510/1-77

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

7 - 10143

C344.14 T-666

С.П.Третьякова, Л.В.Джолос

ДЕТЕКТОРЫ ТЯЖЕЛЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ НА ОСНОВЕ ФТОРОПЛАСТОВ

7 - 10143

С.П.Третьякова, Л.В.Джолос

ДЕТЕКТОРЫ ТЯЖЕЛЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ НА ОСНОВЕ ФТОРОПЛАСТОВ

Направлено в ПТЭ

Oftennesseld marinys	-
SACINETIK DERJEJODAHEN	
БИБЛИОТЕНА	ļ

Третьякова С.П., Джолос Л.В.

7 - 10143

Детекторы тяжелых заряженных частиц на основе фторопластов

Исследована возможность использования фторопластов в качестве детекторов. Показано, что некоторые виды фторопластов могут быть использованы для регистрации тяжелых заряженных частиц, определен порог чувствительности детекторов. Изучалось влияние температуры на детектирующие свойства и определялась химическая стойкость детекторов.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1976

1976 Объединенный институт ядерных исследований Дубна

Полимерные материалы на основе фторорганических соединений представляют большой интерес по своим химическим и физическим (термическим и механическим) свойствам, обусловленным своеобразием строения этих полимеров^{/1/}. Замещение атомов водорода атомами фтора приводит к значительному изменению конфигурации полимерной цепи.

Во-первых, энергия связи углерод-фтор больше энергии связи углерод-водород, при этом в присутствии атомов фтора повышается и энергия связи соседних углеродных атомов, Во-вторых, вандерваальсов радиус атомов фтора значительно больше, чем атомов водорода (1,44 Å у фтора; 1,1-1,2 Å у водорода), в результате этого вандерваальсово отталкивание между несвязанными атомами в перфторалканах, том числе и в высокомолекулярных, оказывается сильнее, чем в углеводородах. Основной углеродный скелет перфторалканов, таким образом, имеет не плоскостной характер, а спиралевидный. В зависимости от температуры повторяющаяся единица политетрафторэтилена состоит из 13-15 CF 2групп с периодом идентичности 16,8-19,5 Å. На этом расстоянии цепь претерпевает поворот на 180°С. Валентный угол С-С-С составляет примерно 116° при 19°С и несколько увеличивается с ростом температуры. В результате закручивания углерод-углеродной цепи политетрафторэтилена образуется почти идеальный цилиндр с внешней оболочкой из атомов фтора /2,3,4/ Подобные структурные особенности, но с некоторыми

отклонениями, связанными с конкретным строением звена, характерны для всех фторполимеров. Именно они определяют уникальное сочетание свойств этого полимера, в том числе его химическую стойкость. Все это послужило основой выбора данного класса полимеров для использования их в качестве детекторов заряженных частиц.

Представляется интересным определить детектирующие свойства различных фторопластов, отличающихся своим строением и молекулярным весом.

С этой целью в качестве детекторов заряженных частиц были опробованы следующие марки фторопластов: Φ -1, Φ -2, Φ -2M, Φ -42, Φ -40, Φ -23, Φ -26, Φ -3, Φ -30, Φ -4ME, Φ -10 $\mu \Phi$ -100^{/1/}. Образцы фторопластов использовались в виде прессованных пластин размером 100x100x1,2 мм. Изучение проводилось по 2 направлениям:

1. Определялась регистрирующая способность фторопластов по отношению к осколкам деления ядер.

2. Устанавливалась пороговая чувствительность фторопластов к тяжелым заряженным частицам.

В первом случае детекторы облучались осколками деления ядер урана, а во втором - многозарядными ионами кислорода, неона, серы, аргона, кальция, хрома, германия, криптона, ксенона под разными углами на ускорителе Лаборатории ядерных реакций ОИЯИ. Энергия ионов изменялась от 1 до 6 МэВ/нуклон. Известно, что при прохождении через полимер тяжелой заряженной частицы вдоль ее траектории материал образца сильно деструктируется и может быть удален обработкой соответствующими травителями. Для того, чтобы был виден след частицы в полимере, необходимо, чтобы скорость травления самого полимера была значительно ниже скорости травления его деструктированной части. По теоретическим данным, размеры деструктированной области для одного и того же полимера зависят от энергии и заряда частиц и колеблются в районе 50 -100 ангстрем /4/ .

В качестве травителей использовались:

1) насыщенный раствор перманганата калия;

2) 25%-ный раствор перманганата калия в 10%-ном водном едком натре;

3) 20%-ный раствор едкого натра;

4) 25%-ный раствор перманганата калия в 20%-ной водной серной кислоте.

Кислотный травитель дал отрицательный результат. Продолжительность травления варьировалась от 7

до 120 ч при температуре 90-110°C. Травление осуществляли в тефлоновом стаканчике с завинчивающейся крышкой, обеспечивающей герметичность. Наблюдение и измерение характеристик трека проводилось с помощью оптического микроскопа МБИ-3 с увеличением от 100 до 1350Х. При изучении регистрирующих свойств детекторов определялась эффективность регистрации фторопластов, для этого в качестве мишени использовался точно калиброванный тонкий слой урана (12,5 мкг/см²). Контрольным слоем служила слюда мусковит, эффективность регистрации осколков деления ядер которой хорошо известна и близка к 100%-й. Для определения пороговой чувствительности были построены расчётные кривые зависимости удельных потерь энергии от типа и энергии частиц /5/ (рис. 1). По изменению вида частиц и их энергии (с помощью алюминиевых поглотителей) определялись минимальные потери энергии частиц, при которых удалось с помощью травления в указанных режимах получить видимое в оптический микроскоп изображение трека частицы.

На рис.2 приведены микрофотографии треков различных ионов с энергией 1 МэВ/нуклон в фторопластах различных типов. Характеристики детектирующих свойств исследованных видов фторопластов приведены в таблице.

Как видно из приведенных данных, в качестве детекторов заряженных частиц могут быть использованы все марки фторопластов за исключением Ф-4МБ, полностью фторированного полимера, содержащего только атомы углерода и фтора.

Таблица

Свойства фторопластов

Тип фторо- пласта	Режим травления	Эфектив- ность ре- гистр. осколков деления ядер %	Порог чувст Мав см2/м	Крис- таллич- ность, г %	Характеристика де тект ора
I	2	3	4	5	6
Ф-І п,62	II, 132 vac 100°C	80	7		Очень хороший спектр длин треков, вид тре- ков удовлетворителен
Ф-10 п.6	I,I00 ⁰ C, 28час п,I04 ⁰ C, 17 час	32,6	12,5	5070	Спектр длян треков очень широкий, вид тре ка удовлеворит.
Ф-100 п.13	I,I00 ⁰ С, 28 час II,I04 ⁰ С, 17 час	80	12,5	25-30	То же, что выше(Ф-10)
⊈ -2	I,100 ⁰ C, 30 час II,97 ⁰ C, 18 час Ш,97 ⁰ C, 95 час.	30	20	60–65	Спектр длин треков ши- рокий, вид треков удов летворительный, поверх ность имеет много вклю чений, трещин, царанин
Ф-2M	I, IOO ^O C, 9 час П, 97 ⁰ С, 8 час Ш, 99 ⁰ С, 74 час	80	12,5	35-45	Детектор хороший
Ф-23 П.58.	I,100 ⁰ C, 28 час П,104 ⁰ C, 18 час Ш,99 ⁰ C, 74 час	81	7		Спектр длян треков очень хороший, вид тре ков удовлетворит. силь но адсорбирует кыло,
Ф-26 п.278	I,100 ⁰ C,7 час II,97 ⁰ C, 9 час Ш,104 ⁰ C, 24 час	80	12,5		Плохая поверхность, пластик потрескался, треки "лохматие", тру- ден для просмотра.
Ф-30 п,301	I,IOO ^O C, 28 час II,IO4 ^O C, I7 час	-	12,5 r	ристалл	Детектор хороший
₫40 Б	I,100 ⁰ С, 66 час II,104 ⁰ С, 26 час	100	12,5	8	Детектор хороший
Ф-40ЛЛ п,645	I,IOO ^O C, 28 час II,IO4 ^O C, 26 час	100	7	40 -	Детектор хороший
Ф-40П л 90	$I, I00^{\circ}C, 2I$ vac		7		

I	2	3		4	5	6	_
Ф-4МБ п.8396	I.100°C, II.104°C, II.100°C,	100 час 100 час 120 час	-	-	-	Треков нет	
Ф-42 11,264	I,100°C, I,97°C,	8 час 28 час	100	12,5	45-60	Детектор хороший, на поверхности встреча- ются трещины	•
₫-42 A	I,100 ⁰ С, П, 97 ⁰ С, Ш, 99 ⁰ С,	9 час 9 час 74 час	84,4		-"-	Детектор хороший	
Ф-42Б	I,100°C, II, 97°C, II, 99°C,	9 час 9 час 74 час	100		-"-	M N	
Φ –42B	I,IOO ^O C, II,970C, II,990C,	9 час 9 час 74час	93		_"-		
D-421	I,100 ⁰ C, II.97 ⁰ C, II.99 ⁰ C,	9 час 9 час 74 час	100		-"-	"	
<u>Ф</u> -42	I, 10 0°C,	9 час	62,4	4	_"_	97 98	

X) I - насыщенный раствор КМлО4.

П - насыщенный щелочной раствор кмло.

Ш - 20% водный раствор NaOH.

Наилучшие значения эффективности регистрации показали образцы фторопластов марок Ф-42, Ф-2М, Ф-40, Ф-23. Порог чувствительности исследованных образцов, как следует из полученных результатов, очевидно, зависит от строения элементарного звена полимера /6/. Так, сополимеры одинакового элементного состава, фторопласты Ф-2 и Ф-40, обладают различным порогом чувствительности: наибольшим у Ф-40 и наименьшим у Ф-2. Остальные фторопласты занимают промежуточное положение. Для изучения влияния молекулярной массы на регистрирующую способность фторопластов были использованы образцы Ф-42, Ф-2М, Ф-2МБА, Ф-2, изготовленные из различных фракций с узким молекулярномассовым распределением.

Полученные данные свидетельствуют об улучшении детектирующей способности Ф-42, Ф-2, Ф-2М, Ф-2МБА с увеличением молекулярной массы, наблюдается также улучшение качества треков: трек становится менее "лохматым", лучше сохраняет геометрические размеры и форму. Установленная зависимость, очевидно, связана с увеличением разницы в скорости травления высокомолекулярной (сам полимер) и деструктированной вдоль трека части полимера.

С целью изучения влияния кристалличности фторопластов на их детектирующую способность были получены образцы фторопласта-2, различающиеся по содержанию кристаллической фазы в 1,5 - 2 раза. Из полученных данных можно сделать вывод, что увеличение содержания кристаллической фазы влечет за собой только увеличение продолжительности процесса травления. Форма треков опробованных образцов не зависит от их кристалличности. По-видимому, увеличение аморфной фазы благоприятствует проникновению травителя в образец, что и облегчает (ускоряет) процесс травления.

Было проверено влияние термоокислительной деструкции на качество детекторов. С этой целью образцы фторопласта Φ -2M (Φ -2) до облучения были прогреты на воздухе при 125°C в течение 8 часов. Травление облученных после термостарения образцов показало, что вид треков резко меняется: они становятся "лохматыми", искаженной формы. Механизм этого процесса не совсем ясен, но можно предположить, что пиролиз фторопласта Φ -2M (Φ -2) приводит к появлению в полимере большого количества двойных сопряженных связей - C=C-C=C-, которые оказываются, очевидно, менее стойкими к действию заряженных частиц и травителя. В результате наблюдается образование размытых, нечётких треков, а общий фон образца резко темнеет. На рис.3 представлены микрофотографии следов ионов ксенона, зарегистрированных в непрогретых (а) и прогретых (б) образцах фторопласта Ф-2, Ф-2М, Ф-42.

Образцы фторопластов Ф-2, Ф-42, Ф-2М и Ф-40 были испытаны на химическую стойкость к концентрированным кислотам (соляной, серной, фтористоводородной, азотной), щелочам (натриевой и калиевой), органическим растворителям (ацетон, четыреххлористый углерод, циклогексанол, толуол, диоксан, пропиловый спирт). Обработка фторопластов проводилась при комнатной температуре в течение 144 часов, после чего проверялся вес и геометрические размеры образца. Далее образцы подвергались облучению и травлению, как описано выше. Свойства фторополимеров и детекторов на их основе не изменились, за исключением свойств образцов Ф-2, Φ -42 и Φ -2M, обработанных ацетоном (растворились). При использовании исследуемых фторполимеров в качестве детекторов заряженных частиц большое внимание необходимо уделять состоянию поверхности образцов, так как трещины, царапины, включения затрудняют просмотр.

Было отмечено увеличение скорости травления и изменение длины и формы треков, расположенных в царапинах. Последнее, очевидно, связано с изменением структуры образца. На рис.4 представлена микрофотография следов ионов ксенона, зарегистрированных в царапине фторопласта Ф-42. Время травления треков в царапине значительно меньше, чем по остальной площади.

Таким образом, в результате экспериментов была установлена возможность использования фторопластов в качестве детекторов заряженных частиц. Разработанные режимы травления облученных фторопластов позволяют выявлять треки заряженных частиц и усиливать их до размеров, видимых в оптическом микроскопе. Повышение молекулярной массы полимеров улучшает качество детекторов, а снижение кристалличности фторопласта облегчает процесс травления. Порог чувствительности фторопластов Ф-1, Ф-2, Ф-2М, Ф-42, Ф-23, Ф-26, Ф-30, Ф-40, Ф-10, Ф-100 к заряженным частицам лежит в интервале от 7 до 20 МэВ.см² /мг в зависимости от типа полимера, что позволяет проводить дискриминацию заряженных частиц, подбирая определенный тип фторопласта.

Разработанный класс детекторов имеет низкий собственный фон делящихся ядер, поэтому их можно использовать в условиях высокого нейтронного фона, чем они выгодно отличаются от детекторов из кварца, слюды и стекла, у которых собственный фон на несколько порядков выше.

Высокая химическая стойкость фторопласта позволяет регистрировать события деления в сильно агрессивных средах с высокой эффективностью.

Фторопластовые детекторы могут быть использованы в космических экспериментах по изучению тяжелой компоненты космических лучей, радиобиологии, физических экспериментах, проводимых на ускорителях и ядерных реакторах.

В заключение авторы выражают глубокую признательность Ю.А.Паншину, Н.Н.Логиновой, Л.Я.Мадорской за изготовление и представление в наше распоряжение большого числа образцов фторопластов, а также за полезные советы и обсуждения.

Авторы благодарят Г.Н.Флерова и Ю.Ц.Оганесяна за постоянное внимание к работе, а также коллектив циклотрона У-300 за помощь в проведении экспериментов по облучению детекторов заряженными частицами.

Рис. 1. Зависимости удельной потери энергии от энергии ионов.

11

Рис. 2а. Микрофотографии следов ионов с энергией ~1 МэВ/нуклон в фторопластах Ф-2М (угол входа в пластик ионов ксенона - 45[°]) и Ф-42 (угол входа в пластик ионов ксенона - 45[°]). Увеличение 1800Х.

Рис. 26. Микрофотографии следов ионов с энергией ~1 МэВ/нуклон в фторопластах Ф-40П (угол входа в пластик ионов криптона - 60°) и Ф-30 (угол входа в пластик ионов ксенона - 90°). Увеличение 1800Х.

Рис. 2в. Микрофотографии следов ионов с энергией ~1 МэВ/нуклон в фторопластах Ф-23 (угол входа в пластик ионов хрома - 45⁰) и Ф-23 (угол входа в пластик ионов криптона - 30⁰). Увеличение 1800Х.

Рис. 2г. Микрофотографии следов ионов с энергией ~1 МэВ/нуклон в фторопластах Φ -1 (угол входа в пластик ионов криптона – 30°) и Φ -10 (угол входа в пластик ионов хрома – 45°). Увеличение 1800Х.

Рис. 2д. Микрофотография следов ионов с энергией ~1 МэВ/нуклон в фторопласте Ф-100 (угол входа в пластик ионов ксенона - 45[°]). Увеличение 1800Х.

Рис. За. Микрофотографии следов ионов ксенона с энергией ~1 МэВ/нуклон, зарегистрированных в непрогретых (I) и прогретых (II) в течение 8 часов при 125°С образцах фоторопластов Ф-2 (угол входа иона в пластик -45°). Увеличение 1800Х.

Рис. 36. Микрофотографии следов ионов ксенона с энергией - 1 МэВ/нуклон, зарегистрированных в непрогретых (I) и прогретых (II) в течение 8 часов при 125°С образцах фторопластов Ф-2 (угол входа иона в пластик -45°). Увеличение 1800Х.

Рис. Зв. Микрофотографии следов ионов ксенона с энергией ~ 1 МэВ/нуклон, зарегистрированных в непрогретых (I) и прогретых (II) в течение 8 часов при 125°С образцах фторопластов Ф-42А (угол входа иона в пластик – 60°). Увеличение 1800Х.

Рис. 4. Микрофотография следов ионов ксенона с энергией ~1 МэВ/нуклон, зарегистрированных в царапине фторопласта Ф-42, угол входа иона в пластик - 30°. Увеличение 1800Х.

Литература

- О.А.Реутов. Теоретические проблемы органической химии. Изд. МГУ, 1956; Справочник по пластическим массам, т. 1, Изд. "Химия", М., 1975.
- 2. D.Peters, J.Chem. Phys., 38, 561 (1963).
- 3. L.A.Errede. J.Org.Chem., 27, 3425 (1962).
- 4. J.Fain, M.Monin, M.Montret. Radiation Research, 57, 379-389 (1974).
- 5. L.C.Northcliffe and R.F.Schilling. Nuclear Data Tables, sec. A, v. 7, nos. 3-4 (1970).
- 6. С.П.Третьякова, Ю.А.Паншин, С.Г.Малкевич, Л.М.Веприк. Авторское свидетельство № 448411, Бюллетень ОИПОТЗ, №40, 1974.

Рукопись поступила в издательский отдел 30 сентября 1976 года.

20