МОСКОВСКИЙ ОРДЕНА ЛЕНИНА И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЖМ. М.В. ЛОМОНОСОВА

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ

Чжан Най-сэнь

799

изучение ядерных взаимодействий п⁺- в к⁺-мезонов с импульсами 2,5 - 5 бэв/с

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научные руководители:

кандидат физико-математических наук

А.Л.Любимов

кандидат физико-математических наук Ю.Н.Лобанов

Работа выполнена в Лаборатории высоких энергий Объединенного института ядерных исследований

Дубна 1961 год

Чжан Най-сэнь

799

изучение ядерных взаимодействий п⁺- и к⁺-мезонов с импульсами 2,5 - 5 бэв/с

700 G

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научные руководители:

кандидат физико-математических наук

А.Л.Любимов

кандидат физико-математических наук Ю.Н.Лобанов

Работа выполнена в Лаборатории высоких энергий Объединенного института ядерных исследований

> объединенный институт пасриых исследования БИБЛИОТЕНА

Измерение сечений взаимодействия мезонов с нуклонами при высоких энергиях позволяет, во-первых, получать определенную информацию о природе этих взаимодействий, а также о структуре нуклона (поскольку длина волны мезонов с энергией порядка Бэв меньше размеров нуклона), и, во-вторых, служит для проверки некоторых общих положений теории, в частности, относящихся к предельному поведению процессов взаимодействия. Измерение сечений взаимодействия мезонов высоких энергий с ядрами позволяет получать некоторые сведения о структуре ядер, а также делать косвенные выводы о характере элементарных взаимодействий с нуклонами.

Теорема Померанчука⁽¹⁾, основанная на дисперсионных соотношениях и предположении о постоянстве полных сечений при высоких энергиях, утверждает, что при больших энергиях сечения взаимодействия частиц и античастиц на одинаковых мишенях, в частностн, сечения взаимодействия π^+ и π^- -мезонов с протонами, сравниваются. Этот результат получается также на основании теории изотопической инвариантности, если учесть, что при больших энергиях сечение перезарядки стремится к нуло⁽²⁾. Данные о полных сечениях взаимодействия π^+ с импульсами большими 2 Бэв/с отсутствовалн до 1959 года. Наши данные ⁽³⁾ при импульсе 2,0 Бэв/с и данные Лонго⁽⁴⁾ при импульсах 1,4-4 Бэв/с по полному сечению взаимодействия π^+ показали, что полные сечення взаимодействия π^+ и π^- сблнжаются, по-видимому, уже с импульса около 3 Бэв/с. Мы продолжили работы по измерению полных сечений взаимодействия π^+ в интервале нмпульсов 2,5-5 Мэв/с, чтобы проверить этот вывод.

Имеющиеся данные по взаимодействию K⁺p показали, что при 812 Мэв/с^{5/} неупругое сечение K⁺p составляет всего ~ 1 мб и угловое распределение в с.п.м. упругого взаимодействия K⁺p остается изотропным. Из предварительного сообшения^{6/} следует, что при импульсах 1-2 Бэв/с угловое распределение упругого взаимодействия K⁺p оказалось не нзотропным и неупругое сечение дает заметный вклад в полное сечение. Отсутствуют данные по упругому и неупругому взаимодействню K^+ р и $\pi^+ p$ при импульсах больших 2 Бэв/с. До сих пор экспериментально еще не установлено, есть ли множественное рождение π -мезонов при взаимодействии K^+ -мезонов с протонами. Пока в статистической теории не определен объем взаимодействия для соударения K^+ р. Изучение неупругого взаимодействия K^+ р, а также $\pi^+ p$ при импульсах больших 2 Бэв/с представляет большой интерес.

В настоящее время имеются данные по взаимодействию \mathcal{R}^- -мезонов н протонов при больших энергиях с ядрами \mathcal{N} . Данные же по взаимодействию K^+ , \mathcal{R}^+ -мезонов с ядрами при этих энергиях отсутствуют полностью. Тонкая структура ядра мало сказ ывается на процессе взаимодействия частицы большой энергии с ядрами. Свойства ядра можно описать моделью ферми-газа. В случае, когда длина волны частиц много меньше размеров ядер, применима оптическая модель. Из анализа данных по сечениям поглощения \mathcal{T} -мезонов ядрами и полным сеченням взаимодействия \mathcal{T}_1 -мезонов с нуклонами можно получить сведения о размере и прозрачности ядер.

Реферируемая работа посвящена исследованию ядерных взаимодействий π^4 н K^4 -мезонов при импульсах 2,5-5 Бэв/с. Она состоит из двух частей.

А) Измерены полные сечения взаимодействня π^+ -мезонов с импульсамн 2,72; 3,70 и 4,75 Бэв/с с протонамн, а также сечения поглощения К⁺-мезонов с импульсом 4,75 Бэв/с ядрами C, AL, Cu. π^+ -мезонов с импульсамн 2,72, 3,70, 4,75 Бэв/с ядрами C, AL, Cu., Sn и pb. Для проверки измерены одновременно сечения взаимодействия протонов с импульсом 2,72 Бэв/с с протонами и ядрами.

Б) Подготовлен опыт по язучению неупругого взаимодействия К⁺- и π ⁺мезонов с протонами. Разработана и налажена основная часть аппаратуры для измерения сечений неупругого взаимодействия κ^+ и π^+ -мезонов с импульсами 2,5-5 Бэв/ с протонами.

Изложенная в диссертации работа является частью работы, выполнениой автором совместно с А.С.Вовенко, Б.А.Кулаковым, М.Ф.Лихачевым, А.Л.Любимовым, Ю.А.Матуленко, Г.В.Мельниковым, И.А.Савиным, Е.В.Смирновым, В.С.Ставинским, Сюй Юйнь-чан, Хэ Юан-фу и товарищами из Бюро новых разработок Лаборатории высоких энергий. Приведенные результаты получены в 1959-61 г.г. Часть основных результатов опубликована в работах^{/∂/}, /9/, /10/, /11/, /12/ и часть предварительных данных была доложена на 1Х и Х Международных конференциях по физике высоких энергий в Киеве и в Рочестере.

Диссертация состоит из четырех глав. Первая глава содержит некоторые вводные сведения и краткий обзор материала по изучению взаимодействия $K^+ - u\mathcal{R}^+$ -мезонов с протонами и ядрами. Во второй главе описывается установка, применявшаяся в опытах по измерению полных сечений и сечений поглощения, и установка, налаженная на пучке синхрофазотрона, для проведения опытов по неупругому взаимодействию K^+ р и \mathcal{R}^+ р при импульсах 2,5-5 Бэв/с. В третьей главе дается описание работы по формированию пучка $K^+ - и \mathcal{R}^+$ -мезонов и изложена постановка опытов. Результаты опытов и обсуждение результатов проводятся в чётвертой главе.

Эксперимент

Описанные в диссертации исследования были выполиены на пучке положительно заряженных частип синхрофазотрона Лаборатории высоких энергий Объединенного института ядерных исследований.

 А) Полные сечения и сечения поглощения измерялись электроинкой методом выбывания частип из пучка в условиях хорошей геометрии.

Мы имели возможность производить опыты с пучком положительных частиц с импульсами от 2,5 Бэв/с до 5,0 Бэв/с. Пучок состоял обычно из 2-1% M^{-1} мезонов, 40-25% π^{+} -мезонов, ~ 1% K⁺-мезонов и 56-72% протонов. Выделение K⁺-, π^{-} -мезонов из пучка осуществлялось путем определения импульса и скорости частип.

Импульсы частиц определялись магнитной системой, состоящей из магнитных полей в ускорителе, в отклоняющем магните и в двух квадрупольных линзах. Скорость частиц определялась газовыми черенковскими счетчиками. Частипы регистрировались телескопом из счетчиков.

Телескоп состоял на двух сцинтилляционных счетчиков (S). двух угловых газовых черенковских счетчиков (Y) и одного порогового газового черенковского

5

счетчика (П). Импульсы от счетчиков подавались на быструю (5x 10⁻⁹сек) схему совладений и антисовладений. Разными комбинациями включения счетчиков в схему совладений и антисовладений мы регистрировали либо отдельно π^{+} -мезоны, либо отдельно K⁺-мезоны, либо отдельно протоны с импульсом 2,5 - 5 Бэв/с, Было обеспечено подавление фоновых частиц в 10⁴-10⁵ раз, что давало чистоту выделения K⁺-мезонов ~ 99%.

В качестве мишени для измерения сечения взаимодействия частиц с протонами использовался жидкий водород в пенополнстироловой мишени или же эффект определялся по разности измерений с полнэтиленом и графитом (CH₂-C), при одинаковом количестве ядер углерода в мишени.

Б) Подготовка олыта по изучению неупругого взанмодействия К⁺-, *π*⁺- мезонов с протонами.

С целью выяснения поведения неупругого взаимодействия K^+ р. $\pi^+ p$ при импульсах 2,5-5 Бэв/с и сопоставления свойств взаимодействий K^+ р н $\pi^+ p$ нами была разработана и налажена на пучке синхрофазотрона установка для измерения неупругого взаимодействия $K^+ p$ и $\pi^+ p$. Она предназначена для определения числа и направлений вылета из мишени вторичных частиц от взаимодействия $K^+ p$ или $\pi^+ p$ или от распада рожденных при взаимодействии $K^+ p$ или $\pi^+ p$ частиц в большом телесном угле.

При импульсе 2,5-5 Бэв/с неупругие взанмодействия K⁺р и 7С⁺р имеют много возможных каналов, удовлетворяющих известным законам сохранения. Это требует, чтобы установка имела большое пространственное разрешение и хорошее разрешение по числу регистрируемых вторичных частиц, в связи с чем мы разработали сцинтилляционный годоскоп и многоканальную электронную схему.

Установка состоит из четырех частей. Блок-схема показана на рис. 1.

 Телескоп из сцинтнлляционных н газовых черенковских счетчиков и быстрой схемы совпадений и антисовпадений, с помощью которого выделялись случаи, когда частицы (К⁺ - или *T⁺* -мезон) взаимодействуют с протоном в мишени жидкого водорода. Импульсы с быстрой схемы совпадений управляют 20 канальной электронной схемой.

2) 50 - сантиметровая мишень жидкого водорода (объем 22 литра), изготовленная из пенополистирола. В мишени содержится 3,5 г/см² водорода на пучке, Для регистрации вторичных частиц из мишени, вылетающих на большие углы, мишень окружена 5 сцинтилляционными счетчиками размером ~ 500 x 500 мм. Свет от каждого сцинтиллятора собирается одним фотоумножителем типа ФЭУ-50.

3) Сцинтилляционный годоскоп с перекрывающейся системой сцинтилляторов. Этот годоскоп расположен за мишенью и предназначен для регистрации вторичных частиц из мишени, вылетающих вперед. 6 кольцевых и 16 секторных сцинтилляторов образуют около 100 ячеек для определения числа вторичных частиц и их пространственных координат. Самый большой кольцевой сцинтилляционный счетчик имеет диаметр 1 метр. Все сцинтилляторы просматривались фотоумножителями типа ФЭУ-33 или ФЭУ-24. На пучке синхрофазотрона проверялись эффективности регистрации частиц кольцевыми и секторными счетчиками. Они составляли ~ 05%.

4) Электронная многосчетчиковая система, налаженная на пучке синхрофазотрона, имеет 20 каналов. Она работает вместе со сцинтиляционным годоскопом и дает информацию типа "да" и "нет" о том, какие из счетчиков в годоскопе сработали одновременно с управляющей группой счетчиков в телескопе.

Схема собрана на полупроводниковых диодах и триодах. Двадцать двойных схем совпадений после дискриминатора быстрой (5 нсек) схемы совпадений (см. рис.1) имеют разрешающее время 25-30 нсек и чувствительность, удовлетворяющую требованиям высокоэффективной работы с газовыми черенковскими счетчиками и большими (диаметр ~ 1 метр) кольцевыми сцинтилляционными счетчиками.

Схема памяти собрана на полупроводниковых элементах. В качестве запоминающих ячеек в матрицах системы использованы ферритовые кольца с прямоугольиой петлей гистерезиса типа МЭД-1. Схема памяти обеспечивает надежную запись 8 событий за цикл в каждом из двадцати каналов. Мертвое время регистрации не превышает 10 мксек.

Считывание информации с матриц производится в промежутки времени между циклами вывода пучка из синхрофазотрона (15 сек). Информация выводится на перфорированную пленку путем пробивания отверстий на последней. На этой установке проводится опыт по изучению неупругих взаимодействий $\pi^+ \rho$ и K⁺р на пучке сиихрофазотрона. На первом этапе эксперимент проводится совместно с намереннем полного сечения взаимодействия $\pi^+ \rho$ и K⁺р с мишенью из жидкого водорода длиной 1,66 метра. Годоскоп стоит за мишенью и вырезает угол на центра мишени в лабораторной системе $\rho = 12^{\circ} + 4.5^{\circ}$, соответствующий углу в с.ц.м. $\rho^{*} = 36^{\circ} + 15^{\circ}$ для упругого взаимодействия K⁺р при импульсе 5 Бэв/с.

a

На втором этапе в опыте будет использоваться мишень жидкого водорода длиной 50 см, окружениая 5 сцинтиляционными счетчиками и годоскопом, которые будут регистрировать почти все вторичные частицы ($\mathcal{N} \sim 4\pi$), вылетающие из мишени, что дает возможность увидеть полную картину неупругого взаимодействия,

Аппаратуру возможно также использовать для определения числа π^{*} -мезонов, рожденных при взаимодействиях $\pi^{+}P$ илн K^{+} р.

Результаты

В таблицах 1, 11, 111, 1У приведены полученные данные по полному сечению взаимодействия $\pi^{+}\rho$ и рр й данные по сечениям поглощения π^{-} и К⁺-мезонов и протонов ядрами. Приведенные данные поправлены на "рассеяння вперед" по экспериментальным данным или по оптической теореме и на кулоновское рассеяние (с использованием результатов расчета Штернхаймера $\int^{14/}$. В данные о сечениях π^{+} -мезонов внесены также поправки на примесь \mathcal{M} -мезонов в пучке. Доля \mathcal{M} -мезонов в пучке измерялась экспериментально или оценивалась теоретически.

•	- 24		 	 	
	-	•	 	 	

Полные сечения взаимодействия 77 -мезонов и протонов с протонами

Ззаимодействие	Импульс Бэв/с	Полное сече− ние МБ		
π*ρ	2,72	28,2 <u>+</u> 2,3		
$\pi^+ P$	3,70	30,0 <u>+</u> 1,2		
π*ρ	4,75	29,3 <u>+</u> 1,4		
PP	2,72	44 . 7 <u>+</u> 1.7		

Сечения поглощения К [†] -мезонов на ядрах				
Взаямодействие	Импульс Бэв/с	Сечение погло- щения М.Б		
Kt C	4,75	136 ± 21		
K AL	4,75	254 <u>+</u> 33		
K ⁺ Cu	4,75	430 <u>+</u> 120		

	Таблиц	<u>a 111</u>	et i statige
	Сечения поглощения	л - мезонов на ядрах	
Взаимодействие	Импульс Бэв/с	Сеченне поглог МБ	цения
πt c	2,72	208 <u>+</u> 7	
71 * Sn	2,72	1299 <u>+</u> 11	o tra tra tra
Tt pl	2,72	1989 <u>+</u> 12	0 ¹⁰ No. (Katalog and Second
TtC	3,70	201 <u>+</u> 12	AND
TTAL	3,70	368 <u>+</u> 19	
Tt + Cu	3,70	758 <u>+</u> 64	
Tt Sn	3,70	1298 <u>+</u> 15	o ng ugan ang j
π+ρ6	3,70	1996 <u>+</u> 18	7
$\pi^{\dagger}c$	4,75	187 <u>+</u> 8	
T+AC	4,75	358 <u>+</u> 12	the plane and plane
T, CH	4,75	726 <u>+</u> 37	
TT Sm	4,75	1276 <u>+</u> 80	
$\pi^{+}\rho^{-}$	4,75	1973 <u>+</u> 170) _{ja}na <u>anta</u> ja na

<u>Таблица 1У</u> Сечения поглощения протонов на ядрах

Взаимодействия	Импульс Бэв/с	 Сечения поглощения МБ
PC PSu Ppl	2,72 2,72 2,72 2,72	$\begin{array}{r} 259 \pm 8\\ 1221 \pm 110\\ 1728 \pm 105 \end{array}$

Обсуждение

A) На рис. 2 показаны данные по полному сечению взаимодействия 77 р
 и 77 р в интервале импульсов 1 - 5 Бэв/с полученные нами, а также другими авторами. Эти данные позволяют сделать следующие выводы:

1. В интервале импульсов 2,5 - 5 Бэв/с полное сечение взаимодействия *П*-мезонов с протонами равно ~ 29 МБ и в пределах экспериментальных ошибок остается постоянным.

2. Из общих ходов полных сечений взаимодействий $\pi^+ p$ и $\pi^- p$ (рис.2) видио, что в пределах экспериментальных ошибок полные сечения взаимодействия $\pi^+ p$ и $\pi^- p$ в интервале импульсов 2,5 - 5 Бэв/с сближаются в соответствии с предсказаниями теорем (1) и (2) о равенстве сечений $\pi^+ p$ и $\pi^- p$ при больших эиергиях. Следует однако учесть, что здесь сравниваются между собой результаты различных опытов.

3. По теории изотопической инвариантности из предыдущего вывода следует, что при этих импульсах сечения перезарядки ($\mathcal{T} + p \rightarrow \pi^{\circ} + n$, $\pi^{+} n \rightarrow \pi^{\circ} p$) становятся весьма малыми. И полное сечение взаимодействия $\mathcal{T} \circ p$, которое трудно измерять экспериментально, тоже сближается со значениями полных сечений $\mathcal{T}^{+} p$ и $\mathcal{T} p$. Таким образом, в этом интервале импульса полные сечения взаимодействия \mathcal{T}^{+} -мезон-нуклон уже мало зависят от изотопического спина системы.

4. Из сопоставления результатов измерения полных сечений взаимодействия. π^+ -мезонов с протрнами с полными сечениями взаимодействия K^+ -мезонов, полученными нашей группой /9/. /12/ и другими авторами /6/./13/ видно, что полные сечения взаимодействия $\pi^+\rho$ в интервале импульсов 2,5-5 Бэв/с остаются больше, чем сечения взаимодействия K^+ р. Из анализа кривых зависимости полиых сечений взаимодействия $\pi^+\rho$ и K^+ р от энергии можно думать, что соотношение $\mathcal{O}_{+}(\pi^+\rho) > \mathcal{O}_{+}(\kappa^+\rho)$ будет справедливым и в области импульсов, больших 5 Бэв/с.

Б) Анализ данных по сечепиям поглошения ядрами X⁺- и К⁺-мезонов и протонов дает следующие закономерности.

1. Из даниых для 77 -мезонов (таблица 111) видно, что с увеличением

атомного веса ядер (А) сечения поглощения \mathcal{T}^+ -мезонов ядрами растут медлениее, чем атомные веса. С увеличением атомного веса рост сечения поглощения становится более медленным и для ядер, начиная с олова, рост сечения происходит пропорционально $A^{2/3}$. Это означает, что при больших атомных весах ядра становятся полностью непрозрачным для \mathcal{T}^+ -мезонов и поэтому рост сечения поглощения пропорционален увеличению геометрического сечения ядра.

2. Из сравнения сечений поглощения для π^+ -мезонов и протонов при импульсе 2,72 Бэв/с (таблица 111, 1У) видно, что сечения поглощения углеродом протонов больше, чем π^+ -мезонов. Это объясняется тем, что полное сечение взаимодействия с протонами протонов больше чем π^+ -мезонов при этом импульсе (см. таблица 1) и поэтому для легких элементов ядра более прозрачны для π^+ -мезонов, чем для протонов. Представлению о меньшей прозрачности легких ядер к протонам соответствует и тот факт, что область пропорциональности $A^{2/3}$ сечений поглощения ядрами протонов захватывает и такие легкие ядра, как углерод, в отличне от того, что имеет место для π^+ -мезонов. В соответствии с этим следует ожидать, что на тех ядрах, которые полностью непрозрачны для π^+ -мезонов (S_n , ρ^+) сечения поглощения протонов уже не должны превышать сечений поглощения π^+ -мезонов. Это действительно иаблюдается на опыте,

3. На рис. З приведены данные, характеризующие прозрачность ядер различного атомного веса для взаимодействий с π^+ и K⁺-мезонами с импульсом 4,75 Бэв/с. Величины радиусов ядер (R) взяты из данных по рассеянию электронов на ядрах ^{/15/}. Как видно из рис. З, прозрачность ядер среднего атомного веса для K⁺-мезонов меньше зависит от атомного веса, чем для π^+ -мезоиов.

4. Согласно оптической модели, сечение неупругого взаимодействия **7** -мезонов с ядрами для Гауссова распределения плотности нуклонов в ядрах

имеет вид /18/ $f(\tau) = A \pi^{-1/2} a^{-1} e^{-\tau^{2}/a^{-1}}$

$$\overline{O_{in}}(\pi, \mathcal{Q}^{A}) = \pi \alpha^{2} \left[o: 577 + ln \frac{A \overline{O_{n'N}}}{\pi \alpha^{2}} - E_{i} \left(-\frac{A \overline{O_{n'N}}}{\pi \alpha^{2}} \right) \right],$$

где *Ei* - интегральная экспонента, *a* - параметр распределения взят для разных ядер из работ Хофштадтера ^{/15/}.

Если взять $\overline{\mathcal{O}}_{\pi^*N} = 29 \pm 2 \ \text{м} \overline{\mathcal{S}}$ (см. таблица 1 и пункт А-3 этого разреза), то по этой формуле получеются следующие зиачения сечения неупругого взаимодействия π^* -мезонов с ядрами.

Таблица У "

Сечения неупругого взаимодействия 57⁺ -мезонов с ядрами, рассчитанные по оптической модели

$\sigma_{in}(\pi^{\dagger}, c)$	= 198 <mark>+8</mark> -10 мб
Sin (nt, Al)	= 375 ^{—13} +12 мб
$O_{in}(\pi^{+};en)$	$= 755 \frac{-26}{+25} \text{ M6}$
Jim (π ^t , Sm)	$= 1172_{-32}^{+38}$
σin (π, pb)	$= 1800^{+40}_{-40}$ MG

Из сравнения с таблипей 111 видно, что в пределах экспериментальных ошибок экспериментально измеренные величины сечений поглошения согласуются с рассчитанными по оптической теории значениями сечений неупругого взаимодействия.

Для тяжелых элементов это согласие хотя и несколько хуже, но тоже удовлетворительно. Поскольку в измеряемую из опыте величину сечения поглощения входят, вообще говоря, как сечения неупругого взаимодействия, так и севение недифракционного упругого рассеяния, то сравнение даиных таблицы 1У и У показывает, что возможный вклад упругого иедифракционного рассеяния невелик.

$\frac{O_{\tilde{L}}}{\Pi R^2}$				
- {0				
			∲ , ,†	4.75 Бэв/г
	And Andrewski (Construction of the second of		φ κ +	4. 75 Бэв/с
				동네 70 같이 있는 것이다. 이 이 것은 것이 같은 것이다. 이 이 같은 것이 같은 것이 같은 것이다.
	 Control - Control - Con			
	50	100	150	200 A

Литература

- 1. И.Я. Померанчук. ЖЭТФ, 34, 725 (1958).
- 2. И.Я.Померанчук. ЖЭТФ, <u>30</u>, 423 (1956), Л.Б.Окунь, И.Я.Померанчук. ЖЭТФ, 30, 421 (1958).
- В.И. Векслер. Доклад на 1Х конференции по физике высоких энергий. Киев, 1959г.
- 4. Michel J. Longo et al. Phys. Rev. Lett. 3; 568 (1959).
- 5. W.Chenowsky et al. Proc. of the 10th Intern. Conf. on High Energy Phys. Rochester 451 (1960).
- 6. Lerou T.Kerth Rev. Mod. Phys. 33, 389 (1961).
- 7. T.Bowen et al. Nuovo Cimento IX, 5, 908 (1958).
- М.Ф. Лихачев, В.С.Ставинский, Чжан Най-сэнь. Материалы 1Х международной конференции по физике высоких энергий. Киев 1959.
- М.Ф. Лихачев, В.С. Ставинский, Сюй Юйнь-чан, Чжан Най-сэнь.
 Proc. of the 10th Intern. Conf. on 'ligh Energy Phys. Rochester 444, (1960).
- М.Ф. Лихачев, Б.С. Ставинский, Сюй Юйнь-чан, Чжан Най-сэнь. ЖЭТФ, 41, 38 (1961).
- 11. М.Ф. Лихачев, А.Л. Любимов, В.С. Ставинский, Чжан Най-сэнь, Proc. of an Intern. Conf. on Instrumentation for Iligh Energy Phys. Berkely Colifornia 89 (1960).
- 12. А.С. Вовенко, Б.А. Кулаков, М.Ф. Лихачев, А.Л. Любимов, Ю.А. Матуленко, И.А.Савин, Е.В.Смирнов, В.С.Ставинский, Сюй Юйнь-чан, Чжан Най-сэнь. Преприит ОИЯИ Д-721 (1961).
- 13. G. Von Dardel. Proc. of the 10th Intern. Conf. on High Energy Phys. Rochester 148 and 484 (1960).
- 14. R.M.Sternheimer. Rev. Sci. Inst. 25, 1070 (1954).
- 15. R. Hofstadter. Rev. Mod. Phys. 28, 214 (1956).
- 16. В.С. Барашенков, В.М. Мальцев, Препринт ОИЯИ р-724 (1961).
- А.С.Вовенко, Л.Б. Голованов, Б.А. Кулаков, А.Л. Любимов, Ю.А. Матуленко, И.А. Савин, Е.В. Смирнов. Препринт ОИЯН, ЖЭТФ (в печати).
- 18. Г.Бете, Сборник Проблемы современной физики № 6, 21, (1958).

Б.П.Банник и др. Препринт ОИЯИ Д-743.

Рукопись поступила в надательский отдел 28 сентября 1961 года.