ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

19/11-76

6 - 9622

А.А.Абдуразаков, И.Адам, М.Гонусек, К.Я.Громов, Т.А.Исламов, И.Ржиковска, Х.Штрусный

ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ ¹⁶³Ег ПРИ РАСПАДЕ ¹⁶³Тm

......

A-139

11 11 11

2731/2-76

6 - 9622

А.А.Абдуразаков, И.Адам, М.Гонусек, К.Я.Громов, Т.А.Исламов, И.Ржиковска, Х.Штрусный

возбужденные состояния ¹⁶³ег при распаде ¹⁶³тм

Направлено в "Известия АН СССР" /сер. физ./

Возбужденные состояния ядра 163 Ег изучались: в реакциях (d,p) и (d,t) Тьомом и Элбеком^{-1/}, в реакции (a,2ny) Хьертом и др. $^{/2/}$, при распаде 163 Тт в работах $^{/3-7/}$. Спин основного состояния 163 Тт был измерен в $^{8/}$, он равен 1/2. Результаты исследований бета-распада 163 Tm $^{.3.7/}$ и 163 Yb $^{/9/}$ показывают, что основному состоянию 163 Tm следует приписать характеристики 1/2 $^{+411/}$.

В настоящей работе продолжены исследования бетараспада ¹⁶³Тт. Изучены спектры у -лучей, конверсионных электронов и у-у -совпадений. Предварительные результаты этих исследований опубликованы в.^{10,11}.

Условия экспериментов. Результаты

Изотоп ¹⁶³ Тт получался в реакции расщепления тантала протонами с энергией 680 *МэВ*. Интенсивность внутреннего протониого пучка синхроциклотрона ОИЯИ составляла 2,3 *мкА*. После облучения танталовых мишеней производнлось выделение элементов группы редких земель, которые разделялись хроматографическим методом ¹². Активность тулия использовалась для измерений спектров конверсионных электронов на бета - спектрографах с постоянным однородным магнятным полем и разрешающей способностью О.ОЗ-О.О7%.

В измерениях спектров γ -лучей и γ - γ -совпаденни применялись радиоактивные источники ¹⁶³ Тт, полученные разделением изотопов тулиевой фракции на электромагнитном масс-сепараторе ^{/15/}. Исследования спектров выполнены с помощью Ge(Li)-детекторов с чувствительными объемами 1 см³/разрешение O,6 кэВ для γ -пере-

хода 122 кэВ/ и 38 см³/разрешение 3,5 кэВ для у-перехода 1332 кэВ/. После накопления спектров в 4096канальном амплитудном анализаторе производилась их обработка с помощью систем со световым карандашом и электронных вычислительных машин /16,17/. Гаммагамма-совпадения были измерены с помощью двух Ge(Li)см³ н детекторов С объемом 22 и 25 энергетическим разрешением 5 кэВ перехода с энердля 1332 кэВ. Была использована система двумергней ных совпадений с цифровыми окнами/17/. Временное разрешение схемы совпалений составляло 170 нс.

В табл. 1 представлены результаты исследования спектров у -лучей и конверсионных электронов; определены мультипольности переходов и их полные интенсивности. Шкалы относительных интенсивностей у -лучей и конверсионных электронов согласованы с использованием теоретического значения а. (М1) = 2,06 для перехода 104,3 кэВ. Мультипольность этого перехода - M1+ < 1.0% Е2 определена при сравнении наших экспериментальных и теоретических. (18.) отношений интенсивностей K/L_1 , L_1/L_2 , L_2/L_3 , M_1/M_2 и M_1/M_3 конверсионных линий. Относительные интенсивности в табл. 1 выражены в единицах, установленных в предположении, что полная интенсивность всех у переходов, идущих в основное состояние ¹⁶³ Ег /см. схему рис. 1,2/, равна 10000. Принимая интенсивность бета-распада в основное состояные¹⁶³ Ег малой, можно считать, что 10,000 единиц полному числу распадов 163 Tm. Укасостветствуют занные в табл. 1 ошнбки в определении энергий и относительных интенсивностей у -лучей являются среднеквадратическими и включают в себя как случайные ощибки. так и ошибки калибровочной процедуры. Погрешности в определении относительных интенсивностей линий конверснонных электронов не превышают 30%. Для отношений интенсивностей близких по энергии линий погрешности меньше. Ошибки в измерении интенсивностей конверснонных линий с энергией менее 30 кэВ могут достигать 50%. Полные интенсивности у -переходов вычислялись с использованием измеренных интенсивностей

сn

у -лучей и теоретических коэффициентов внутренней конверсии для мультипольностей, указанных ь столбце 10 *табл. 1.* Мультипольности переходов были установлены сравнением экспериментальных значений a_k с расчетными величинами коэффициентов внутренней конверсии на К - оболочке иля сравиением отношений интенсивностей электронов внутренней конверсии (K/L₁, L₁/L₂, L₂/L₃, M₁/M₂ M₁/M₃) с расчетными значениями этих величин ¹¹⁶⁷. Результаты измерений у- у - совпадений даны в *табл.* 2, они служили основой для построения схемы распада ¹⁶³ Tm /см. *рис.* 1 и 2/. Всего при распаде ¹⁶³ Tm обнаружено ²³⁵ у -переходов /ранее⁴⁶. было известно 130/, мультипольность определена для 148 у-переходов /ранее⁶⁷ для 95/. Изомерного состояния ¹⁶³ Tm с Т_{1/2} = 11 мин, о котором сообщалось в ¹¹⁰ мы не наблюдалн.

Схема распада 163 Tm

На рис. 1 и 2 изображена предлагаемая нами схема распада ¹⁶³ Тт. Возбужденные состояния ¹⁶³ Ег мы вводим только на основе результатов опытов по γ - γ -совпадениям. На рисунках γ -переходы, для которых уверенно /предположительно/ установлены совпадения с другими γ -переходами отмечены черными /светлыми/ кружками. В связи с этим из 35 возбужденных состояний ¹⁶³ Ег, предлагаемых в ^{/5,6/}, на рис. 1,2 изображено лишь 18. Мы впервые вводим возбужденные уровни с энергней 735,3; 1514,2; 1569,7 и 1593,0 кэВ. В схеме распада размещено 74 γ -перехода. Полная интексивность неразмещенных 180 переходов составляет 16% от суммарной интенсивности γ -переходов, указаных в maGA.1, или ~40% от полного числа распадов ¹⁶³ Тт. Используя оценки интенсивности заселения уровней ¹⁶³ Ег и значение энергии распада ¹⁶³ Тт, равное по/20/2,4 МэВ, мы вычислили нижные пределы значений log ft для бетараспада и электронного захвата /см. рис. 1,2/.

1/2-(411) 1/2-(411)

Спин.четность и асимптотические квантовые числа основного состояния 163 Er, 5/27/523/, были однозначно установлены при изучении β -распада $163 \text{ Er} \rightarrow 163 \text{ Ho}^{/21/2}$ Значение спина -5/2 было подтверждено прямыми измерениями /22/. Согласно расчетам /23/, состояние 5/27/523/ является для¹⁶³Ег основным, если параметры деформации равны $\epsilon_2 = 0.252$ и $\epsilon_4 = -0.007$. Магнитный момент и внутренний квалрупольный момент основного состояния 163 Er определены Экстремом и др. /24/: µ = /0.56+ ±0,03/ яд.магн. и Q₀ = /6,15±0,55/ барн. Внутренний квадрупольный момент этого состояния, равный Q₀ = = /7,3+0,7/ барн, измерен также в 77. Ротационные уровни одноквазичастичных состояний 5/2⁻/523/, 3/2⁻/521/ и 1/2⁻/521/ наблюдались при распаде¹⁶³ Тm^{-3,6} а также в ядерных реакциях (d,p) и (d,t)^{/1.} При исследованин реакции $(a, 2n_v)$ в /2. были обнаружены развитые ротационные полосы состояний 5/2 /523/, 3/2 /521/ и 11/27/505/, но не наблюдалась вращательная полоса состояния 1/2 /521/. В /1/ вводятся также ротационные уровни состояний 5/2 /512/, 1/2-/530/ и 1/2-/510/, которые в других экспериментах не проявились.

Основное состояние $5/2^{-}/523/$. При бетараспаде ¹⁶³ Тт возбуждается только первый ротационный уровень с E_{yp} = 83,96 кэВ и 1⁷ = 7/2⁻. Мультипольность перехода 83,96 кзВ - Е2 с небольшой возможной примесью М1.В ядерных реакциях^{/1.3/} наблюдаются члены вращательной полосы этого состояния вплоть до уровня со спином 11/2.

Состояние $3/2^{-}/521/$ с энергией 104,27 кэВ. При распаде ¹⁶³ Тт наблюдаются все возможные внутриполосные переходы, возникающие при разрядке уровней $5/2^{-}$ к $7/2^{-}$ этой чолосы, а также переходы на уровни $7/2^{-}$ и $5/2^{-}/523/$. Определены мультипольности всех этих переходов. Мы наблюдаем переход с энергией 111,7 кэВ мультипольности M1.Он может происходить между уровнями 9/2 и 7/2 рассматриваемой полосы, и тогда энергия уровня 9/2 $3/2^{-}/521/$ равна 360,6 кэВ. В реакции (d,t) обнаружен уровень с близкой энергией: 359 кэВ, которому приписаны квантовые числа 9/2 $3/2^{-}/521/$.

Ротационная полоса состояния 1/2 /521/ с энергчей 345,7 кэВ в ядерных реакциях (d, p) и (d,t) наблюдалась до уровня этой полосы со спинами 1/2, 3/2 и 5/2. В настоящей работе обнаружены у -переходы 35,32 кэВ (М1)и 93,75кзВ (Е2), которые являются внутриполосными переходами, разряжающими уровень 5/2 1/2⁻/521/с энергией 439,6 кэВ. Таким образом, при распаде ¹⁶³ Тт наблюдаются все внутриполосные переходы между уровнями 1/2, 3/2 и 5/2 рассматриваемой полосы и у -переходы на вращательные уровни состояний 5/2⁻/523/ и 3/2⁻/521/. Определены мультипольности всех этих переходов.

Ротацнонная полоса состояния $5/2^+/642/$ с энергией 69,22 кэВ наблюдалась до уровня со спином $29/2^{-2'}$. В ядерных реакциях (d, p) и (d, t) возбуждались уровни $5/2^+$, $7/2^+$ н $9/2^+$ этой полосы. При бета-распаде обнаружены уровни со спином и четностью $5/2^+$, $7/2^+$ и, вероятно, $9/2^+$. Нами была определена мультипольность внутриполосных переходов 22,32 кэВ /Ml + 6%E2 / и 28,81 кэВ/Ml+0,5%E2), разряжающих уровни $7/2^+$ и 9/2 *этой полосы.

Состояние 3/2⁺1/4O2/+/651/1 с энергней 462,5 кэВ было обнаружено в ядерных реакциях (d,p) н (d,t) ¹. Данное состояние заселяется н при бета-распаде. Нами впервые были найдены переходы с энергней 298,1 кэВ - ЕІ и 371,3 кэВ, разряжающие уровень с энергией 462,5 кэВ. Мы определили мультипольности переходов 358,1 кэВ -ЕІ н 393,4 кэВ - М1, связанных с рассматриваемым состоянием. Ротационная полоса, выстроенная над уровнем 462,5 кэВ, не наблюдалась.

Состояние $1/2^{1}/400/+/660/$ с энергней 540,5 кэВ установлено в ядерных реакциях (d,p) и (d,t). Оно возбуждается и при бета-распаде ¹⁶³ Тт. Нами определена мультипольность перехода 471,2 кэВ - Е2 с этого уровня на уровень 69,22 кэВ, $5/2^{+}/642/$. Предполагается, что уровень 619,4 кэВ с $1^{\pi} = 3/2^{+}$ принадлежит к вращательной полосе данного состояния.

Второе состояние 3/2¹/4O2/ + /651/1 с энергией 735,3 кэВ обнаружено нами впервые. Оно введено на

основе совпадений переходов 665,9 кэВ с 69,21 кзВ и 389,8 кэВ с 345,7 кзВ. Спин и четность рассматриваемого уровня определены однозначно на основе установленных мультипольностей у-переходов.

Уровни трехквазичастичного мультиплетая 5/2 /523/. р7/2⁻/523/р1/2⁺ /411/3 с энергией 1538,6 кэВ - К^п = = $3/2^+$ н 1801.5 кэВ-К^{π} = $1/2^+$ рассматривались в работах /5,6/. Нами подтверждается их введение на основе измерения у-у - совпадений. Дополнительно установлено, что уровень с энергией 1801,5 кэВ разряжается перехо-, 1066,2 кэВ - M1 и, вероятно, дами 1697.3 кэВ - E1 1260,6 кэВ - М1. Введены новые уровни с энергией 1514.2: 1569.7 и 1593.О кэВ со спином и четностью 3/2⁺. близости их к трехквазичастичному уровню Ввилу 1538,6 кэВ с $K^{\pi} = 3/2^+$ следует ожидать, что их волновая функция имеет значительную примесь трехквазичастичной компоненты. Отметим. что переход с уровня $3/2^+$ кэВ на уровень 3/2 1/2 /521/ - 404.06 кэВ -1569.7 не обнаружен. Его возможная интенсивность меньше 1/5 нитенсивностей переходов на уровни 1/2 и 5/2 той же полосы. Возможные объяснения этого явления даны в pañorax /25,26/.

Тот факт, что из 235у-переходов в схеме распада /puc. 1,2/ размещено только 74 перехода, показывает, что при распаде ¹⁶³ Tm возбуждается еще много слабо заселяемых уровней ¹⁶³ Er. Для построения более полной схемы распада ¹⁶³ Tm необходимы дополнительные исследования. Важно повысить точность определения энергий и интенсивностей переходов, продолжить исследования y-y-совпадений, более точно определить энергию распада и т.д. Исследования распада ¹⁶³ Tm будут продолжены в нашей лаборатории.

ь заключение авторы выражают глубокую благодарность профессорам В.П.Джелепову и Г.Музиолю за поддержку настоящих исследований, Н.И.Пятову и М.И.Базнату за полезные дискуссии, Н.А.Лебедеву за проведекие раднохимических работ и И.И.Громовой за изготовление масс-сепарированных источников.

		элект	ронов п	м распа,	ge ¹⁶³ Tm			.,		
E _J (AEJ) .ROB	(ړام)ړ ا	I _K	ų	LμΠ	ЦШ	INI	IMI	INU	Мультипольн.	Іполн.
l	2	3	4		6	7	8	9	10	
22,32(2) ^a)	•		10	20	30				MI+6% B2	97
28,8I(3) ^{a)}			10	3	~ 2	3	0,8		MI±0,5%E2	16
35,52(3) ^{a)}			6	0,8					MI	8,8
58,35(3) a)			~ 2							~4
60,10(3) ^{&)}	II4(20)		112	32	28	32	8	7	₩1+3,2%E2	1510
63,67(5)	10,3(16)	~7	I						E1	51
69,21(4) ^{a)}	1090(100)	500	50	13	20	I4	4	6	EI	2020
72,83(4)	9(2)	10							EI	25
77,98(5)	8,5(15)	4							<u>NI</u>	14
80,44(3) a)	47(5)	.110	20	~ 2	۲٥,4				MI	302
83,96(3) a)	65(8)	80	9,4	62	56				E2	450
85,12(4) a)	35(4)	80	9	1,6	1				Ш	233
91,53(4) ^{a)}	33(4)	8							EI	46
93,75(10) ^{a)}	2,3	2							(E2)	9,7
96,3 5(IO)	4,0(14)	≴ı							EI	6
97,41(7)	10,7(18)	~ 40							(MI)	45
98,29(7)	9,1(17)	1,2							EI	12
104,30(4) ⁸⁾	1940(200)	4000	560	42	в				MI	6940
III, IO (15) ^{a)}	I,3(7)	2							MI	4,5

Таблица І

Энергии Д-переходов и относительные интенсивности Д-лучей и конверсионных

1

:

I			4		6	?	88	10	<u> </u>
118,65(5)	12(2)	1,8						EI	14
129,19(5)	10(1)	~ 1						EI	11
145,28(6)	13(2)	8	1,2	~ 5	~ 5			F,2	27
147,7(2)	1,6(6)	1,6						MI	3
152,7(I)	7,4(13)	~ 0.4						EI	8
153,37(10)	9,5(16)	3						E2	15
161,29(6)	16,9(18)	2					•	EI	18
164,40(6) ⁸⁾	97(10)	70	10	1				MI	1 70
165,51(10) ^a)	4(2)	2,2	0,4	< 0,2				MI	6
190,06(7) ⁸⁾	128(10)	84	12	~1,2	40.4			MI	188
225,4(3)	3,5(14)	0,6						12, MI	
239,62(I0) ⁸⁾	408(32)	80	16	Ι,2	£0,4			MI	515
241,40(10) ⁸⁾	928(90)	200	30	3	٤0,4			M.T.	1160
249,5(10) ⁸⁾	7,4(13)	2						MI	9
275,19(10) ^{B)}	238(28)	50	6	0,5	۷,2			MI	280
287,6(4)	4(2)								
289,8(3)	6,8(34)								
298,1(2) ^{a)}	33(4)	51						EI	33
299,74(I5) ⁸⁾	408(40)	70	10	0,8	20,3			MI	466
320,I(2) ^{a)}	29(6)	1,6	0,2	0,16				E2	33
331,4(2) ^a)	21(4)	0,4						EI	21
335,3(2) ^{a)}	56(6)	ธ่	1,2	0,2				MI	62
338,1(2) ^{a)}	7(2)	I,B	0,3	₹0,1				M.	8
345,7(2) a)	105(12)	4	0,6					E2	113
355,5(2) a)	47(5)	2,4	~0,3					MI	50
			- /-						

Таблица 1 (продолжение)

ដ

Таблица I (продолжение)

Еу(аЕу) КЭВ	Iy(a Iy)	1 _K	I' I	ι _Π	1. _Ш	Мультыполь- ность	Incin
358,1(2) ⁿ	72(6)	I,4	0,2			E1	74
371,3(5) ^{a)}	6(2)						6
376,9(3)	14(4)	018				MI	15
389,8(2) ⁸⁾	29(4)	0,3				EI	29
393,4(2) ^{a)}	124(20)	8	1,2	0,2		MI	132
404,1(2) ^a)	99(20)	4,4	0,8	0,4	0,2	MI	Iu5
4II,8(3)	16(3)	0,6				E2,MI	
422,4(4)	I6(4)						
433,3(3)	9(4)	0,3				E2,MI	
434,8(2)	49(6)	2,6	0,6	0,2		NT.	52
439,6(3) ⁸⁾	31(4)	1,2				MI	33
454,7(4)	22(3)	0,4				E2	23
456,7(2)	I2(4)	I				MI	13
462,0(2)	56(6)	4	0,6			MI	58
469,8(2)	52(10)	0,4				EI	52
47I,2(2) ^{a)}	380(40)	9,8	1,5	0,5	0,24	E2	390
473,7(2)	23(6)	0,6				E2,MI	
484,0(2)	23(8)	0,8				MI	
49I, 0(6)	5(2)						
493,6(5)	I3(5)						
500,4(8)	8(3)						

.

13

.

Таблица	I	(продолжение)

Еу(ДЕ _ў) КЭВ	Iy(aIy)	I _K	ILI	Ι _{ιΠ}	Культи- Польность
504,9(2)	85(I0)	3,2	0,4		MI
515 ,1 (3) ^{a)}	70(10)	0,2			EI
528,3(4)	I3(6)	0,1			E1,E2
529,9(3)	27(6)	0,5			· MI
539,7(5)	5(2)	0,08			E2, MI
550,2(3) ⁸⁾	147(16)	3,6	0,4	0,06	MI
552,9(3)	90(10)	I			12
573,2(3)	25(8)	0,6			MI.
579,6(2) a i	172(18)	5	0,8	<0,2	MI
595,7(3)	20(6)				
598,7(3)	20(6)	~ 0,06			El
607,1(4)	12(4)	≈0,04			EI
612,9(3)	83(I4)	0,6			E2
614,9(3)	35(8)	0,3			E2
633,4(4)	I5(6)	~ 0,06			EI
655,6(3)	73(12)	I,4	0,2		MI
662,2(6)	28(7)				
665,9(2) a)	169(18)	2,6	0,4		MI
674,8(5)	16(6)				
683,8(4) ⁸⁾	43(12)	0,2			E2
687,6(4)	20(6)	0,12			E 2
691,5(3)	49(16)	0,3			E 2
697,0(6)	12(4)				
710,7(4)	7(2)				
714,1(5)	7(2)	~ 0,06			E2, MI
717,4(3)	17(3)				-
727,3(3)	7(3)				
732,0(4)	8(3)	0,1			MI
$735, I(3)^{a}$	12(3)				
742,5(5)	6(2)	~ 0,04			12
747,0(5)	6(2)	~ 0,08			NT
751,5(2)	41(6)	0,3			E2, NI
755,4(3)	25(3)	0,15			E2.NI
758,9(3)	25(3)	0,08			EI,E2
779,8(2)	74(12)	0,3			E2
782 3(5)	21(8)	0,24			MI
790,0(3)	28(6)				

Таблица I (продолжение)

Ey(a Ey) KOB	Iy(\$ Iy)	ıĸ	Мультипольность
l	2		4
798,6(3)	I6(4)	0,16	MI .
803,6(3)	25(4)	0,28	MI
813,0(5)	13(3)	0,06	B2
829,0(7)	5(2)	~ 0,04	E2,MI
834,3(4)	40(5)	0,5	MI
837,6(7)	5(2)		
846,5(5)	I4(4)	≈0,04	EI, E2
859,0(2)	29(6)	0,12	E2
872,5(5)	6(2)		
885,5(2)	40(5 <i>)</i>	0,06	EI
894,2(2)	36(4)	0,24	MI
90I,7(3)	9(3)		
906,9(2)	27(4)	0,08	E2
916,0(3)	18(3)	0,05	E2
928,7(6)	10(2)	0,06	MI
936,4(4)	10(2)	0,03	E2
940,6(2)	45(6)	0,1	E2
945,2(2)	70(8)	0,2	E 2
950(4)	15(4)	0,12	MI
957,3(8)	2(1)		
961,0(6)	6(2)		
975,5(4)	33(6)	0,1	E 2
986,8(4) ^{a)}	20(3)	0,1	MI
990,2(6)	10(2)	\$ 0,03	EI,E2
995,3(4)	18(3)	0,12	MI
1004,6(4)	I8(2)	≈0,02	EI
1011,3(6)	8(2)	న 0,02	EI,E2
1014,8(6)	8(2)	~ 0,02	E2
1018,8(6)	7(2)	<i>≴</i> 0,16	EI, E2
1022,5(7)	5(2)	0,02	E2,41
I028,9(5)	16(3)	0,08	MI
1033,1(5)	16(3)	0,02	EI
1036,2(6)	15(3)	0,04	E2
1039,2(6)	10(5)	0,02	E2

,

Таблица I (продолжение)

<u>l</u>		3	4
1042,6(5)	15(3)	0,06	NI
1046,5(5)	14(3)	0,03	EI , E2
1052,3(5) ^a)	14(2)	0,08	M1
1066,2(5) ^{a)}	20(4)	0,08	MI
1075,0(1)	80(10)	0,06	EI
1090,6(4)	27(3)	0,04	EI,E2
1099,1(1)	50(6)	0,04	EI
1108,0(7)	4,3(18)	~ 0,01	(E2)
1113,0(7)	9(3)		
1130,0(1)	194(22)	0,2	El
1136,0(3)	58(6)	~ 0,03	EI
1142,3(1)	74(10)	0,07	EI
1153,2(1) a)	95(10)	0,08	EI
1168,4(2) ⁸⁾	52(8)	0,04	EI
1175,8(2)	45(6)	0,07	EI, E2
1189,4(4) ^{a)}	12(3)	≈ 0,0I	EI
1192,2(4)	12(3)	0,03	<u>E2</u>
1204,8(I) ^a)	237(26)	0,22	EI
1212,4(6)	7(3)	0,015	E 2
1224,0(1) ^{a)}	202(22)	0,18	EI
1239,8(6)	11(2)	~ 0,01	EI
1247,3(1) ^{a)}	82(10)	0,06	EI
1251,7(6)	16(3)	0,03	E 2
1251,7(6)	16(3)	0,03	E2
1260,6(6) a)	21(6)	0,07	MI
1264,9(I) ^{a)}	494(52)	0,4	El
1272,6(5)	15(3)	£ 0,015	EI
1285,6(3)	33(4)	0,08	E2,MI
1299,8(2) ^{a)}	45(6)	0,14	NI
1302,9(5)	21(4)	ん0,02	El
1306,6(6)	14(3)	0,02	EI , E2
1318,2(I) a)	140(16)	0,12	EI
1322,6(7)	8,7(2)	÷ 0,02	EI,E2
1332,0(5)	11(2)	~ 0,02	E2
1338,5(5)	9(2)		
1349,9(1) ^{a)}	41(6)	0,03	EI
1365,0(9)	4,7(2)		
1374,3(I) ^{a)}	418(26)	0,28	EI
1386,9(3)	100(20)	0,08	EI

.....

Еу(=Еу) КЭВ	Iy(AIy)	I _K	ILI	Мультиколь- вость
1397,4(I) ^{a)}	710(100)	0,6	0.1	EI
I404,9(4) ^{a)}	86(28)	0,05	•	EI
1409,5(5) ^{a)}	78(20)	0,06		EI
1422,8(5)	6(2)	0,01		MI.
1434,3(I) ^{a)}	760(80)	0,6	0,14	EI
1446,0(5)	7(2)			
1455,8(1) ^{a)}	336(36)	0,2	0,15	EI
I465,6(2) a)	179(20)	0,1		EI
1469,4(2) ^{a)}	272(30)	0,6	0,08	MI
1480,8(2) a)	55 (6)	0,12		MI.
I489,0(5) ^{B)}	5(2)			
1500,5(3)	3I(4)	0,06		KE
1513,8(8) ^{a)}	3,3(10)			
1526,1(6)	83(18)	0,05		EI
1532,5(7)	8,3(20)			
1561,5(4)	19(3)	0,02		EI, E2
1569,5(5) ^{a)}	6,4(12)	≈0,02		
1578,0(6)	4,5(10)			
1584,0(6)	37(5)	0,08		MI
1593,3(5) ^{a)}	4,5(10)			
1618,4(5) ^{a)}	4,5(10)			
1627,2(6)	2,5(8)			
1637,8(5)	7(2)			
1649,6(6)	6(2)			
1654,6(5)	7,5(16)			
1662,1(1)	92(10)	0,05		EI
1673,2(4)	6 ,5 (I2)			
1689,1(2)	3I(4)			
1697,3(2) ^{a)}	43(6)	~ 0,02		EI
1709,2(3)	11(2)			
1722,4(2) ^{a)}	47(6)	~ 0,02		EI
1732,8(3)	13(2)	~ 0,02		MI
1742,1(4)	8(1)	0,01		E2
1749,2(1)	93(I2)	~ 0,04		EI

Таблица I (продолжение)

17

Таблица I (продолжение)

Ey(a Ey) KOB	Iy(a Iy)	ıĸ	Цультипольн.
1753,4(4)	16(2)		
1757,1(6)	7(2)		
1767,6(3)	15(2)		
1784,1(2)	36(4)		
1789,0(7)	13(2)		
1792,8(7)	19(3)		
1603,7(1)	115(12)	0,18	<u>HI</u>
1813,5(5)	3,3(8)		
1825,2(3)	17(3)	0,02	ХI
1836,1(5)	3(I)		
1848,5(5)	6(2)		
1853,3(6)	3(I)		
1876,4(4)	I8(3)		
1880,2(6)	3(1)		
1889,5(4)	3(1)		
1913,5(5)	3(I)		
1936,3(2)	3I(4)	< 0,015	EI
1948,2(4)	6(2)		
1957,0(6)	4(I)		
19 70,7(6)	1,3(3)		
1983,1(5)	4(2)		
2017,6(4)	3,5(8)		
2038,5(6)	0,6(2)		
2041,4(4)	1,8(6)		
2052,9(7)	I,4(5)		
2079,8(7)	1,2(4)		

Примечания:

- 1. Полная интенсивность бета-распада принимается за 10000 единиц.
- 2. Значение «_к =2,06 для перехода IO4,3 каВ исп'яьзовалось для связи шкал 2 и 3.
- а) Гамма-переход размещен в схеме распада.

18

ŝ

Таблица 2 Гамма-гамма-совпадения, набладаемые при распаде ¹⁶³ т m			
Еу1, кэв	Eyit x3B a)		
<u>69,21</u>	<u>293.41 471.2: 550.2: 665.9;1469,4</u> 190.6: 239.62: 241.40: 275.19: 299.74:		
104,30	335,3;(358,1), 511,0 ⁰⁾ ;(579,6); 1224,0; 1264,9;(1318,2);1374,3;(1386,9),1397,4; 1434,3;1455,8;1465,6		
164,40(+165,51)	239,62; 275,19;(298,1)		
190,06	85,12; 145,28		
239,62 + 241,40	(60,10); 104,30; 164,40;389,8(1168,4);1224,0; 1397,4; 1455,8		
275,19	I64,40; II30,0		
(298,1)+ 299,74	104,30; (1318,2); 1397,4		
471,2	69,21		
550,0	69,21		
579,6	(104,30)		
665,9	69,21		
1130,0	190,06; 275,19; (353,3)		
1224,0	(104,30); 241,40; 345,7		
1264,9	104,30		
1318,2	(239,62); (299,74)		
1374,3	(104,30); 164,40		
1397,4	104,30; 164,40; 239,62; 299,74;320,1;404,1		
I 43 4,3	104,30		
1455,8	(104,30); 241,40; 345,7		
1469,4	69,21		

а) Совпадения данные в скобках, слабые или сомнительные. Ф) Аннигилляционное излучение.

.

Литература

- 1. P.O.Tjöm, B.Elbek. Mat.Fys. Dan. Selsk., 37, 407 /1969/.
- 2. S.A.Hjorth, H.Ryde, K.A.Hagemann, G.Luhiden, J.C. Waddington. Nucl. Phys., A144, 513 /1970/.
- 3. B.Harmatz, T.H.Handley, J.W.Mihelich. Phys. Rev.,
- 128, 1186 /1962/. 4. К.Я.Громов, Б.С.Джелепов, В.Звольска, И.Звольский, 7. 182 В.Г.Калинников. Изв. АН СССР, сер. физ., 27, 182 /1963/.
- 5. В.Гнатович, К.Я.Громов, М.Фингер, В.Врзал, Я.Липтак, Я.Урбанец. Изв. АН СССР, сер. физ., 31, 587 /1967/.
- 6. А.А.Абдуразаков, К.Я.Громов, Т.А.Исламов, Х.Штрусный. Препринт ОИЯИ, Р6-5132, Дубна, 1970.
- 7. W.Andreitscheff, P.Manfrass, H.Prade, K.D.Schilling, G.Winter, H.Fuia, R.Ion-Mihai, A.B.Khalikulov, V.A.Morozov, N.Z.Marupov, T.M.Muminov. Nucl. Phys., A220, 438 /1974/.
- 8.S.G.Schmelling, H.A.Shugart. Bull.Am. Phys.Soc.. 12, 1046 /1967/.
- 9. I.Adam, K.Ya.Gron ov, M.Honusek, T.A.Islamov, A.Sh.Khamidov, V.V.Kuznetsov, H.-G.Ortlepp, H.-U.Siebert, H.Strusny. Nucl. Phys., A254,63 /1975/.
- 10. И.Адам, Ц.Вылов, К.Я.Громов, И.И.Громова, Т.А.Исламов, И.Ржиковска, З.А.Усманова, В.И.Фоминых, Х.Штрусный. Программа и тезисы докладов XXIII Совещания по ядерной спектроскопии и структуре атомного ядра. Тбилиси, 1973, стр. 92.
- 11. H.Strusny, I.Adam, K.Ya.Gromov, T.A.Islamov. Annual Report ZFK-283, Rossendorf, p. 37 /1974/.
- 12. Б.К.Преображенский, В.А.Калямин, О.М.Лилова, А.Н.Добронравова, Е.Д.Тетерин. ЖАХ, 1, 1094 /1956/.
- 13. А.Ф.Новгородов, В.Л.Кочетков, Н.А.Лебедев, В.А.Халкин. Радиохимия, 6, вып. 1, 73 /1964/.
- 14. А.А.Абдуразаков, А.И.Ахмаджанов, К.Я.Громов, Т.А.Исламов, Ш.М.Камолходжаев, М.К.Прокофьев. Препринт ОИЯИ, Р6-4363, Дубна, 1969.
- 15. В.П.Афанасьев, А.Т.Василенко, И.И.Громова, Ж.Т.Желев, В.В.Кузнецов, М.Я.Кузнецова, Д.Мончка, Ю.Поморски, В.И.Райко, А.В.Ревенко, В.М.Сороко, В.А. Уткин. Сообщение ОИЯИ, 13-4763, Дубна, 1969. 16. Р.Арльт, Г.Винтер, С.В.Медведь, Г.Музиоль,
- А.Н.Синаев, З.А.Усманова, Д.Фром, Н.А.Чистов, Х.Штрусный. ПТЭ, 6 /1972/.
- 17. В.С.Александров, Ф.Дуда, О.И.Елизаров, Г.П.Жуков,

Г.И.Забиякин, З.Зайдлер, Е.Т.Кондрат, З.В.Лысенко, В.И.Фоминых, В.Г.Тишин, М.И.Фоминых, В.М.Цупко-Ситников. Изв. АН СССР, сер. физ., 34, 69 /1970/.

- 18. R.S. Hager, E.C. Seltzer. Nucl. Data., A4, 1 /1968/.
- К.Я.Громов, В.Г.Калинников, З.Малек, Н.Ненов, Г.Пфреппе, Х.Штрусный, Ж.Т.Желев. Препринт ОИЯЙ, Р6-3945, Дубна, 1968.
- 20. A.H. Wapstra, N.B. Gové. Nuclear Data Tables, 9, 267 /1971/.
- 21. M.E.Bunker, C.W.Reich. Rev.Mod.Phys., 43, 348 /1971/.
- 22. S.Stein, A.T.Ramsey. Phys.Rev., 179, 1170 /1969/.
- 23. C. Ekstrom, I.-L. Lamm. Physica Scripta, 7, 31 /1973/.
- 24. G. Ékstrőm, S. Ingelman, M. Olsmats. Nucl. Phys., A 194, 237 /1972/.
- S.G.Malmskog, A.Marelins, S.Wahlborn. Nucl. Phys., A103, 481 /1967/.
- G. Winter, L. Funke, P.Kemnitz, H.Sodan. Nucl. Phys., A199, 1 /1973/.