваттметру с погрешностью 1%. Контроль уровня жидкого гелия производился при помощи сверхпроводящего уровнеметра с самопишущим потенциометром в качестве вторичного прибора.

Коэффициент инжекции вычислялся на основе экспериментальных данных из уравнения энергетического баланса

$$u \approx \frac{i_1 - i_3}{i_3 - i_2}$$
. /22/

При достигнутой точности измерения температур погрешность при определении и составила около 3%.

Расход сжатого газа G, вычислялся по формуле

$$G_1 = \frac{Q}{i_0 = i_1}$$
 /23/

где Q - мощность электронагревателя.

Коэффициент скорости сопла ϕ_1 определялся по величине расхода G_1 с использованием /1/ и /14/ методом последовательных приближений. Погрешность при определении ϕ_1 составила 2%.

В экспериментальной установке при гндравлическом сопротивлении циркуляционного контура в пределах /O,15 O,4O/ 10 ⁵ H/m^2 получен коэффициент инжекции 4 9. Поток жидкого гелия при сверхкритическом давлении, воспринимая соответствующую холодопроизводительности тепловую нагрузку, нагревался лишь на O,15 : O,25 K. Для того, чтобы обеспечить такие параметры при использовании механического насоса с к.п.д., равным O,5, для компенсации виосимой в цикл работы пришлось бы увеличить холодопроизводительность рефрижерагора на 50%.

Основные размеры струйного насоса приведены на рис. 5. Конструкция позволяет менять сопла и регулировать величину расстояния (' от среза сопла до входного сечения цилиндрической камеры смешения. Применялись только конические сопла, поскольку во всех исследованных режимах скорость потока в сопле не превышала скорости звука.

Испытывались два сопла: одно изготовлено при помощи сверла, а другое, для получения лучшей чистоты поверхности, разверткой. Кроме того, первое сопло имеет минимальный диаметр / $d_{1a} = 1,345$ мм/ на сравнительно большой длине /около 1 мм/, а второе, / $d_{1a} = 1,408$ мм/ - только на острой выходной кромке сопла. Для первого сопла получено среднее значение коэффициента скорости $d_1 = 0,83$ и аднабатного к.п.д. ⁶ струйного насоса-8 10% / рис. ба/. У второго сопла эти показатели выше: $d_1 = 0,94$, а к.п.д. - 12:14% / рис, бb/.

Сиятие характеристик ^{\p} F(u) производилось при следующих параметрах установки:

a/ Q = 152 Bm; G₁ = 23,4 ϵ/c ; T₁ = 5,27 K; p₁ = 22,8 · 10⁵ H/ M^2 ; p₂ = 4,5 · 10⁵ H/ M^2 . b/ Q = 200 Bm; G₁ = 28,6 ϵ/c ; T₁ = 5,55 K; p₁ = = 19,0 · 10⁵ H/ M^2 ; p = 4,0 · 10⁵ H/ M^2 .

Расчетные кривые, представленные на рис. 6, получены на основе уравнения /17/ при ϕ_2 =0,97; ϕ_3 =0,90; ϕ_4 = 0,92.

Несмотря на то, что эти коэффициенты получены в экспериментах ¹ при температуре окружающей среды, при их использовании получается хорошее согласие экспериментальных и расчетных характеристик для струйного насоса жидкого гелия.

В ходе экспериментов обнаружено, что при увеличении напора до величин, соответствующих зоне 1 на рис. 6, происходит срыв, характеризующийся резким снижением коэффициента инжекции. При последующем плавном

$$\eta = \frac{u \Lambda i_{2-3s}}{\Lambda i_{1-3s}}$$

где \i_{1.38} (\i_{2-3.3}) - разность энтальпий в начале и конце изоэнтропного расширения /сжатия/ рабочего /ннжектируемого/ потока до давления р₃.

^{*}Адиабатный к.п.д. струйного алпарата определяется по формуле

ис. э. Кснепрукция спруйного насоса.

¹ меньшении ⁽⁾ р коэффициент инжекции практически не зеличивается /точки внизу на рис. ба/. Оказалось, что чоложение зоны срыва 1 зависит от величины ⁽⁾ / рис. 5/. ⁽⁾ с позволило предположить, что срыв вызывается заносом в камеру смешения жидкого гелия в количестве ольшем, чем может переработать аппарат при данном запоре слгда возникает ооратное течение жидкости, которое уриводит к снижению эффективности струинето сраст.

ла сенове указанного прелноложения можне рассочна в деличниу коэффициента инжекани с при которел "РРОТ 1.2 Словия. Согласие субемный расуолскист пости у сессимметричной затопленной струг не одестся? 56 с от ныходного сечения сопла спри. «2.2

<u>`</u>+

$$(t,t)/h v \approx \frac{1}{t_0} \frac{w_0}{t_0}$$

HOCKORERS

$$v_{1a} = \frac{1V_{T_1}}{\frac{d^2}{1a}}$$

имеем

 $\nabla = 0.31 V_{10} \frac{Y}{d_{10}}$

Величине коэффициента инжекция и соответствует расход жидкости в струе на расстоянии ^гот сопла. Считая

 Q_1 Q_2 Q_3 Q_4 Q_5 $\Delta \rho$, 10^5 H/m^2 Рис. 6. Характеристики струйного насоса: $a/\phi_1 = 0,83$, l' = 19,6 мм; $b/\phi_2 = 0,94$, l' = 15,7 мм. l - 30на срыва, определенная экспериментально, II - расчетная зонасрыва. 17

илотности рабочего и инжектируемого потоков одинаковыми, можно записать

$$\frac{G_1}{\rho} (1 + u^*) + 0.31 \frac{G_1}{\rho} - \frac{t'}{d_{1a}},$$

откуда

$$u^* = 0.31 \frac{f}{d_{1u}} - 1.$$
 (25/

l

Срыв наступает при u-u^{*} Зона срыва, определенная по формуле /25/, показана на рис. 6 цифрой 11. Сопоставление зон 1 и 11 с характеристикой ^{*} р F(п) подтверждает изложенное выше предположение о причиие срына. Таким образом, величину i^{*} нужно выбирать так, чтобы во всех режимах коэфициент инжекции был больше, чем ¹⁰. Однако не следует чрезмерно уменьшать i При этом меньше становится рабочая длина камеры смешения, что приводит к большей неравномерности скоростен в сечении "с" аппарата.

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ И ДОСТИЖИМОГО НАПОРА СТРУЙНОГО НАСОСА

Данные для определения оптимальных геометрических размеров и достижимого напора представлены в *таблице*. Расчеты проведены по экслериментально проверенным уравнениям /18/ и /21/. Давление инжектируемого потока принималось $p_2 = 3,0\cdot10^5$ H/m^2 , а давление в сборнике жидкого гелия - p_1 ,3.10° H/m^2 /рис. 2/.

При работе с таблицей исходными данными являются параметры сжатого газа p_1 и T_1 и допустимая разность температур $(T - T_2 - T_4)$. По таблице определяют необходимую величниу коэффициента инжекции и. достажимый рапор (р), расход рабочего потока \bar{G}_1 и площадь выходного сечения сопла \bar{f}_{13} на единицу тепловой нагрузки, а также олтимальное отношение сечений ψ_0 сопла и цилиндрической камеры смешения.

Таблица							
P	T ₁	١T	u	١ р.	G ₁	f _{ta}	Ψ ₀
10 ^{5 <u>Н</u> м}	-5 K	K		10 ⁵ <u>Н</u> м ²	10 ^{-3<u>КГ/с</u> Вт}	10 ⁻⁸ M B	r
15.0	5.00	. 200	9.48	.136	.0865	.558	.0147
15.4	5.00	. 300	4. 17	670	. 0685	.554	. 0471
15.0	5.00	. 500	3.30	612	.0865	556	.0674
15.0	5.20	. 200	8.84	.155	.0947	. 662	.0167
15.0	5.20	.300	5.62	.304	.0947	.642	.0331
15.0	5.20	.400	4.01	. 484	.0947	.602	.0529
15.0	5-20	.500	3.05	. 685	.0947	.602	.0753
15.0	5.40	100	5.24	74	.1017	. 655	-0170
19.0	5.40	. 400	3.72	.539	.1015	4655	.0596
15.0	5.40	. 500	2.82	.760	.1015	. 655	.0844
15.0	5.60	.200	7.61	.199	.1097	.720	.0219
15.0	5.€0	. 300	4.81	. 386	+1097	.720	.0428
15.0	5.60	.400	3,41	.606	.1097	. 720	• 0677
15.0	5.60	+ 500	2,50	.851	.109/	- / 20	• 0957
20.0	2.00	100	1.70	1200 E1 2	1128	. 601	. 0403
20.0	5.00	.400	3.43	.798	-1128	. 601	. 0631
20.0	5.00	. 500	2.61	1.119	. 1128	. 601	. 0691
20.0	5.20	. 200	6.95	. 302	. : 223	.659	.0238
20.0	5.20	.300	4.41	.577	• 1223	.659	.0457
20.0	5.20	.400	3.15	. 892	.1223	.659	. 3712
20.0	5.20	.500	2.39	1.243	• 1223	• 659	• U998
20.0	5.40	.200	4.06	. 649	1329	.725	.0519
20.0	5.40	. 400	2.89	1.000	-1329	.725	.0805
20.0	5.40	.500	2.13	1.363	.1329	.725	.1120
20.0	5.60	. 200	5.85	.397	• 1 4 5 1	.807	.0317
20.0	5.60	.300	3.70	.741	• 1461	.867	.0596
20. 0	5.50	.400	2.63	1.132	.1461	. 607	.0917
20.0	5.60	.500	1.99	1.557	• 14 51	. 007	+1C/U
25.0	5.00	•209 100	7.60 3.60	.012	. 1563	. 738	.0545
25.0	5.00		2.59	1.415	1563	738	
25.0	5.00	.500	1.98	1.940	. 1563	.735	. 1227
25.0	5.20	.200	5.13	.589	.1741	.829	.0366
25.0	5.20	.300	3.27	1.072	. 1741	. 829	.0672
25.0	5.20	.400	2.35	1.600	• 1741	.829	1009
25.0	5.20	.500	1.73	2.184	+1741	• 879 • 40	·130/
25.0	7+40	.209	4.0/ 2.0F	1.219	41977	. 942	.0772
25.0	5.40		2.12	1.806	1952	.947	. 1152
25.0	5.40	.500	1.60	2.446	1952	. 942	.1571
25.0	5.60	200	4.23	.778	.2227	1.090	.0495
25.0	5.60	.300	2.63	1,405	.2227	1.090	.0902
25.0	5.60	.400	1.86	2.075	. 22 27	1.090	.1341
25.0	5.60	.500	1.39	2.790	.2227	1 . 090	.1814

I

Расстояние от среза сопла до входного сечения цилиндрической камеры смещения определяют с учетом /25/. Другие осевые размеры по рекомендациям ¹ принимают равными:

угол раствора входного участка камеры смешения- $60^{-9}0^{\circ}$;

угол раствора диффузора_8÷10°;

длину цилиндрической камеры смешения /6 ÷10/ dac;

ł

длину диффузора – $/6 \div 7 //d_3 - d_3$, /, где d_3 - днаметр выходного сечения диффузора.

ЗАКЛЮЧЕНИЕ

Исследования показали перспективность применения струйного насоса в циркуляционных системах криостатирования. Имея ряд преимуществ по сравнению с механическими устройствами, такой аппарат позволяет получить расход жидкого гелия при сверхкритическом давлении в несколько раз больше, чем расход сжатого газа в рефрижераторе. При этом обеспечивается минимальный нагрев жидкости в процессе отвода тепла от криостатируемого объекта.

Авторы выражают благодарность Г.П.Цвиневой и В.И.Батину за помощь при проведении расчетов и экспериментов.

ЛИТЕРАТУРА

- I. Соколов Е.Я., Зингер Н.Н. Струйные аппараты. "Энергия", 1970.
- 2. Менке Х., Цвинева Г.П. ОИЯИ, Р8-9055, Дубна, 1975.
- 3. Дейч М.Е. Техническая газодинамика. "Энергия", 1974, с. 414-415.

Рукопись поступила в издательский отдел 5 января 1978 года.