

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем

Б.М. Головин, Б.П. Осипенко, А.И. Сидоров

795

ДИЭЛЕКТРИЧЕСКИЕ СЧЕТЧИКИ, ИЗГОТОВЛЯЕМЫЕ ИЗ КРУПНЫХ МОНОКРИСТАЛЛОВ СУЛЬФИДА КАДМИЯ

Б.М.Головин, Б.П. Осипенко, А.И. Сидоров

795

ДИЭЛЕКТРИЧЕСКИЕ СЧЕТЧИКИ, ИЗГОТОВЛЯЕМЫЕ ИЗ КРУПНЫХ МОНОКРИСТАЛЛОВ СУЛЬФИДА КАДМИЯ

1.5

222JS 4P

£.,

Объединенный пиститут аксерных исследования БИБЛИОТЕНА Кристаллические счетчики из сульфида кадмия исследовались многими, авторами^{1,2/}, однако, в большинстве случаев изучались образцы с внутренним усилением^{3/}, вырабатывающие импульсы с большой амплитудой (до нескольких вольт), но весьма длинными фронтами (десятки мксек) и временами спада (миллисекунды). Были также сообщения об опытах с CdS – детекторами ^а -частиц, вырабатывающими импульсы с малыми временами нарастания. Эти счетчики изготовлялись из монокристаллов CdS, выращенных по методу Фрерихса и имевших близкое к собственному удельное сопротивление ($\rho \simeq 10^{12}$ ом, см). Энергетическое разрешение таких счетчиков (несмотря на их малые размеры) равнялось 30-50%. Повторяемость результатов от образца к образцу была низкой.

В настоящей работе излагаются результаты опытов по изготовлению CdS – детекторов, вырабатывающих импульсы с короткими передними фронтами и сравнительно малыми длительностями спада.

Материалом для изготовления счетчиков являлись монокристаллы сульфида кадмия, выращенные по описанной ранее авторами методике^{/4/}. Удельное сопротивление образцов лежало в пределах от 10⁶ до 10⁹ ом см. Рабочая площадь счетчиков достигала 1 см² и могла быть сделана еще большей.

Для изготовления счетчиков монокристаллы CdS разрезались на пластинки нужного размера и, после травления последних, на две их противоноложные стороны термическим испарением в вакууме наносился слой меди. Отжиг пластинок производился в атмосфере аргона при температурах 800°С-1000°С. В результате диффузии меди в монокристаллы во время отжига сопротивление образцов значительно увеличивалось из-за компенсации исходной электронной проводимости акцепторами Cu x). В качестве контактных электродов использовались In / Ag, Au . Минимальный уровень шумов получался при применении индиевых контактов.

х) Полную компенсацию п -проводимости и переход сульфида кадмия в Р-тип в наших опытах не наблюдался. Сложность достижения этого эффекта связана с весьма слабой ионизованностью медных акцепторов, благодаря чему проводимость в CdS пропорциональна VN, а не N, где N - концентрация акцепторов, как это имеет место в случае Si. Исследование счетных свойств полученных детекторов при облучении их а -частицами показало, что:

1. Счетчик вырабатывает импульсы с передним фронтом ^сф ≤ 5·10⁻⁸сек; длительность импульса коррелирована с R_BC , (где С – емкость образца и входа усилителя) и в несколько раз превосходит эту величину. Примерный вид импульса представлен на рис. 1.

2. Амплитуда импульса сильно зависит от приложенного к счетчику напряжения и, в ряде случаев, при достаточно большом его значении достигает насыщения (см. рис. 2).

3. Амплитуда импульса слабо зависит от нагрузочного сопротивления счетчика (см. рис. 3).

4. Детекторы имеют очень высокую фоточувствительность и показывают эффект фотоактивации счета частиц, т.е. резкое (ниогда в десятки раз) увеличение амплитуды импульса после подсветки счетчика (см. рис.4). При этом длительность импульса также сильно увеличивается, что находится в согласии с существующими теоретическими представлениями ^{/5/}.

5. Как и описанные в /6/, полученные нами CdS -детекторы имеют низкое энергетическое разрешение.

Благодаря последнему CdS -счетчики в настоящее время не пригодны для прямых спектральных измерений, но уже теперь с успехом могут быть применены в опытах с магнитными a, а также β и y - спектрометрами, так как в определенных условиях мы могли регистрировать с их помощью не только a, но и β - частицы и y -кванты Co⁶⁰. Импульсы от электронов и γ -квантов имели те же фроиты, но значительно меньшие, чем при регистрации a -частиц амплитуды.

Некоторые из закономерностей, обнаруженных нами в опытах с описанными детекторами, не укладываются в рамки существующей теории. Так, например:

1. На низкоомном материале с хорошей фоточувствительностью фронт нарастания импульса часто оказывается весьма малым, хотя амплитуда импульса может достигать сотен мв.

4

2. Амплитуда импульсов и их форма зависят от материала контактов.

Авторы выражают благодарность В,П,Джелепову за внимание к работе и помощь при ее выполнении.

Литература

1. M.Kallman, R.Warminsky. Ann. Phys., 4, 69 (1948).

2. G.J.Goldsmith, K.Lark-Horovitz. Phys. Rev., 75, 526 (1949).

3. А.В. Айранетянц, С.М. Рывкин, ЖТФ, <u>27</u>, 106, 1957.

4. Б.М.Головин, И.Кубек, Б.П. Осипенко, А.И. Сидоров. Препринт ОИЯИ № 752, 1961 г.

5. С.М. Рывкин. ЖТФ, 26, 2667, 1956.

6, P.J. van Heerden. Phys. Rev., 106, 468 (1957).

Рукопись поступила в издательский отдел 13 сентября 1961 года.

Puc. 4.

Bunne

7