<u>C332.6</u> <u>U-498</u>

918/2-71

5560

29/11

В.И. Илющенко

РАСЧЕТ ПОТЕНЦИАЛОВ РАВНОВЕСНОЙ ИОНИЗАЦИИ АТОМА ЗОЛОТА ПО МОДИФИЦИРОВАННОМУ МЕТОДУ СЛЕЙТЕРА

7 - 5560

В.И. Илющенко

РАСЧЕТ ПОТЕНЦИАЛОВ РАВНОВЕСНОЙ ИОНИЗАЦИИ АТОМА ЗОЛОТА ПО МОДИФИЦИРОВАННОМУ МЕТОДУ СЛЕЙТЕРА

S∰LL M.L. Stand In 122

£

Введение

При вычислении эффективных сечений последовательной ионизации электронным ударом необходимо иметь набор энергий связи или ионизационных потенциалов (ИП) орбитальных электронов, соответствующих всем переходам $Z_0 \rightarrow Z_0 + 1$, где Z = 0, 1, 2... (Z - 1) = (Z - N) зарядность или кратность ионизации иона с атомным номером Z и числом электронов ионного остова N. При энергии электронного пучка E_e и ИП, равных I, сечение $\sigma = \sigma$ (E_e , I) для отдельных переходов $Z_0 \rightarrow Z_0 + 1$ является суммой парциальных сечений σ_i (E_e , I_i), каждое из которых учитывает удаление орбитального электрона в процессе ионизации из $n\ell$ -подоболочки с номером i ^{/1/}. Полное эффективное сечение имеет вид:

$$\sigma = \sum_{i=1}^{M} \sigma_{i} = \sum_{i=1}^{M} \epsilon_{i} \frac{a \ell n (E_{e} / I_{i})}{I_{i} E_{e}} \qquad \text{при } E_{e} \ge I_{M}$$

Здесь I_1 - энергия связи электронов во внешней $n\ell$ -подоболочке, или ИП равновесной ионизации; $I_2 \ldots I_M$ - энергия связи электронов в более глубоких подоболочках, или ИП неравновесной ионизации; ϵ_i число эквивалентных электронов в $n\ell$ -подоболочке с номером i;

а =4,0x10⁻¹⁴ для атомов и однозарядных ионов и 4,5x10⁻¹⁴ – для многозарядных ионов в диапазоне 500 эв $\leq E_e \leq 10$ кэв; М =2-4 при Z =2-92. Если энергии E_e и I, измеряются в эв, то эффективное

сечение σ будет иметь размерность см².

Имеющиеся в настоящее время таблицы ИП равновесной ионизации^{/2-7/} являются неполными, причём в ряде случае неизвестны даже первые ИП. Таблица ИП неравновесной ионизации составлена на основе экспериментальных и расчётных данных только для атомов элементов с Z ==2-108^{/8/}. Экспериментальные данные, собранные в таблицах Мура^{/7/}, в случае Z =79 содержат только первые ИП равновесной ионизации, равные I_1 =9,22 и I_2 =20,5 эв, причём такое положение характерно для большей части элементов с $Z \ge 30$.

Однако имеется ряд экспериментальных задач, для решения которых необходимо знать все энергии связи электронов в атомах и ионах до области с Z =92 включительно. Например, в электроннолучевом ионном источнике $ИЭЛ^{/9-11/}$ получены ионы C^{+8} , N^{+7} , 0^{+8} A_u^{+19} , ИЭЛ предназначен для получения ионов сверхвысоких зарядностей Au^{+40} и U^{+50} . Аналогичные задачи ставятся и при создании ионного источлика HIPAC /12,13/. В обоих случаях расчёт ионизационной цепочки можно выполнить только при наличии набора соответствующих энергий связи орбитальных электронов в атомах и ионах, включая ИП равновесной ионизации до I 50-60.

Целью настоящей работы является расчёт набора ИП равновесной ионизации I₁ - I₅₀ атома золота, в котором выполняется условие I_{z₀+1}> > I_{z₀} и отражена оболочечная структура электронного облака. Все вычисления выполнены нами с помощью настольного электронного калькулятора "Элка".

Влияние оболочечных эффектов на процесс последовательной ионизации

Можно показать, что в спектре зарядностей ИЭЛ на оптимальную зарядность приходится около 30% от общего числа ионов /9,13/. Вероятность ионизации можно выразить как $\mathbf{p} = \sigma$ ј τ , где ј - плотность тока электронного пучка и 7 - время ионизации. При постоянных ј форма спектра зарядностей будет определяться только вели-E и т чиной ИП. В частности, при монотонно увеличивающихся значениях ИП внутри какой-либо в ℓ -подоболочки спектр приобретает квазисимметричную форму. В процессе перехода к очередной, более глубокой внутренней п´l´ -подоболочке, где ИП испытывает резкий скачок и увеличивается в несколько раз. эффективное сечение резко уменьшается. Следствием такого уменьшения эффективного сечения будет "компрессия" спектра зарядностей перед барьером в форме более глубокой подоболочки, что позволяет уменьшить число компонент спектра и в пределе, соответствующем высоким ИП, получить монохроматичный зарядовый спектр. Подобный эффект может иметь место только при скорости инжекции нейтрального рабочего вещества, значительно меньшей скорости ионизации.

2. Методы расчета ИП

Проведенный нами сравнительный анализ известных методов расчёта $U\Pi^{/6}$, 14-23 / показывает, что наиболее универсальным и удовлетворяюшим поставленным в настоящей работе целям является метод Слейтера / 15, 16 / x/ правила Слейтера для нахождения величин параметров экранирования $S_{n\ell} = (Z - \bar{r}_{H} / \bar{r})$ можно представить в форме компактной таблицы, которая приведена ниже (табл. 1).

 x^{\prime} Результаты расчётов по методу Хартри-Фока полной энергии ионизации Е $_{\rm T}^{-/25/}$ и первых тринадцати ИП равновесной ионизации Ar , Cu , Kr , Xe и U $^{\prime 26/}$ использовались нами в качестве основы для сравнения.

Таблиц	a 1
--------	-----

nl - электрон для которого определяется	ι, Βκ. 3a S _n ℓ	лад в S _{n ℓ} от исключением	каждого п'l' nl —электрона	-электрона
nl	s ⁷	p'	٩/	ť
ns,np	0,85(n-1)s	0,85(n-1)p	0,85(n-1)d	0,85(<u>n</u> =1)f
	0,35ns	0,35np	0,00nd	0,00nf
nd	1,00(n-1)s	1,00(n-1)p	1,00(n-1)d	1,00(n-1)f
	1,00ns	1,00mp	0,35nd	0,00nf
nf	1,00(n-1)s	1,00(n-1)p	1,00(n-1)d	1,00(n-1)f
	1,00ns	1,00mp	1,00nd	0,35nf

Правила Слейтера выведены из сравнения расчётных и экспериментальных значений различных энергетических параметров атомов и ионов при Z < 30, поэтому применение этих правил в области элементов с Z > 30 является необоснованной экстраполяцией $^{/16/}$.

Наиболее существенными недостатками правил Слейтера являются наличие s – , p -вырождения по l и отсутствие релятивистского обобщения этих правил. Вследствие пренебрежения экранируюшим действием внешних n l - электронов вычисленные по Слейтеру значения S_{nl} являются параметрами внутреннего экранирования. Однако учёт внешнего экранирования значительно увеличивает трудоемкость расчётов, не давая одновременно существенного выигрыша в точности расчётных ИП.

При снятии вырождения по ℓ удобно представить параметр экранирования в виде $S_{n\ell} = (P-1)X + QY + RV$. где P - числоэлектронов в собственной группе рассматриваемого электрона, Q и R- число электронов внутренних групп, каждый из которых дает вклады Y и V соответственно. В случае эмпирических правил Слейтера X = 0.35 (0.30), Y = 0.85 и V = 1.00.

Денти^{/24/} предложил для снятия s-, р-вырождения учитывать вклад внутренних в 'l' -подоболочек по старым правилам Слейтера, а X находить из уравнения

$$\sum_{i} \left(\frac{Z - S_{i}}{n_{i}^{*}} \right)^{2} - \sum_{i \neq m} \left(\frac{Z - S_{im}}{n_{i}^{*}} \right)^{2} = I \left(n_{m}, \ell_{m} \right),$$

 $I(n, \ell) = I(n, \ell, j) + \frac{\ell+1}{2\ell+1} [I(n, \ell, j+1) - I(n, \ell, j)], (1)$

$$I(n, 0) = I(n, 0, 1/2), \quad \ell = j + 1/2,$$

где I (n, ℓ , j) являются экспериментальными ИП неравновесной ионизации для элементов с Z =2-41. В работе^{/24/} рассмотрены как нерелятивистская, так и релятивистская методики определения $S_n \ell$ для элементов с Z \leq 36. Тем не менее даже при использовании экспериментальных ИП для подгонки значений X по нерелятивистскому методу Слейтера-Денти s-, р -вырождение потенциалов равновесной ионизации не снимается, так как (Q.Y + R.V)_{ns} = (Q.Y + R.V)_{np} и условие I_{Z0+1} > I_{Z0} заведомо не выполняется, потому что последние ИП для s - и р -подоболочек совпадают по величине.

3. Новые правила Слейтер-М и Слейтер-MN

Из сравнения экспериментальных ИП равновесной ионизации $^{5,7/}$ и полных энергий ионизации $E_{\rm T}$ $^{25/}$ с расчётными в области Z =1-92 нами найдены новые эмпирические правила Слейтер- М для определения $S_{\rm n}\ell$ и эффективного главного квантового числа ${\rm n}^*$. Получающийся в результате расчёта по новым правилам набор нерелятивистских ИП удовлет-воряет поставленным в настоящей работе целям и не имеет ${\rm s}$ -, P - вырождения. Правила Слейтер- М имеют следующий вид:

а) При n =1; 2; 3; 4; 5; 6; 7 эффективное квантовое число n* =
1; 2; 3; 3,7; 4,0; 4,2; 4,3, т.е. для n =7 вводится новое эффективное квантовое число n* =4,3.

б) Для определения $S_n \ell$ электроны разделяются на группы, совпадающие с $n\ell$ -подоболочками: ls , 2s , 2p , 3s , 3p , 3d , 4s ... 7s .

в) Электронные группы, находящиеся снаружи рассматриваемой группы, не влияют на величину S_n l, т.е. по аналогии с соответствующим правилом Слейтера учитывается только внутреннее экранирование.

г) Каждый электрон из собственной группы рассматриваемого nℓ электрона увеличивает S_{nℓ} на X =0,30 при n =1 и на X =0,35 при n ≥ 2.

д) Если рассматриваемый электрон относится к вз -группе, то каждый электрон внутренней группы с главным числом (в - 1) увеличивает S_nℓ на Y =0,80, а каждый электрон из еще более глубокой внутренней группы - на V =1,00.

е) Если рассматриваемый электрон относится к пр -группе, то при $n \leq 3$ каждый электрон из ns -группы и всех внутренних групп с главным квантовым числом (n-1) увеличивает $S_n\ell$ на Y =0,80. При n > 3 электроны из (n-1) s - и (n-1) р-групп дают вклад Y = =1,00, а электроны из (n-1) d - и (n-1) f-групп Y =0,80. В обоих случаях каждый электрон из еще более глубокой внутренней группы увеличивает $S_n\ell$ на V =1,00.

ж) Если рассматриваемый электрон относится к nd -группе, то каждый электрон из ns- и пр-групп увеличивает S_n e на Y =0,80, а каждый электрон из еще более глубоких внутренних групп - на Y =1,00.

з)Если рассматриваемый электрон относится к n f -группе, то при n =4 все электроны всех внутренних групп увеличивают S_n l на Y = V = 1,00. При n > 5 электроны из ns-, np-иnd группдают вклад Y =0,80.

В табл. 2 правила Слейтер – М приведены в более удобной форме.

Тa	блица	2
----	-------	---

п l для к опред	-электрон, оторого целяется S _{nl}	Вклад в S за ясклю	откаждо: чением вℓ — эл	го в'l'-электрона ектрона
nl	s'	p′	ď	ť
ns	0,8(n-1)s 0,8(n	1)p 0,8(n-	1)d 0,8(n-1)f
	(0,30)0,35ns	0,0np	0,0nd	0,0nf
np	(1,0) 0,8(n=1)s (1,0)0,8(1	n=-1)p 0 ,86n-	1)d 0,8(n=1)f
	0,8ns	0,35m	p 0,0nd	0,0nf
nd	1, <u>0(</u> n=1)s 1,0(n=	1)p 1,0(n	1)d 1,0(n-1)f
	0,8ns	0,8np	0,35nd	0,0nf
nf	1,0(n-1)s 1 ₉ 0(n	1)p 1,0(n-	1)d 1,0(n-1)f
	(0,8)1,0ns	(0 ₉ 8)1 ₉ 0np	(0,8)1,0nd	0,35nf

Результаты применения правил Слейтер- М при Z =79 приведены ... ниже. В скобках даны значения S_n l , полученные по старым правилам.

ls^2	Ix0,30	+	0x0,8	+ 0,x1,0	= 0,30	(0,30)
2s ²	I x 0,35	+	2 x0, 8	+ 0x1,0	= I , 95	(4,15)
 2n ⁶	5x0,35	+	4x0,8	+ 0x1,0	= 4,95	(4,15)
-p 3s ²	Ix0,35	+	8x0,8	+ 2xI,0	= 8,75	(11,25)
3p ⁶	5x0,35	+	1 0x0, 8	+ 2xI,0	= II,75	(11,25)
3d ¹⁰	9 x0, 35	+	8x0,8	+ I0xI,0	= 19 , 55	(21,15)
4s ²	Ix0,35	+	18 x0, 8	+ IOxI,0	= 24,75	(27,75)
4p ⁶	5x0,35	+	12 x0, 8	+ 18x1,0	= 29,35	(27,75)
4d ¹⁰	9x0,35	+	8x0,8	+ 28x1,0	= 37,55	(39,15)
4f ¹⁴	I3x0,35	· +	0x0,8	+ 46xI,0	= 50,55	(50,55)
	-					

2 5s	J.x0,35	+	32x0,8	+ 28xI,0	=	53 , 95	(57,65)
5p ⁶	5x0,35	+	2 6x0, 8	+ 36xI,0	11	58,55	(57,65)
5d ¹⁰	9x0,35	+	8x0,8	+ 60 x I,0	=	69 , 55	(71,15)
6s ¹	0x0,35	+	18 x0, 8	+ 60xI,0	=	74 , 40	(75,30)

Для увеличения точности расчёта правила Слейтер- М дополняются процедурой подгонки величин $S_n \ell$ по экспериментальным и экстраполированным значениям энергий связи электронов^{/5,8/}. В этом случае (правила Слейтер- MN) в уравнение $S_n \ell = (P-1)X + QY + RV$ подставляются X = =0,35, V =1,00 и по формулам (1) определяется оптимальное значение Y. Если это значение Y > 1,00, то для Y = 1,0 определяется оптимальное значение X.

Результаты расчётов ИП равновесной ионизации золота до I 50 по методам Слейтера, Слейтер- М и Слейтер- МN приведены в табл. 3. В таблице 4 показаны сравнительные данные по полным энергиям ионизации Е_т, полученные для ряда элементов от гелия до урана в расчётах по методу Слейтера, Слейтер- М, нереля тивистским методам Хартри (NR-H) ^{/25/}, Хартри-Фока (NR-HF) ^{/25/}, релятивистскому методу Дирака-Слейтера (R-DS) ^{/25/}, а также в экспериментах по определению ИП^{/5,7/}.

4. Выводы

÷.,

Вся совокупность полученных данных свидетельствует о том, что предложенные нами правила Слейтер- М наряду со снятием вырождения по ℓ обеспечивают набор ИП и полные энергии ионизации $E_{\rm T}$, практически совпадающие с соответствующими величинами из нерелятивист ских численных расчётов по методу Хартри (NR-H) /25/.

Более точные эначения энергий связи электронов можно получить из релятивистского обобщения правил Слейтер- MN по формулам из работы^{/24/}, результатом применения которых являются правила Слейтер - MR.

Методы расчёта по правилам Слейтер-М, Слейтер-MN и Слейтер- MR связаны между собой, т.к. каждый предыдущий набор правил является первым приближением для последующего. Формальное различие

между тремя вариантами отображается в эначениях параметров Хи Ү и изменении формы уравнений (1) при переходе к релятивистским правилам Слейтер-MR.

ИП неравновесной ионизации получаются в форме промежуточных результатов при расчётах по методам Слейтер- MN и Слейтер- MR .

В заключение автор считает своим приятным долгом поблагодарить Е.Д. Донца за ценные дискуссии по затронутым в статье вопросам.

Литература

- 1. W. Lotz. Astroph, J. Suppl., <u>14</u>, 207 (1967).
- 2. E. Lisitzin. Comm.Phys. -Math.Soc.Sci.Fenn., 10, H.4 (1938).
- 3. W. Finkelnburg, W. Humbach. Naturwiss., <u>42</u>, 35 (1955).
- 4. M. Von Ardenne. Tabellen der Elektronenphysik, Ionenphysik und Übermikroskopie, <u>I</u>, 580 (1962).
- 5. W. Lotz. J.Opt. Soc. Am., 57, 873 (1967).
- 6. S.O. Kastner. J.Chem.Phys., <u>50</u>, 2896 (1969).
- 7. Ch.E. Moore. Circular of Natl.Bureau of Sts., No 467, <u>III</u>, Table 34 (1958).
- 8. W. Lotz. J.Opt. Soc. Am., <u>60</u>, 206 (1970).
- 9. Е.Д. Донец, В.И. Илющенко, В.А. Альперт, Препринт ОИЯИ, Р7-4124, Дубна, 1968.
- 10. Е.Д. Донец, В.И. Илющенко, В.А. Альперт. Препринт ОИЯИ, Р7-4469, Дубна, 1969.
- 11. E.D. Donets, V.I. Ilyushchenko, V.A. Alpert. Premiere conference internationale sur les sources d'ions, p. 635, INSTN, Saclay, 18-20 juine 1969.
- 12. G.S. Janes, R.H. Levy, H.A. Bethe, B.T. Feld. Phys. Rev., <u>145</u>, 925 (1966).
- 13. J.D. Daugherty, L. Grodzins, G.S. Janes, R.H. Levy. Phys. Rev. Lett., 20, 369 (1968).
- 14. A. Sommerfeld, Z.f. Physik, 80, 415 (1933).

- 15. J.C. Slater. Phys.Rev., <u>36</u>, 57 (1930).
- 16. J.C. Slater. Quantum theory of atomic Structure, <u>I</u>, p. 368 McGrow-Hill Co., New York (1960).
- 17. E. Clementi, D.L. Raimondi. J.Chem. Phys., <u>38</u>, 2686 (1963).
- E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys., <u>47</u>, 1300 (1967).
- 19. G. Burns. J.Chem. Phys., <u>41</u>, 1592 (1964).
- 20. Ch. Froese. Can.J.Phys., <u>41</u>, 51 (1963).
- 21. R.F. Bacher, S. Goudsmit, Phys. Rev., 46, 948 (1934).
- 22. P.G. Kruger, W.E. Shoupp, Phys.Rev., 46, 124 (1934).
- 23. L. Pauling, J. Scherman, Z.F.Kristallographie., 81, 1 (1932).
- 24. P. Denti. Nuovo Cimento., 56B, 105 (1968).

- 25. E.C. Snow, J.M. Confield, J.T. Waber. Phys. Rev., 135, A969 (1964).
- 26. R.S. Livingston. Proc.InternConf. Heavy Ions., p.p. 498–517, Heidelberg, 1969.

Рукопись поступила в издательский отдел 8 января 1971 года.

Таблица З

ИП равновесной ионизации атома золота (эв)

№ п/п	Зоммерфельд /14/	Слейтер /15/	Слейтер-М С (настоящая р	лейтер- MN еботе)	Лисицын /2/	
	1.8	10.5	16.3	9.3	9.3	
2	8,2	9,4	24,3	18,5	18,8	
3	17,4	17,3	34,1	27,6	30,5	
4	29,0	25,8	44,2	37,4	43,5	
2	58.7	44.7	57.3	58.7	27,0 73,1	
7	76.7	55.0	79.5	70.3	96.4	
8	96,7	66,0	92,5	82,5	114,4	
9	118,8	77,7	105,9	95,4	133,3	
10	142,8	89,9	120,1	108,9	152,5	
17	107.6	297.6	204.1	209.1	172.0	
13	227.7	322.0	317.8	229.3		
14	261,1	347,0	342,1	250,2		
15	295,9	372,6	367,1	271,7		
16	333,7	398,8	392,7	293,9	•	
16	418.6	422.7	518.4	10,0 h24.0		
19	459.9	481.3	548.9	451.2		
20	511,8	545,3	545,3	490,6	¢-	
21	555,5	582,2	582,2	524,9		
22	611,9	619,8	619,8	561,1		
23	726.0	697.2	697.2	597,5	**	
25	791.4	737.1	737.1	673.2	-	
26	855.0	777.6	777.6	712.0	918.0	
27	926,8	819,0	819,0	751,6	953,0	
28	999,1	860,9	860,9	791,9	987,0	
29	1070	903,6	903,6	833,0	1040	
31	1237	947.0	947,0	074,0	1060	
32	1330	1036	1036	960.6	1199	
33	1424	1081	1081	1004	1210	
34	1516	1327	1446	1574	2190	
32	1017	1380	1502	1632	2260	
37	1832	1490	1550	1751	2360	
38	1963	1545	1674	1811	2410	
39	2083	1602	1733	1872	2550	
40	2229	1659	1792	1934	2590	
41 42	2350	1717	1853	1997	2630	
43	2637	1836	1976	2001	2070	
44	2812	2358	2275	2334	2970	
45	2979	2428	2343	2403	3000	
46	3141	2498	2413	2473	3030	
47	3523	2570	2403	2543	3130	
49	3720	2715	2624	2687	3170	
50	3957	2789	2885	2964	3230	
E., .	= 560.77	478.46	482.87	508.07	531.77 (Kab)
E	NR-H) - 486-0	3	$R_{R=DS} = 5$	17.57 кав		
		- VOD A				

	·					
Z	Эксперимен- тальные эна- чения	Слейтер-М (наст.работа)	Слейтер /15/	Хартри /25/	Дирак-Слейтер /25/	
	/5,7/			(NK—H)	$(\mathbf{R} - \mathbf{DS})$	
2	79,0	78,6	78,6	77,8	76,1	
5	67 1, 0	675 ,1	669,7	667,6	6 5 4,4	
6	1030 ,1	1036 ,1	1027,4	1024,9	1008,2	
7	1486 ,1	1492,4	1479 , 6	1478,3	1457 , 6	
8	2043,7	20 5 2 , 8	20 35, 0	2037,0	2011,7	
9	2715,7	2725,8	2702,3	2710 , 4	2679,7	
10	3511 , 6	3520,1	3490 , 0	3507,6	3470 , 5	
18	14397	14360	14290	14371	14314	
29	44705	44488	43955	44646	44866	
35		69135	68757	70061	70715	
54		194695	192559	196874	202331	
79		48286 7	478458	486035	517572	
83		543737	538905	546691	586441	
92		696870	690805	698136	763174	
<u>x</u> ~.						

Таблица 4 Полные энергии ионизации Ет (эв)

1Ry = 13,6 9B.