ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

13/x11-76 8 - 10001

Д.Кабат, Г.П.Цвинева, Ю.А.Шишов

......

4996/2-76

HILLSON HEIL

K-12

РАСЧЕТ ПАРАМЕТРОВ ЭКСПЕРИМЕНТАЛЬНОГО СВЕРХПРОВОДЯЩЕГО СОЛЕНОИДА С ЗАПАСЕННОЙ ЭНЕРГИЕЙ~1 МДж

8 - 10001

Д.Кабат, Г.П.Цвинева, Ю.А.Шишов

РАСЧЕТ ПАРАМЕТРОВ ЭКСПЕРИМЕНТАЛЬНОГО СВЕРХПРОВОДЯЩЕГО СОЛЕНОИДА С ЗАПАСЕННОЙ ЭНЕРГИЕЙ~1 МДж

Направлено в журнал "Electrotechniky casopis "

065 generation and the states of the states

^{*} Электротехнический институт Словацкой академии наук, Братислава, ЧССР.

1. ВВЕДЕНИЕ

В связи с разработкой сверхпроводящих магнитов для ускорительного комплекса "Нуклотрон" /1/ возник ряд задач, а именно:

а) Изучение свойств сверхпроводящих кабелей различных конструкций, предназначенных для намотки дипольных и квадрупольных магнитов, как импульсных, так и постоянноточных.

б) Исследование способов эвакуации энергии из вышеуказанных сверхпроводящих магнитов в случае их перехода в нормальное состояние.

Для решения этих задач решено создать секционированный соленоид (см. рис. 1), основные параметры которого близки параметрам дипольных магнитов "Нуклотрона":

а) Номинальный ток I_{ном} = 2500 A ^{/1/}. б) Максимальная индукция в обмотке В^{max}=4,65 T при $I_{HOM} = 2500$ А, поскольку резерв в токе соленоида $I_C/I_{HOM} = 1, 1^{/2}, 4/.$

в). Максимальная по времени цикла индукция магнитного поля в апертуре дипольных магнитов В0 = 4,5 Т при І_{ном} = 2500 А, а отношение максимальной индукции в обмотке дипольных магнитов к величине В о, ^{m ах} /²/²/ В /B₀ ≈ 1,04. г) Сверхпроводник – ниобий-титановый сплав с кри-

тической плотностью тока в поле ~ 5 Т при 4,2 К ~ 1,1 x 10 5 А/см 2 / 3 , 4/. Коэффициент заполнения проводников, из которых будет изготовлен кабель, равен 40%, их наружный диаметр - 0,5 мм. Кабель, пред-

🔘 1976 Объединенный институт ядерных исследований Дубна

Рис. 1. Конфигурация обмотки соленоида.

назначенный для $I_c = 1,1 \times I_{HOM} = 2750$ A в поле 5,1 T в одном из предполагаемых вариантов, должен состоять из 32 проводников ϕ 0,5 мм. Сечение одного витка в обмотке S = 11,3 мм². Средняя плотность тока в обмотке соленоида при $I_c = 2750$ A в поле 5,1 T $j_{c \ CP} = 2,43 \times 10^4 \text{ A/cm}^2$, а при $I_{HOM} =$ = 2500 A в поле 4,65 T $j_{HOM} \ CP = 2,21 \times 10^4 \text{ A/cm}^2$. $I_c - B$ – характеристика такого кабеля показана на рис. 2.

д). Запасенная энергия соленоида при номинальном токе Е_{НОМ} >_1 МДж близка к энергии 5 дипольных магнитов, входящих в суперпериод ускорителя ^{/1/}.

Таким образом, конструкция и размеры кабеля, а также рабочие и критические его параметры в обмотке подобраны так, чтобы скорость распространения нормальной зоны в соленоиде, по возможности, была близка скорости распространения в дипольном магните "Нуклотрона".

Выбрана простая форма обмотки – цилиндрический соленоид с прямоугольным сечением. Чтобы обеспечить изучение свойств различных видов сверхпроводящих кабелей, обмотка соленоида разделена в аксиальном направлении на 10 секций с промежутками между ними - (см. рис. 1). Такая форма обмотки позволяет легко менять секции местами, заменять или ремонтировать неудачную. Кроме того, уменьшаются механические напряжения сжатия от электродинамических сил, возникающих в обмотке. Наружные размеры должны быть такими, чтобы соленоид мог поместиться в существующем криостате с внутренним диаметром 800 мм и высотой 1770 мм.

2. РАСЧЕТ СОЛЕНОИДА

Сечение обмотки соленоида и обозначения показаны на рис. 1. Соленоид состоит из 10 одинаковых секций. Предполагаем отсутствие ферромагнитных цепей и считаем среду линейной, что позволяет применить принцип суперпозиции.

Целью расчетов является определение оптимальных параметров соленоида при учете заданных требований. Основным при выборе оптимального варианта является определение размеров $2a_1$, $2b_1$, 2d так, чтобы достичь заданную величину запасенной энергии магнит-ного поля 1,35 МДж при критическом токе соленоида 1_{cM} = 2750 А с минимальным объемом обмотки V.

Критический ток соленоида определяется максимальным значением индукции в обмотке B^{max} . Предполагаем, что B^{max} находится на внутренней поверхности обмотки (см. $^{/5/}$). Для расчёта B^{max} применен метод, основанный на суммировании вкладов отдельных фиктивных витков, которыми заменяется реальная обмотка соленоида $^{/6/}$. Величину I_{cM} находим в точке пересечения постоянной соленоида B^{max}/I и $I_C - B$ -характеристики кабеля -(см. рис. 2).

Расчёт выполнен с помощью специально разработанной программы для ЭВМ. Основной частью программы является итерационный процесс нахождения такой геометрии обмотки, которая позволяет обеспечить заданную $B^{max} = 5,1$ Т при $I_{cM} = 2750$ А с точностью $\pm \Delta I_{cM} = 15$ А. Итерация необходима потому, что заранее не известен коэффициент k $_m(\alpha,\beta)=B^{max}/B_0$, по которому, исходя из величины поля в центре B_0 , можно найти B^{max} .

Расчёт производится следующим образом: заданными входными величинами в программе являются \mathbf{B}_c^{\max} , \mathbf{I}_{cM} , $\Delta \mathbf{I}_{cM}$, S и множество значений \mathbf{a}_1 , \mathbf{b}_1 , d. Сначала предполагаем, что $\mathbf{k}_m(a,\beta)=1$, т.е. что $\mathbf{B}^{\max}=\mathbf{B}_0$. Индексом "п" обозначена "п"-ная из 10 фиктивных катушек, на которые разбит реальный соленоид, чтобы можно было воспользоваться уравнением (см. /7/):

$$B_{0c} = \sum_{n=1}^{10} B_{0cn} = \sum_{n=1}^{10} a_1 j_c F(\alpha, \beta_n).$$
 (1)

Для заданных входных величин численным методом (правилом ложного положения) решается уравнение:

$$B_{0c} = \frac{a_1 I_{cM} k_m(\alpha, \beta) \mu_0}{S} \sum_{n=1}^{10} (-1)^{n+1} \beta_n \ln \frac{\alpha + \sqrt{\alpha^2 + \beta_n^2}}{1 + \sqrt{1 + \beta_n^2}}$$
(2)

Результатом будет нахождение величины *а*. Таким образом, геометрия обмотки определена. Для этой геометрии вычислим величины B^{max}/I и B_0/I , из которых определяется реальный коэффициент $k_m(a, \beta)$. Вычисляется I_{cM}^* , который сопоставляется с заданной величиной $I_{cM} = 2750$ А. Так как значение $k_m(a,\beta)>1$, максимальное значение поля $B^{max}>B^{max}=5,1$ Т и $I_{cM}^* < I_{cM} = 2750$ А. Следующим шагом будет решение уравнения (2) с вычисленным уже значением коэффициента $k_m(a,\beta)$ и определение новой величины *a*. Этот итерационный процесс длится до тех пор, пока не выполнится условие:

$$|\mathbf{I}_{cM}^{*} - \mathbf{I}_{cM}^{*}| \leq \Delta \mathbf{I}_{cM}^{*}.$$
(3)

Управляющая величина в итерационном процессе - коэффициент k_m (a, β). Его невозможно определить аналитически, и потому принят численный метод.

После нахождения варианта, удовлетворяющего условию (3), вычисляется индуктивность ^{/8/}, запасенная энергия магнитного поля при критическом и номинальном токах и объем обмотки V.

Весь процесс повторяется для всех величин а_I, b_P d из заданного множества. Для наглядности дана принципиальная блок-схема программы (рис. 3).

3. РЕЗУЛЬТАТЫ РАСЧЁТОВ

Зависимость V(2a₁) для определенного значения энергии $E_{\rm C}$ показана на рис. 4 отдельно для различных значений 2d. Из рисунка видно, что для энергии $E_{\rm C}$ = 1,35 МДж зависимость V(2a₁), начиная ~ с 50 см и выше, меняется незначительно. Это нам позволяет (учитывая внутренний размер криостата ϕ 80 см) выбрать 2a₁ = 50 см.

Чтобы оценить эффективность использования сверхпроводника, определен для $2a_1 = 50$ см и 2d = 0,2,4 см коэффициент E_C/V (Дж/см³) в зависимости от высоты секций $2b_1$. Расчёты показали, что коэффициент E_C/V повышается с увеличением $2b_1$. Это связано с понижением коэффициента $k_m(a, \beta) = B^{max}/B_0$, что, в конце концов, приводит к увеличению среднего значения поля в объеме соленоида. Из конструктивных соображений нами выбрано 2d = 1,6 см. Расчёты показали, что существует оптимум зависимости E_C/V от величины 2d при определенном значении $2a_1$. Например, при $2a_1 = 50$ см и $2b_1 = 4$ см оптимум находится при 2d = 1,6 см.

Окончательно выбранный вариант соленоида имеет параметры, приведенные в табл. 1.

4. СРАВНЕНИЕ СВЕРХПРОВОДЯШИХ ИНДУКТИВНЫХ НАКОПИТЕЛЕЙ ЭНЕРГИИ

Из множества конструктивно отличных друг от друга сверхпроводящих индуктивных накопителей энергии нами выбраны для сравнения между собой три типичных конфигурации:

а) Соленоиды (цилиндрические катушки с прямоугольным сечением обмотки).

б) Сферические обмотки (см. ^{/9/}, стр. 621, рис. 6.2.26). Предполагаем отсутствие экранирующей обмотки (тонкостенной сферической).

в) Тороидальные катушки.

Таблица I. Параметры выбранного варианта соленоида.

Число секций соленоида			10
Внутренний диаметр обмотки	2 a _	CM	50,0
Наружный диаметр обмотки	$2a_2^{\perp}$	CM	55,34
Высота одной секции	26 ,	୍ୟା	4,4
Променуток менду секциями	2d -	CM	I,6
Полная высота соленонда	2Ь	CM	58,4
Объем обмотки соленоида	٧	см ³	19416
Длина кабеля	2	ЮM	I,72
Число витков соленоида	N		. 927
Индуктивность соленоида	L	Гн	0,361
Критический ток соленоида	I	A	2735
Чаксимальная индукция в обмотке соленонда при I	Btax	Т	5,I
Индукция в центре соленоида при I	B	T	4,47
Энергия магнитного поля при I	E	M Ar	I,35
Номинальный ток соленоида	I	A	2500
Энергия магнитного поля при I _{ном}	Е Ном	■ Дѫ	1,12

Сравниваем эти три конфигурации с точки эрения расхода сверхпроводника. Сделанная нами оценка не учитывает стоимости криостатов и возможного ее повышения из-за сложностей, связанных с конструкцией. Во всех трех вариантах предполагаем постоянное значение плотности тока в обмотке.

Для сравнения выбраны следующие исходные параметры: максимальное значение индукции в обмотке $B_C^{max} = 5,1$ Т при критическом токе сверхпроводящего кабеля $I_C = 2750$ А, сечение витка обмотки S = = 0,113 см², запасенная энергия при $I_C = 1,35$ МД×.

При определении оптимальной геометрии соленоида (сплошная обмотка без промежутков) исходным является уравнение коэффициента формы (см. /7/):

$$F(\alpha,\beta) = \frac{B_{0c}S}{I_{c}a_{1}} = \frac{B_{c}^{max}S}{k_{m}(\alpha,\beta)I_{c}a_{1}} .$$
(4)

Так как коэффициент $k_m(\alpha,\beta) = B^{max}/B_0$ заранее не известен, то неизвестно и значение $F(\alpha,\beta)$.Величина a_1 также неизвестна и определяется вместе с высотой обмотки соленоида 2b, в зависимости от требуемой величины запасенной энергии E_c . Наружный диаметр обмотки определяется значением B_c^{max} . На рис. 5 приведены зависимости объема и высоты обмотки от $2a_1$.

Известно /9-11/, что существует определенная форма обмотки соленоида (катушка Брукса), которая обеспечивает для данного объема обмотки V максимальную индуктивность. Если плотность тока не лимитируется величиной магнитного поля, то катушка Брукса обеспечивает для заданного V максимальную запасенную энергию. Для V = 20000 см³ индуктивность L = 0,73 Гн (по сравнению с 0,361 Гн в выбранном нами варианте), но в этом случае $B_C^{max} = 8,5$ Т при I_с = 1310 A (см. рис. 2), а E_с = 0,63 МДж.

В случае сферической обмотки, в зависимости от заданных требований, задача определения геометрии обмотки решается однозначно.

Для тороидальной катушки радиус тороидального кольца R_0 и внутренний радиус обмотки r_1 определены так, чтобы достичь заданной энергии E_c с минимальным количеством сверхпроводника. Наружный радиус обмотки r_2 определяется заданными величинами: B_c^{max} , j_c .

Результаты расчётов приведены в табл. 2.

5. ВЫВОДЫ

1. Сформулированы требования к сверхпроводящему соленоиду, предназначенному для изучения свойств кабелей, изоляции и для исследования работы устройств защиты магнитов "Нуклотрона". Особое внимание уделено созданию таких условий распространения нормальной зоны, чтобы скорости распространения в соленоиде и импульсных магнитах были близки между собой.

Таблица 2	2. Сравнение сверхпроводящих индуктивных накопителей эн	ep-
	гии (максимальное поле в обмотке B = 5, I T при кр	AT N-
	ческом токе I = 2750 А, запасенная энергия E = I,35	М Дж

Тип сверхпроводящего индуктивного накопи- теля	Объем одмотки V [см ³]	Эффективность использования сверхпроводника Е _с /V [Дж/см ³]	Геометрия обмотки [см]
Катушка Брукса	40800	33,I	a _I = 16,3 a ₂ = 32,6 b = 8,15
Оферическая обмотка	24500	55,I	$a_{I} = 26,6$ $a_{2} = 29,2$
Тороидальная обмотка	35000	38,6	$R_0 = 46$ $r_1 = 23$ $r_2 = 23,8$
Оптимальный соленоид ^ж) IEOOO	84,4	$a_{1} = 50$ $a_{2} = 53$ b = 17,5
Выбранный вариант соленоида	19500	69,5	см.табл. I

^{к)} Оптимальный для данных требований (см.Введение).

2. Составлена программа на ЭВМ для расчета размеров обмотки, учитывающая конструктивные особенности соленоида и обеспечивающая минимальный в данных условиях расход сверхпроводника.

3. Найдены размеры соленоида на запасенную энергию 1,12 МДж.

4. Проведено сравнение эффективности использования сверхпроводника в соленоиде, катушке Брукса, сферической и тороидальной обмотках на одинаковую запасенную энергию (~1 МДж). Расчётом показано, что минимальный расход сверхпроводника получается при использовании соленоида.

ЛИТЕРАТУРА

- 1. В.П.Алексеев, А.М.Балдин, Ю.Д.Безногих и др. ОИЯИ, 9-7148, Дубна, 1973.
- 2. Е.А.Галстьян, Л.И.Гребень. Труды Радиотехнического Института АН СССР, №15. "Применение сверхпроводимости в ускорительной технике". 118, Москва, 1973.
- 3. В.П.Алексеев, А.А.Васильев, и др. Труды Радиотехнического Института АН СССР, №15, 91, Москва, 1973.
- 4. F.Kircher. KEK Lecture Note, KEK-75-14, Dec. 1975. Nat. Lab. for High Energy Physics, OHO-MAGHI, TSUKUBA-GUN, IBARAKI, Japan.
- 5. P.L.Walstrom, M.S.Lubell. Journ. Appl. Physics, vol.44, No.9, 4195, 1973.
- L.Cesnak, D.Kabat. Elektrotechnicky obzor, Sv.59, cis. 7,338, 1970.
- Д.Монтгомери. "Получение сильных магнитных полей с помощью соленоидов", пер. с англ., "Мир", Москва, 1971, стр. 158.
- 8. П.Л.Калантаров, Л.А.Цейтлин. "Расчёт индуктивности", "Энергия", Ленинград, 1970, стр. 229.
- 9. Г.Брехна. "Сверхпроводящие магнитные системы", пер. с англ., "Мир", Москва, 1976, стр. 621.
- S.L.Wipf. Supraleitende Energiespeicher, Bericht Max-Planc-Inst. fur Plasmaphysik, Garching bei Munchen, IPP2/211, Febr., 1973.
- 11. H.Brechna, F.Arendt, W.Heinz. Proc. 4th Int. Conf. Magnet Technology, Brookhaven, 29, 1972.

Рукопись поступила в издательский отдел 13 августа 1976 года.