

7 - 3147

23/11-67.

Н.П. Романов

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ ЭЛЕКТРОНОВ ПО АБСОЛЮТНОЙ ИНТЕНСИВНОСТИ ЛИНИИ Не П 4686А⁶ В ИСТОЧНИКЕ МНОГОЗАРЯДНЫХ ИОНОВ

7 - 3147

Н.П. Романов

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ ЭЛЕКТРОНОВ ПО АБСОЛЮТНОЙ ИНТЕНСИВНОСТИ ЛИНИИ Не П 4686А° В ИСТОЧНИКЕ МНОГОЗАРЯДНЫХ ИОНОВ

Направлено в журнал "Оптика и спектроскопия"

OGRAMMAN ALLENDERS IN MACHORODORIE

4836/, 2g

Введение

Настоящая работа посвящена определению температуры электронов T_e в плазме источника многозарядных ионов (МЗИ) и является продолжением работы /1/. Оценка T_e для подобного разряда была проведена Ю.Д. Пигаровым и П.М. Морозовым /2/ по временному сдвигу появления ионов различных зарядностей и получена величина $T_e = 10-20$ эв. Однако найденная ими температура характеризует T_e в процессе установления разряда и нуждается в дополнительном уточнении независимым методом, например, оптическим.

Для получения сведений о температуре электронов из измерения интенсивностей спектральных линий необходимо знать механизм заселения и опустошения возбужденных уровней. Ни одна из разработанных в настоящее время моделей заселения уровней, обзор которых можно найти в , в нашем случае, где в. =1,2·10¹⁴ см⁻³, не применима. Так, при этой концентрации заведомо отсутствует локальное термическое равновесие возбужденных атомов гелия. Это видно из измерений В.Н. Колесникова , которые показали, что такое равновесие для атомов аргона в дуговом разряде при нормальном давлении устанавливается при в_≈4·10¹⁵ см , а в гелии равновесие должно устанавливаться при еще больщих концентрациях. И.М. Подгорный и Г.В. Шолин /5/ показали, что модель "мгновенного высвечивания" для заселения возбужденных уровней нейтрального гелия применима только до концентраций в ≤10¹¹-10¹² см⁻³. Из /3/ видно также, что для заселения уровней иона Не+ с главными квантовыми числами п = 4-6 в условиях оптически тонкой плазмы эта модель справедлива при кониентрациях = <10¹³-10¹⁴ см⁻³. Поэтому ниже будет проведен анализ заселения уровня в =4 иона гелия в условиях нашего разряда с целью определить вклад

различных процессов в заселение этого уровня. Выбор уровня обусловливается тем, что с него начинается удобная для измерений линия Hell 4686 Å (З d – 4f и т.д.).

Рассмотрение процессов заселения и опустошения уровня n = 4 иона He⁺

Ниже рассматривается источник МЗИ, который работает на смеси водорода (10%) с гелием (90%) при силе тока 4а и напряжении на дуге 400 в. Концентрация электронов по нашим измерениям для этого режима равна п_=1,2·10¹⁴ см^{-3/1/}.

Масс-спектральный анализ показывает, что концентрация конов He²⁺ составляет примерно 1/20 от концентрации He+, а концентрация ионов примесей азста и кислорода не превышает 5% от общей. Учитывая также вклад ионов водорода в общую концентрацию заряженных частиц и, принимая во внимание, что при таком режиме вклад ионов Мо и W не должен быть большим, находим, что концентрация ионов гелия He⁺ составляет величину 1.10¹⁴ см⁻³. Исходя из /2/. при расчете вероятности ступенчатых процессов принимаем Т = 15 эв, что вполне допустимо, так как при больших температурах электронов вероятность ступенчатых процессов в заселении уровней будет слабо зависеть от Т. В нашем случае можно пренебречь столкновениями ионов гелия с атомами и ионами плазмы и рассматривать только столкновения с электронами. Поэтому ниже будут рассмотрены следующие процессы заселения и опустошения уровня в =4 : заселение за счет электронного удара с нижележащих уровней 📭 1, 2, 3 и с вышележащего уровня в ≈5; поглощение резонансного излучения, , начинающего с уровня п=4; рекомбинация электронов на возбужденные уровни; уход электронов с данного уровня за счет спонтанного излучения, за счет возбуждения на вышележащие уровни и за счет ударов второго рода на нижележащие уровни, а также уход путем ионизации с уровня и = 4.

1. Возбуждение уровня n = 4 из основного состояния идет, главным образом, за счет перехода ls - 4p и частично ls -4s. Сечения возбуждения 4d - и 4f - уровней ничтожно малы, как показывает расчет в борновском приближении для водорода /7/. Однако экспериментальные результаты по определению сечений возбуждения Q^{He⁺} и Q^{He⁺}_(1s-4s) уровней 4p и 4s для

иона гелия отсутствуют. Без учета притяжения налетающего электрона кулоновским полем иона сечение возбуждения уровней водородоподобного иона гелия получается из сечения возбуждения соответствующих уровней водорода простым изменением масштаба

$$Q^{He^+}(E) = \frac{1}{16} Q^H({}^{1}_{4}E).$$
 (1)

Учет поля иона приводит к тому, что сечение возбуждения иона при малых энергиях налетающего электрона Е превосходит полученное из уравнения (1) и при $E = u_{\Pi}$, где u_{Π} – пороговая энергия возбуждения, уже не равно нулю^{/8/}. Используя ход рассчитанных в приближении Борна с учетом кулоновского поля сечений $Q_{(1_8-2_8)}$ и $Q_{(1_8-2_8)}$ при энергиях электрона, близких к пороговым, выбираем сечение возбуждения уровня u = 4 для иона He⁺ постоянным для всех энергий и равным 1/16 сечения возбуждения этого уровня для водорода в максимуме. Спад сечения при больших энергиях в интересующем нас диапазоне температур не будет существенен, а о ходе сечения у пороговой энергии трудно сказать что-либо более определенное.

При расчете величины Q^H_(1s-4p) для водорода воспользуемся полуэмпирической формулой, предложенной Вриенсом /9/ для оптически разрешенных переходов.

$$Q = A \frac{(E-U)}{E^2} \ln [1 + c(E-U)]. \qquad (2)$$

Здесь $\Lambda = \frac{4\pi a_0^2 R^2}{U}$ f , E – энергия налетающего электрона, U – энергия возбуждения, R – постоянная Ридберга, f – оптическая сила осциллятора для данного перехода, a_0 – боровский радиус, C – константа, зависящая от перехода, которая обычно находится из результатов расчета данного сечения в борновском приближении при больших энергиях и для перехода 1s-4p вычислена в ^{/9/}.

Расчет сечения Q^н_(1s-4s) можно провести по формуле, предложенной тем /10/ же автором

$$Q = \frac{B}{F} \left(1 - \frac{U}{F}\right), \qquad (3)$$

которая, как и формула (2), при больших энергиях совпадает с борновским приближением. Константа В в данном случае также получается из расчета сечений в борновском приближении при больших энергиях или из экспериментальимх даншых. Для перехода 1s -4s величину В можно определить аналогично

из полного сечения Q_{14}^{H} /11/, представляющего сумму сечений возбуждения всех подуровней с главным квантовым числом n = 4. После вычисления получается величина сечения $Q_{14}^{He^+} = 3,4 \cdot 10^{-19}$ см² при $E \ge U_{\Pi}$. Коэффициент вероятности возбуждения с основного уровня на уровень n = 4 определяется выражением $K_{14} = \int_{u}^{v} vf(v) Q_{14}(v) dv$, где f(v) = функция распределенияэлектронов по скоростям, нормированная на единицу, <math>v =скорость налетающего электрона. Результаты расчета K_{14} в предположении максвелловского распределения представлены на рис. 1. Вероятность возбуждения находится умножением коэффициента K на концентрацию электронов.

Несмотря на избирательное заселение подуровней с различными орбитальными квантовыми числами ℓ , из-за сильного вырождения распределение заселенности электронов внутри главного квантового числа по различным ℓ будет соответствовать статистическим весам. Это подтверждается сравнением (рис. 2) измеренного нами профиля линии He II 4686 Å (сплошная кривая) с теоретическим распределением интенсивности компонент тонкой структуры, вычисленным в предположении равновесного распределения электронов внутри в = 4^{/12/}. Поэтому коэффициенты вероятности переходов К_{ре} между уровнями с главными квантовыми числами р и q будут находиться усреднением по статистическим весам начального уровня и суммированием по всем орбитальным квантовым числам конечного уровня.

2. Заселение уровня n = 4 за счет пленения резонансного излучения учитывается с помощью "коэффициента прозрачности" $g(r_0)$ ^{/3/}. Для этого при рассмотрении процессов опустошения уровня вероятность спонтанного излучения с данного уровня на основной умножается на $g(r_0)$, где r_0 – оптическая толщина плазмы для центральной части линии. В ^{/3/} расчеты для $g(r_0)$ выполнены только для допплеровского контура линии. В нашем случае резонансная линия испытывает как допплеровское, так штарковское и зеемановское уширение, причем ее профиль не будет сильно отличаться от профиля линии 4686 Å. А профиль этой линии хорошо аппроксимируется допплеровским контуром. Линейные размеры берем равными половине меньшего размера плазмы. Используя среднее значение силы осциллятора перехода $I_{IS}-2p$ и $n_{He}+=1,0\cdot10^{14}$ см⁻³, находим $g(r_0) = 0.6$.

3. Сечение возбуждения с уровня п = 4 на уровень п = 5 рассчитываем сначала для разрешенных переходов в атоме водорода по формуле (2), используя приведенные в величины С. Потом для иона гелия величина Q₄₅ получается по формуле (1). Кулоновское поле учитываем, считая сечение перехода постоянным и равным максимальному для энергий от E = U, до энергий, при которых полученное по формуле (1) сечение имеет максимум. Однако эта поправка не будет существенной для предполагаемой в нашей плазме высокой температуры. Для разрешенных переходов рассчитанная таким образом величина к _{45 раз.} = 1,4·10⁻⁶ см⁻³/сек. Сечение оптически запрещенных переходов между уровнями п =4 и 5 вычислить нельзя, так как для него нет расчета в борновском приближении. Поэтому будем считать, аналогично , что вклад запрещенных переходов в К в равняется таковому для перехода между в =3 и в 4 в атоме водорода при Т =15/4 эв. Полученная из таких соображений величина К_{ик}≈ 1,8·10⁻⁶ см⁻³ /сек. Сравнение вероятности ухода электрона с уровня n = 4 на уровень n = 5 при n = 1,2·10¹⁴ см⁻³ с вероятностью спонтанного перехода на нижние уровни с учетом самопоглощения показывает, что она составляет величину 55%.

4. Общее сечение возбуждения на все вышележащие уровни для n = 2 составляет $\sum_{m>8}^{\infty} Q_{2m} = 0.3 Q_{23}^{-1/4,15/}$. С увеличением n эта доля падает ${}^{/16/}$, поэтому для уровня n = 4 принимаем $\sum_{m>5}^{\infty} K_{4m} = 0.2 K_{45}$. Сечение возбуждения электрона с уровня n на соседний уровень n+1 с увеличением главного квантового числа растет намного быстрее, чем сечение ионизации с уровня n. Так, для ионизации с основного уровня водорода и для возбуждения на первый возбужденный уровень сечения примерно равны, а при ионизации с уровня n = 4 Q₄₁ = 0.1Q₄₅ ${}^{/17/}$. Поэтому ионизацию с уровня n = 4 можно не учитывать. Вероятностью перехода электрона с n = 4 на нижние уровни также можно пренебречь по сравнению с вероятностью перехода с n = 4 на n = 5, учитывая большую величину T_{n} .

5. Для учета заселения уровня **n** = 4 с нижних уровней рассчитываем сначала, во сколько раз количество возбужденных из основного состояния электронов на один из нижних уровней больше числа таковых для **n** = 4. Заселение этих уровней сверху не учитываем. Потом находим, какая доля из этих электронов возбуждается на уровень **n** = 4. Расчеты показывают, что на уровень **n** = 4

через уровень n = 3 поступает количество электронов, равное 20% от возбужденных с основного уровня, а заселением через уровень n = 2 можно пренебречь. При этих оценках поглошение резоиансного излучения учитывалось вышеизложенным способом. Доля электронов, приходящих на n = 4 с n = 5 составляет величину 10% от числа приходящих из основного состояния.

6. Пользуясь приведенными в ^{/18/} коэффициентами рекомбинации на возбужденные уровни и имея измеренную плотность электронов и двухзарядных ионов, приходим к выводу, что количество рекомбинаций на возбужденные уровни при T_e = 15 эв на несколько порядков меньше числа возбуждений из основного состояния. Это положение можно объяснить уходом ионов плазмы на катоды вследствие большого свободного пробега и на стенки камеры из-за наличия колебаний в плазме и путем аномальной диффузии.

Проведенные выше расчеты показывают, что при $n_{e}=10^{14}$ см⁻³ ступенчатые процессы играют уже значительную роль в заселении уровня n=4 иона гелия. Для концентрации $n_{e}=1,2\cdot10^{14}$ см⁻³ с учетом рассмотренных процессов доля электронов, пришедших с возбужденных уровней, составляет 30% от числа пришедших с основного. Суммарная вероятность ухода электрона с уровня n=4составляет величину $6,8\cdot10^{8}$ сек⁻¹, в то время как вероятность спонтанного излучения с учетом поглощения резонансного излучения равна $4\cdot10^{8}$ сек⁻¹, что составляет величину 60% от общей вероятности ухода.

Определение температуры электронов

Количество фотонов с λ=4686 Å, испускаемое единицей объема плазмы в секунду N_φ =4,7 · 10¹⁵ фот/см³ сек, было рассчитано из измеренной абсолютной интенсивности линии Не II 4686 Å. Измерения проводились с помощью спектрографа ДФС-8 с фотоприставкой. Для калибровки использовалась лампа СИ-16У, которая при измерениях ставилась на место источника.

Используя вышеприведенные оценки вклада различных процессов в заселение и опустошение уровня n = 4, составляем баланс количества пришедших на уровень и ушедших с него электронов. Отсюда при известных концентрациях n. и n_{He}+ в основном состоянии определяем величину K₁₄, при которой количество электронов, ушедших на уровень n = 3 путем спонтанного излучения будет равно измеренному количеству фотонов с λ = 4686 Å. Необходимые для расчета вероятности спонтанного излучения имеются в /19/.

По вычисленному значению коэффициента вероятности из рис. 1 находим величину $T_e = 9,5$ эв. Наибольшая ошибка в определении T_e заключается в неопределенности сечения возбуждения уровня n = 4. Однако трудно предположить, чтобы расчетная величина имела ошибку больше 50%. Но даже при этом предположении, вследствие сильной зависимости K_{14} от T_e , погрешность в определении T_e получается порядка $\pm 0,5$ эв. Ошибка от неучета ступенчатых процессов составляет такую же величину, так что для малых концентраций вплоть до $n_e = 10^{14}$ см⁻³ при определении температуры электронов можно применять модель "мгновенного высвечивания".

Для проверки правильности предполагаемого механизма заселения и опустошения возбужденных уровней He⁺ было проведено измерение относительной заселенности уровней n = 5 и n = 4. Для измерения использовались линии HeII 4686 (3d - 4 и т.д.) и 3203 Å (3d - 5f и т.д.). Калибровка относительной чувствительности ФЭУ в этом случае дополнительно проверялась с помошью угольной дуги^(20,21). В результате получено N₅ = 0,48N₄. Относительная заселенность, рассчитанная с учетом рассмотренных выше процессов заселения и опустошения уровней, получается N₅ = 0,55N₄. Хорошее совпадение измеренной и рассчитанной величин показывает, что, по-видимому, вклад ступенчатых процессов в заселение уровней был оценен правильно. Отсюда также видно, что при рассмотрении, относительной заселенности уровней при n_e = 10¹⁴ см⁻³ надо учитывать выше рассмотренные процессы, так как модель "мгновенного высвечивания" для относительной заселености этих уровней дает величину N₄ = N₅ /22/.

В заключение приношу глубокую благодарность А.Р. Стриганову за руководство работой, Г.В. Шолину за полезные обсуждения А.С. Пасюку за помощь в работе.

Литература

- 1. Н.П. Романов, А.С. Пасюк, Препринт ОИЯИ 7-3090, Дубна 1957.
- 2. Ю.Д. Пигаров, П.М. Морозов. ЖТФ, <u>31</u>, 476 (1961).
- R.W.P. McWhister, in "Plasma Diagnostic Techniques" (R.H. Huddlestone and S.L. Leonard, ed) New York, London 1965.

- 4. В.Н. Колесников. Труды ФИАН СССР, <u>30</u>, 66 (1964).
- 5. И.М. Подгорный, Г.В. Шолин. ДАН СССР, <u>160</u>, 575 (1965).
- 6. В.М. Струнников. Оптика и спектроскопия, 20, 3, (1966).
- 7. Handbuch der Physik, v.36, p. 354. 1956.
- М. Ситон "Атомные и молекулярные процессы", под ред. Бейтса, изд. Мир, 1964.
- 9. L.Vriens, Physica, 31, 1081 (1965).
- 10. L. Vriens, Physica, 31, 1333 (1965).
- 11. McCarroll R., Proc. Phys. Soc., A70, 460 (1957).
- 12. С.Э. Фриш. Оптические спектры атомов. Физматгиз, 1963.
- 13. A.E. Kingston, Phys. Rev., A135, 1529 (1964).
- 14. T.I.M. Boyd, Proc. Phys. Soc., 72, 523 (1958).
- 15. D. McCrea and T.V. McKirgan, Proc. Phys. Soc., 75, 235 (1960).
- 16. Fisher, Milford and Pomill, Phys. Rev., 119, 153 (1960).
- 17. A.E. Kingston, Proc. Phys. Soc., 87, 193 (1966).
- Д. Дейтс и А. Далгарно. Атомные и молекулярные процессы, под ред. Бейтса, изд. Мир, 1964.
- 19. К.У. Аллен. Астрофизические величины. Москва, 1960.
- 20. H.G. MacPherson, JOSA, 30, 189 (1940).
- 21. M.R. Null and W.W. Lorier, JOSA, 52, 1156 (1962).
- 22. H.W. Drawin, Ann. Phys., 16, N3-4, 195 (1965).

Рукопись поступила в издательский отдел 31 января 1967 г.

t

Рис. 1. Зависимость коэффициента вероятности возбуждения уровня п = 4 He⁺ от температуры электронов.

