ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

6-96-136

На правах рукописи УДК 539.165

ЮЛДАШЕВ Мехмон Буриевич

1-0-319

НИЗКОСПИНОВЫЕ СОСТОЯНИЯ ЯДРА ¹⁴⁷Gd. РАЗНОСТИ МАСС НУКЛИДОВ, УДАЛЁННЫХ ОТ ПОЛОСЫ БЕТА-СТАБИЛЬНОСТИ

Специальность: 01.04.16 — физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 1996

Работа выполнена в Лаборатории ядерных проблем •Объединенный институт ядерных исследований

Научный руководитель:

доктор физико-математическиж наук, профессор, член-корреспондент АН РУЗ Толиб Мусаевич МУМИНОВ

Официальные оппоненты:

доктор физико-математических наук Леонард Александрович МАЛОВ кандидат физико-математических наук Константин Андреевич МЕЗИЛЕВ

Ведущая организация:

Российский университет дружбы народов, г. Москва

Автореферат разослан "____"

Защита диссертации состоится "_____ 1996 года в <<___>> часов на заседаний диссертационного совета Д 047.01.03 при Лаборатории ядерных проблем Объединенного института ядерных исследований, г. Дубна, Московская область.

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

1996 года.

Ученый секретарь . диссертационного совета доктор физико-математических наук Батусов Ю.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В настоящее время значительное внимание уделяется исследованию СВОЙСТВ ядер. удалённых полосы ОТ В-стабильности. Характерная особенность этих ядер состоит в том. что энергия связи избыточных нуклонов мала (приближается к нулю у границ нуклонной стабильности), а энергия связи дефицитных нуклонов велика - с ростом дефицита достигает 20-30 МэВ. Асимметрия в величине энергии связи обоих типов нуклонов резко отличает рассматриваемые ядра от ядер в области в-стабильности, у которых энергии связи протонов и нейтронов близки. Эта особенность должна существенным образом сказаться на характере внутриядерных движений нуклонов. равновесной и динамической форме ядра. возбуждённых спектроскопических характеристиках состояний. вероятностях всех видов ядерных переходов, характере массовой поверхности атомных ядер. В последующие годы выполнено ряд исследований, предсказывающих неизвестные ранее свойства ядер, удалённых от стабильных, открыты новые физические явления. Развиты теоретические подходы, объясняющие эти новые явления.

Для проверки и развития теоретических моделей атомного ядра необходимо получение новой экспериментальной информации о свойствах удалённых ядер. С этой целью в ряде научных центров развиваются программы экспериментальных исследований ядер, удалённых от стабильных. Важное место среди них занимают экспериментальные комплексы, использующие сепараторы изотопов в режиме on-line с пучком частиц, производящих в ядерных реакциях нуклиды, удалённые от полосы стабильности. Структура удалённых нуклидов изучается методами прецизионной ядерной спектроскопии.

BOLCANECHING SHOTETYT BRHEMA ECCIPTION ENE 21.12

Настоящая работа выполнена в рамках программы ЯСНАПП-2 – программы исследований свойств ядер, удалённых от полосы бета-стабильности, с использованием методов ядерной спектроскопии высокого разрешения в линию с масс-сепаратором и пучком протонов с энергией 660 МэВ от фазотрона ОИЯИ.

В диссертации разработаны две научные проблемы, оказавшиеся доступными для эффективного экспериментального исследования на экспериментальном комплексе ЯСНАПП-2:

 Исследование низкоспиновых возбужденных состояний ядра гадолиния-147, представляющего собой частицу (нейтрон) в поле дважды магического остова (ядро ¹⁴⁶₆₄Gd_m).

2. Измерения разностей масс нуклидов при в-распаде.

Первая проблема представляет интерес в связи с тем, что структура ядер, близких к магическим, хорошо описывается оболочечной моделью ядра и это позволяет проверить точность (применимость) различных теоретических подходов для описания строения ядра.

Масса (энергия связи) является из одним главных свойств атомного ядра. Экспериментальные данные о массах атомных ядер сравниваются с предсказаниями моделей атомного ядра, многочисленными формулами для расчётов массовых характеристик ядер. Это даёт основу для дальнейшего развития теории ядра. Экспериментальные данные о разностях масс ядер при β-распаде необходимы также при анализе схем распада для вычислений вероятностей β-распада на уровни дочерних ядер.

В диссертацию включены также исследования, посвященные развитию и созданию новых экспериментальных методов на комплексе ЯСНАПП-2. Основные цели работы: получение новой информации о свойствах атомных ядер, удалённых от полосы бета-стабильности:

1. Развитие на экспериментальном комплексе ЯСНАПП-2 новых прецизионных методов исследования свойств короткоживущих нуклидов, в том числе

а) создание β-спектрометра с полупроводниковым детектором
 электронов и магнитным фильтром типа мини-апельсин для измерения
 коэффициентов внутренней конверсии гамма-переходов;

б) оценка точности определения граничных энергий позитронных спектров и разностей масс ядер при β⁺-распаде по методике, развитой ранее для исследований на комплексе ЯСНАПП-2.

2. Исследование схемы распада низкоспинового изомера 1/2⁺ ^{147g}Tb с целью получения экспериментальных данных о свойствах низкоспиновых состояний ядра ¹⁴⁷Gd.

3. Измерения разностей масс ядер, удалённых от полосы бетастабильности. при их бета-распаде.

Научная новизна:

\$

1. На экспериментальном ИЗОЛЬ-комплексе ЯСНАПП-2

 а) создан β-спектрометр с магнитным фильтром типа миниапельсин и развита методика измерения коэффициентов внутренней конверсии γ-переходов при распаде короткоживущих ядер,

б) завершено развитие методов измерения граничной энергии позитронных спектров и определения разностей масс удалённых от бета-стабильности ядер при их бета-распаде.

2. При исследовании β -распада изомера $1/2^{+147}$ ть впервые идентифицированы состояние ¹⁴⁷Gd с энергией 1948 кэв типа $2f_{5/2}$ и состояние 1628 кэв с $I^{\pi}=5/2^{+}$ мультиплета ($vf_{7/2} \times 3^{-}$). Указано на

2

возможность интерпретации уровней 2233 и 2329 кэВ, как членов мультиплета ($\upsilon f_{7/2} \times 2^+$) с $I^{\pi} = 5/2^-$ и $3/2^-$. Показано, что группа возбужденных состояний с энергией $3.7 \div 4.4$ МэВ имеет заметную примесь компонента ($\pi s_{1/2}, \pi h_{11/2}, \upsilon h_{9/2}$), позволяющего ядру ^{147g}Tb реализовать Гамов-Теллеровские переходы типа спин-флип. **3.** Впервые измерены разности масс при β -распаде для двенадцати

удалённых от полосы бета-стабильности нуклидов редкоземельной области.

Практическая ценность. Развитые методики измерения коэффициентов внутренней конверсии у-переходов при распаде короткоживущих нуклидов и измерения граничных энергий позитронных спектров открывают новые возможности для исследований по программе ЯСНАПП-2 и могут быть использованы в исследованиях на ИЗОЛЬкомплексах в других институтах.

Экспериментальные результаты о свойствах низкоспиновых состояний ядра ¹⁴⁷Gd будут полезны для проверки применимости и точности различных теоретических подходов к расчёту свойств ядер, близких к дважды магическому ¹⁴⁶Gd₆₂.

Измеренные разности масс при бета-распаде двенадцати удалённых от стабильных ядер будут использованы для проверки точности различных подходов к расчётам массовых характеристик атомных ядер.

Автор защищает:

 а) Создание установки и развитие методики определения коэффициентов внутренней конверсии у-переходов при распаде короткоживущих нуклидов.

4

б) Завершение разработки методов измерения граничных энергий позитронных спектров и определения разностей масс при β-распаде короткоживущих, удалённых от стабильных ядер.

 Экспериментальные результаты исследований свойств низкоспиновых возбуждённых состояний ядра ¹⁴⁷Gd и их анализ в рамках оболочечной модели ядра.

 Результаты измерений разностей масс при β-распаде двенадцати короткоживущих нуклидов.

Аппробация работы. Представляемые в диссертации результаты докладывались на семинарах НЭОЯС и РХ ЛЯП ОИЯИ и НИИПФ ТашГУ, на Международных конференциях по ядерной спектроскопии в Алма-Ате (1992г), Дубне(1993г), Петергофе(1994г), Санкт-Петербурге(1995г), по атомным массам и константам в Арле, Франция(1995г) и опубликованы в следующих статьях:

1. Я.Ваврыщук, К.Я.Громов, В.Г.Калинников, В.В.Кузнецов,

Н. А. Лебедев, Т. М. Муминов, А. В. Потемпа, Я. А. Сайдимов, В. И. Фоминых,
 М. Б. Юлдашев, Ю. В. Юшкевич "Схема распада ¹⁴⁷ Tb(T_{1/2}=1.7 час)"
 – Тезисы докладов 43-го совещания по ядерной спектроскопии и

структура атомного ядра, Дубна, 1993, Санкт-Петербург, с.71.

Я. Ваврыщук, А. В. Потемпа, К. Я. Громов, В. Г. Калинников, Т. М. Муминов,
 Я. А. Сайдимов, Н. Ю. Котовский, Ж. Сэрээтэр, В. И. Фоминых, М. Б. Юлдашев
 "Бета-распад¹⁴⁷ Тb. Низкоспиновые состояния в¹⁴⁷ Gd"

- Сообщения ОИЯИ, Дубна, Р6-93-275, 1993.

 Г.В.Веселов, К.Я.Громов, С.В.Евтисов, С.С.Елисеев, В.Г.Калинников,
 В.В.Кузнецов, А.В.Потемпа, Ж.Сэрээтэр, В.И.Фоминых, М.Б.Юлдашев "Определение энергий распада нейтронодефицитных ядер редкоземельных элементов в диапазоне масс А=139-164".

- Изв.РАН, сер. физ.,т.58, №5, с.41÷46, 1994г.

- Сообщения ОИЯИ, Дубна, Р6-93-386, 1993.

А. В. Потемпа, К. Я. Громов, С. В. Евтисов, В. Г. Калинников,

В.В.Кузнецов, Ж.Сэрээтэр, В.И.Фоминых, М.Юлдашев "Определение граничных энергий β^{*}-спектров короткоживущих нуклидов редкоземельных элементов"

- Тезисы докладов 43-го совещания по ядерной спектроскопии и структура атомного ядра, Дубна, 1993, с.78
- 4. Ж.Сэрээтэр, М.Б.Юлдашев, В.М.Горожанкин, К.Я.Громов,

В.Г.Калинников, В.В.Кузнецов, Б.П.Осипенко, В.И.Фоминых, "Установка для измерения спектров ЭВК и еγ-совпадений"

- Тезисы докладов 44-го Совещания по ядерной спектроскопии и структуре атомного ядра. Санкт-Петербург, 1994, с.340.
- Препринт ОИЯИ, Р13-94-267, 1994
- Б.И. ФОМИНЫХ, Я. Ваврыщук, Г. В. Веселов, К. Я. Громов, М. Левандовски, А. В. Потемпа. Ж. Сэрээтэр, М. Б. Юлдашев.

"Спектрометрическая установка для изучения свойств

короткоживущих нуклидов"

- ПТЭ, №5, стр.19, 1995г.

- Препринт ОИЯИ, Р13-94-394, 1994г.

- 6. Я.Ваврыщук, К.Я.Громов, В.И.Фоминых, В.Г.Чумин, М.Б.Юлдашев
 "Тонкая структура α-спектра изомеров ¹⁵¹ но"
 - Тезисы докладов 45-го совещания по ядерной спектроскопии и структуре атомного ядра, Санкт-Петербург, 1995, с.70.
 - Изв.РАН, сер. физ.,т.59, №11, с.92, 1995г.
 - Препринт ОИЯИ, Р6-95-300, 1995г.
- 7. J. Wawryszczuk, V.I.Fominykh, K.Ja.Gromov, V.G.Kalinnikov,

6

Zh.Sereeter, M.B.Yuldashev "Internal conversion electrons in the β -decay of ^{147g}Tb"

- Proc.of the 45th Conf. on Nucl.Spectr. and Nucl.

Structure, S.Peterburg 1995, p.67.

- 8. В.М.Горожанкин, К.Я.Громов, В.Г.Калинников, Ш.Р.Маликов,
 Т.М.Муминов, М.Б.Юлдашев "Спин и чётность уровней 1579 кэВ и
 2165 кэВ в ¹⁴⁶₆₄Gd₈₂ при распаде ¹⁴⁶ Тb"
 - Препринт ОИЯИ, Дубна, Р6-95-415, 1995.
- 9. Г.В.Веселов, К.Я.Громов, В.Г.Калинников, Н.Ю.Котовский,
 - А.В.Потемпа, В.А.Сергиенко, В.И.Фоминых, М.Б.Юлдашев

"Определение энергий бета-распада изотопов редкоземельных

элементов в диапазоне масс А=134-141",

– Изв.РАН, сер. физ.,т.59, №11, с.55, 1995.

- Препринт ОИЯИ, Дубна, Р6-95-257, 1995.
- 10. J.Wawryszczuk, M.B.Yuldashev, K.Ya.Gromov, V.I.Fominykh, Zh.Sereeter, V.G.Kalinnikov, N.Yu.Kotovskij, K.V.Kalyapkin, A.W.Potempa, I.N.Izosimov, M.Yu.Myakushin, A.A.Rimskij-Korsakov, T.M.Muminov
 - "Low-spin states of ${}^{147}_{64}$ Gd₈₂ in the β -decay of 147g Tb"
 - Submitted to Zeitschrift für Physic A
 - Препринт ОИЯИ, Дубна, Р6-95-514, 1995.

ŵ

- 11. K.Ya.Gromov, G.V.Veselov, V.G.Kalinnikov, N.Yu.Kotovski, A.V.Potempa, V.A.Sergienko, V.I.Fominykh, M.B.Yuldashev "Beta-decay energies of some rare-earth nuclei with A=134-140"
 - Intern.Conf. on Exotic Nuclei and Atomic Masses, ENAM95, Arles, France, june 19-23, 1995, Abstracts of Contributed papers, p.PA7.

7.

<u>Структура и объём работы.</u> Диссертация состоит из введения, трёх глав и заключения. Общий объём диссертации составляет 131 страниц машинописного текста, включая 47 рисунков, 7 таблиц и список цитированной литературы из 100 наименований.

Краткое содержание работы

Во введении дано обоснование выбора темы диссертации, актуальности и важности исследуемых проблем. Приведена структура диссертации.

<u>В первой главе</u> описана экспериментальная методика использованная в исследованиях, представляемых в диссертации.

Нуклиды, удалённые от полосы бета-стабильности получали на экспериментальном ИЗОЛЬ-комплексе ЯСНАПП-2 при облучении мишеней на выведенном протонном пучке фазотрона ОИЯИ. Исследования выполнены на спектрометрической установке для исследования α-, β- и у-излучений при распаде короткоживущих нуклидов с Т., ≥1 с. Применялись детекторы излучений, отвечающие современному мировому уровню экспериментальной техники. При создании электронных схем регистрации излучений и управления экспериментом применялись стандартные фирменные и разработанные в отделе электроники ЛЯП блоки. Используется транспортное устройство типа монетного автомата, обеспечивающее быструю (~0.5 с) доставку короткоживущих нуклидов от ионного пучка масс-сепаратора к детекторам излучений. Спектрометрическая установка обеспечивает возможность изучения спектров излучений и их (EE)- и (EEt)-корреляций. Соискатель принимал участие в освоении и развитии спектрометрической установки. Установка используется в исследованиях по программе ЯСНАПП-2 в ЛЯП ОИЯИ с 1987 года. Представленные в диссертации результаты

являются частью этих исследований.

V

Для измерения коэффициентов внутренней конверсии γ -переходов при распаде короткоживущих нуклидов создан β -спектрометр с полупроводниковым детектором электронов и магнитным фильтром типа мини-апельсин. Показано, что использование магнитного фильтра увеличивает эффективность регистрации электронов в 25-30 раз при энергии электронов ~250 кэВ (рис.1) и в 7-8 раз при энергии электронов ~1400 кэВ. Важным примуществом β -спектроскопии с миниапельсином при исследовании спектров ЭВК короткоживущих нейтронодефицитных нуклидов является возможность исключить регистрацию позитронов; возникающих при β^+ -распаде изучаемых нуклидов и затрудняющих (или исключающих) обнаружение относительно слабых конверсионных линий. Показано, что применение магнитного фильтра понижает сплошной позитронный фон более чем в 250 раз.

8

Трансмиссия β -спектрометра с магнитным фильтром сильно зависит от энергии регистрируемых электронов и меняется при незначительных изменениях расположения источника излучения, магнита миниапельсина и детектора электронов. Чтобы избежать кропотливой работы по измерению трансмиссии β -спектрометра с магнитным фильтром с разными сборками магнитов миниапельсина в различных геометрических условиях, одновременно с измерением спектра ЭВК с помощью β -спектрометра с магнитным фильтром измеряется спектр γ -лучей. Для калибровки установки измеряются спектры ЭВК и γ -лучей от источников, испускающих γ -лучи с хорошо известными величинами коэффициентов внутренней конверсии. Например в случае γ -переходов между уровнями $2^+ \longrightarrow 0^+$, $4^+ \longrightarrow 2^+$ и т.д. в чётно-чётных ядрах можно использовать расчётные величины КВК. Такая калибровка не требует никакой дополнительной информации о спектрах γ -лучей и ЭВК исследуемого изотопа, что важно при изучении свойств удалённых от β -стабильных ядер. На рис.2 представлен спектр ЭВК и γ -лучей изомеров ¹⁴⁶ Tb, с использованием которого определены α_k и мультипольности γ -переходов 1579 кэВ (ЕЗ) и 2165 кэВ (ЕО).

Таким образом на экспериментальном комплексе ЯСНАПП-2 реализована возможность измерения коэффициентов внутренней конверсии и определения мультипольности 7-переходов с энергией до ~3.5 МэВ.

Во второй главе представлены результаты исследований распада изомера $1/2^{+}$ ¹⁴⁷ Tb, T_{1/2}=1.6 часа.Экспериментальное изучение этого распада позволяет получить сведения о свойствах низкоспиновых возбуждённых состояний ¹⁴⁷ Gd. Для прецизионных исследований распада ^{147 в} Tb необходимо было изготовить источники предельной чистоты. С этой целью из облученной на внутреннем пучке протонов, (E_p=660 МэВ) фазотрона танталовой мишени выделялась фракция изотопов тербия, из которой затем на масс-сеператоре ЯСНАПП-2 отделялся ¹⁴⁷ Tb. В полученном источнике содержался ^{147 в} Tb(1.6 ч.) и его дочерние продукты. Примеси нуклидов других масс были менее 1%.

На рис.3 представлен один из полученных γ-спектров. Обнаружены все γ-переходы, возникающие при распаде ¹⁴⁷ Tb с интенсивностью более 0.06% на распад. Их количество 127, из них 114 наблюдались впервые. Использование β-спектрометра с магнитным Фильтром для исследования спектра конверсионных электронов (рис.4) позволило впервые определить мультипольности γ-переходов: 554.6 кэВ – E1, 1285.5 кэВ – M1, 1295.5 кэВ – E3, 1319.2 кэВ – M1, 1324.3 кэВ – (E1),1396.4 кэВ – M1,1415.4 кэВ – M1,1465.8 кэВ – M1,1535.2 кэВ – M1-E2, 1583.7 кэВ – (M1), 1585.6 кэВ – (M1), 1627.9 кэВ – E1,

10

Рис. 3. Высокоэнергетическая часть спектра ^{147g}Tb(T_{1/2}=1.64 часа). Отмечены: • -фотопики примесного ¹⁴⁷Gd; (с) -сложные пики; (DE) -пики двойного вылета; (SE) -пики одиночного вылета. 1707.1 кэВ - E1,1709.6 кэВ - E1 и 1927 кэВ - M1. В измерениях спада интенсивности наиболее сильных пиков в спектрах у-лучей и конверсионных электронов получено точное значение периода полураспада ^{147g}Tb - T_{1/2}=(1.64±0.03) часа. По сравнению с литературными данными точность определения T_{1/2} повышена в три раза.

С целью снять противоречие в литературных данных об энергии β-распада ¹⁴⁷^gTb выполнены эксперименты по исследованию тонкой структуры α-спектров при распаде изомерных состояний ядра ¹⁵¹Но и по определению разности масс ядер(¹⁴⁷Tb—)¹⁴⁷Gd).Подтверждены результаты, полученные физиками Орсе, Франция и Дармштадта, Германия.

В исследованиях спектров у-у-совпадений при распаде ¹⁴⁷^вть обнаружено 168 пар совпадающих у-переходов. Большинство обнаруженных у-переходов наблюдены в спектрах совпадений.

Рис. 4. Спектры ЭВК от источника ¹⁴⁷гть, измеренные с помощью Si(Li)-детектора с магнитом 6А(внизу) и без него(вверху)

На основе полученных экспериментальных данных построена новая, более полная схема β -распада ¹⁴⁷⁸Tb, включающая себя 44 возбуждённых состояния ¹⁴⁷Gd (из них 38 новые). В таблице 1 представлены сведения об уровнях ¹⁴⁷Gd полученные при анализе экспериментальных данных. Энергии ранее известных уровней отмечены в первой колонке таблицы знаком *. Во второй колонке приведены энергии γ -переходов с соответствующего уровня, их мультипольность и интенсивность в % на распад. Сведения о γ -переходах, размещение которых в схеме распада не подтверждено совпадениями, взяты в скобки. В третьей колонке даётся интенсивность заселения уровня β -распадом ¹⁴⁷⁸Tb. В четвёртой – вычислены значения logft. В последней колонке представлены заключения о спине и чётности уровня, основанные на мультипольностях γ -переходов, значениях logft и

12

Таблица 1. Свойства уровней ¹⁴⁷Gd, возбуждаемых при распаде ¹⁴⁷gTb.

Энергия	γ-переходы с уровня	$I_{EC} + \beta^+$	Logft	Iπ
уровня	${ m E}\gamma$ (кэ ${ m B}$). $\sigma L, I_{tot}(\Delta I_{tot})^a)$	Х		
(кэВ)				
1	2	3	4	5
0.00		0.00		$7/2^{-b}$
1152.54(3)*	1152.5 E2 100.2(2.5)	5.9(2.7)	7.0	$3/2^{-b}$
1292.43(4)*	1292.5 E3 1.25(6),139.9 E1 38(1)	8.6(1.3)	6.8	1/2+6)
1412.17(5)*	259.6≤0.4, 119.7 M1+E2 16.9(6)	8.38(26)	6.84	$3/2^{+b}$
1627.91(6)	1627.9 E1 3.14(12)	1.91(13)	7.37	5/2+
1699.49(4)*	547.0 E1 2.20(6), 407.1 M1			
	2.04(8)			
	287.4 0.22(7)	2.96(15)	7.15	$3/2^{+b}$
1759.83(6)*	467.4 0.14(7), 347.7 M1 2.80(7)	1.50(12)	7.43	1/2+6)
1847.08(4)*	694.5 M1 41.6(9),			
	554.6 E1 5.80(13), 435.0,0.68(5)	42.2(14)	5.96	$1/2^{-b}$
1947.58(6)	1947.6 M1 2.19(6)	1.78(6)	7.31	5/2-
2233.17(4)	$2233.2\ 0.72(3),\ (1080.5\ 0.06(4))$	0.61(6)	7.64	$(5/2^{-})$
2329.0(1)	2329.0 0.45(7)	0.40(6)	7.81	(5/2,7/2)
2438.03(6)	2438.0 1.06(4), 1285.5 M1			
	0.36(2),			
	1025.8 0.38(3)	1.29(8)	7.26	(5/2,3/2)-
2611.68(8)	1319.2 (M1) 0.38(5), 1199.5	0.93(6)	7.32	$(1/2,3/2)^+$
	0.66(3)			
2736.3(2)	1583.7(M1) 0.29(4),1324.3 E1	0.42(5)	7.61	$<5/2^{-}$
	0.18(3)			
2808.4(3)	$1655.7 \ 0.21(2),$			
	1396.4 (M1) (0.20(6))	0.28(8)	7.73	
2862.0(2)	1709.6 E1 0.57(7)	0.51(6)	7.47	$<5/2^+$
2871.6(2)	$(1718.5\ 0.09(3)),\ 1579.2\ 0.19(3),$			
	1243.5(0.12(5))	0.36(6)	7.61	
2878.00(8)	1585.6 (M1) 0.30(4),			
	1465.8 M1 0.82(4), 1178.6			
	0.11(2),			
	1117.8 0.3(1)	1.37(11)	7.04	1/2,3/2+
2947.4(1)	1535.2 M1 0.34(2),			
	1319.8 (M1) 0.14(3)	0.37(6)	7.57	$(3/2,5/2)^+$
3119.0(2)	3119.0 0.27(1), (1707.1 E1	0.51(5)	7.32	(3/2,5/2)
	0.30(4))			
3121.8(2)	(1968.5 0.05(4)), 1709.6 E1	0.17(6)	7.79	
	0.14(4)			
3124.2(3)	$3124.2\ 0.23(2),\ (1971.6\ 0.16(4))$	0.35(5)	7.49	(3/2, 5/2)
3171.5(4)	1411.8 0.07(3), 1324.3 E1 0.10(5)	0.15(5)	7.83	$(1/2^+, 3/2^+)$
3319.6(3)	2167.5 0.15(5), 2027.4 0.27(6),			
. ,	(1907.5 0.14(3))	0.50(9)	7.20	

Таблица 1. (продолжение)

1	2	3	4	5
3325.8(1)	$2173.2 \ 0.18(3), \ 2033.5 \ 0.60(4)$	0.70(5)	7.05	
3574.0(3)	$2421.0\ 0.6(2),\ 1727.3\ 0.14(3),$			
	$(1136.1 \ 0.16(3))$	0.81(18)	6.79	
3715.4(1)	$2562.9 \ 1.96(10), \ 2422.8 \ 0.14(9)$	1.89(14)	6.29	(1/2,3/2)
3833.3(1)	$2680.8 \ 3.90(12), \ 2421.0 \ 0.48(6),$			
	$2205.5\ 0.50(2),\ 1986.2\ 0.15(3)$	4.52(17)	5.78	1/2+
3853.2(1)	$2560.8 \ 0.38(6), \ 2093.5 \ 0.13(3),$			
	2006.2 0.49(2), (1415.4 (M1)	1.08(8)	6.38	(3/2)-
	0.20(3))			
3891.7(2)	$(2738.9\ 0.14(2)),\ 2263.8\ 0.15(2),$			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	$(2193.1\ 0.08(2)), 2131.9\ 0.20(2),$			
	2044.6 0.09(2)	0.59(5)	6.59	$(1/2^+, 3/2^-)$
3926.0(4)	$(2775.3\ 0.12(2)),\ 2165.8\ 0.16(4)$	0.25(5))	6.88	
3967.7(1)	$2815.2 \ 0.49(2)$	0.44(2))	6.61	
3998.7(2)	$2706.2\ 0.20(2),\ 2586.6\ 0.15(3)$	0.31(4))	6.72	
4051.9(1)	$2759.5 \ 0.79(3), 2639.7 \ 0.13(2),$			
	(1243.5(0.10(4)))	0.91(6)	6.17	(1/2,3/2)
4073.7(1)	$(2921.4 \ 0.13(3)), 2661.4 \ 0.14(2),$			
	$2374.1 \ 0.39(4), \ 2225.8 \ 0.09(2)$	0.67(6)	6.26	
(4117.6(3))	$(2489.6\ 0.11(5)), (2418.2\ 0.11(3))$	0.20(5))	6.70	
4132.3(2)	$(2979.5\ 0.13(2),\ 2840.1\ 0.60(6),$		6.08	
	2719.9 0.11(2), (2432.6 0.21(2)	0.94(9)	6.00	(1/2,3/2)
4144.4(1)	$2991.8 \ 0.41(3), \ 2852.0 \ 0.55(3),$			
	$2732.3 \ 0.35(2), 2444.4 \ (0.15(5)),$			
	2197.1 0.21(2)	1.50(7)	5.78	$(1/2^{-})$
4176.6(1)	$3024.1\ 0.36(2),\ 2764.4\ 0.26(3)$	0.56(4))	6.14	(1/2,3/2)
4201.2(1)	$3048.6 \ 0.25(1), \ 2908.8 \ 0.29(2),$			
	$2789.1 \ 0.54(3), \ 2354.2 \ 0.12(3),$			
	$(1968.5\ 0.05(4))$	1.11(6)	5.83	(1/2)
4249.7(2)	$(2957.1\ 0.14(3)),\ 2837.8\ 0.26(4),$			
	$(2489.5\ 0.10(5))$	0.36(6))	6.15	(1/2,3/2)
4280.4(1)	3128.3 0.21(2), 2580.8 0.20(3)	0.37(4)	6.04	(1/2,3/2)
4299.7(2)	$3147.2\ 0.13(2),\ 3007.2\ 0.38(3)$	0.46(4))	5.89	(1/2)
4369.8(5)	$(3217.5\ 0.08(2)),\ 2610.0\ 0.06(2)$	0.13(3))	6.18	(1/2,3/2)
(4431.4(3))	(3279.3 0.14(2)), (3139.0)			
	0.06(1)),			
	$(3018.8\ 0.11(2))$	0.27(3))	5.55	$(1/2^+)$

14

способах разрядки и заселения уровня у-переходами. Известные до наших исследований значения I^П отмечены буквой b.

как видно из таблицы большинство уровней подтверждается совпадениями (многие уровни – неоднократно). Только три уровня вводятся на основе совпадений сумм энергий γ-переходов.

Рассмотрение полученных экспериментальных данных о в-распаде ядра ¹⁴⁷⁸ть в рамках оболочечной модели позволило сделать ряд выводов о свойствах низкоспиновых состояний ядра ¹⁴⁷Gd. Впервые идентифицировано состояние 2f_{5/2}, 1947.6 кэВ нейтронной оболочки 82-126. Подтверждена интерпретация уровней 1294.4 и 1412.2 кэВ, как $I^{\pi}=1/2$ и 3/2 членов мультиплета ($\nu f_{\pi/2} \times 3$); впервые экспериментально наблюдено состояние I[#]=5/2⁺, 1627.9 кэВ этого мультиплета. Уровни 1/2⁺, 1759.9 кэВ и 3/2⁺, 1699.5 кэВ интерпретируются как дырочные состояния в нейтронной оболочке (50-82). Полученные экспериментальные данные позволяют интерпретировать уровни 2233.2 и 2329 кэВ в качестве членов мультиплета ($\nu f_{7/2} \times 2^+$) с I^π=5/2⁻ и 3/2⁻. Большая группа уровней с энергией выше 3.8 МэВ относительно большой и вероятностью β-распада на них (logft=5.8÷6.6) интерпретируется, как трёхквазичастичные значительной примесью состояния $(\pi s_{1/2}, \pi h_{9/2}, \nu h_{9/2})_{1/2}^{+}, _{3/2}^{+},$ обеспечивающего Гамов-Теллеровский, разрешенный в-переход из состояния $\pi s_{1/2}^{+}$ ¹⁴⁷gTb.

<u>В третьей главе</u> представлены экспериментальные результаты измерений граничных энергий позитронных спектров и разностей масс при *β*-распаде для 33-х нуклидов редкоземельных элементов.

Спектры позитронов изучали с помощью детекторы из сверхчистого германия с толщиной чувствительного слоя 9 мм. Граничная

Рис. 5. А - позитронный спектр ¹⁴³Sm; В - график Ферми-Кюри энергия позитронных спектров определялась методом Ферми-Кюри (рис. 5). Экспериментальный спектр исправлялся на функцию отклика детектора, учитывающую искажения, вносимые обратным и боковым рассеянием позитронов и эффектом суммирования в детекторе амплитуд импульсов от позитронов и аннигиляционного излучения.

Измеренные в настоящей работе значения граничных энергий жёстких компонентов позитронных спектров Е_{β*max} и соответствующие им энергии бета-распада Q_{гс} представлены в таблице 2.

Сравнение полученных значений с известными литературными данными представлено на рис.6. На рисунке разности измеренных нами и наиболее точных литературных значений E_{β^+max} отложены в зависимости от величины E_{β^+} . Указываются ошибки литературных данных. Видно, что величины разностей располагаются около нулевого значения, что позволяет утверждать что используемая процедура об-

16

Таблица	2.	Граничные	энергии	И	величины	Q	(кэВ)

A	Z	$T_{1/2}$	Настояща	<u>я работа</u> Q	ит.данные Q
124	Dm	22 6 00%	β ΓΡ.	9200/200) ^{*,1)}	8880
124 6		11 WHY	4160(90) ^{*)}	$6230(90)^{*,2}$	6210
134 5	9 ^{FI}	11 мин	4100(90)	6250(90)	6020
13/ 6	, Pm	49 Cek	4920(150)	5050(200) 5000(70) ^{*)}	6020
137 6	2 Sm	45 CEK	4880(70)	5900(70)	6050
137 6	1 Pm	2.4 мин	4110(60)	5640(60)	5580
138 6	1 P m	10 сек	6060(60)	7080(60)	7090(100)
139 6	3 Eu	17.9 сек	4600(50)	6080(50)	6680
139 6	Pm	4.2 мин	3450(50)	4480(50)	4540(40)
140 6	3 Eu	1.5 сек	7450(50)*'	8470(50)	8400
140 6	Pm	9.2 сек	5000(30)*'	6020(30)	6090(40)
141 6	3 Eu	40 сек	4960(40)*'	5980(40)	5950(40)
141	Sm	10.2 мин	2981(60)	4420(80) ⁵⁾	4460(55)
142	Eu	1.22 мин	4756(60) ^{*)}	8150(60) ⁶)	8175(50)
142	ू Eu	2.4 ceĸ	6648(30) ^{*)}	7670(30)*)	7400(100)
143	gEu	2.61 мин	4214(30)	5236(30)	5240(70)
143 2	ງ Sm	8.83 мин	2439(40)	3461(40)	3443(11)
144	Éu	10.2 сек	5265(30) ^{*)}	6287(30)	6330(30)
146	_ Tb	8.1 ceĸ	7288(50).")	8310(50)	8240(150)
154	5 _Tm	3.3 сек	4882(80) ^{*)}	8233(80) ^{*,7)}	7980
156	9 Tm	84 ceĸ	6091(80)*)	7113(80) ^{*)}	7030
157	9 Yb	37 сек	4052(100)*)	5074(100)*)	5170
157	o Tm	3.7 мин	3460(100)*)	4482(100)	4480(100)
157	9 Er	18.5 мин	2525(100)	3547(100)	3470(80)
158	8 Tm	4.02 мин	5410(60)*)	6624(60) ⁸⁾	6530(100)
159	9 Lu	12.3 сек	4781(150)*)	5803(150)	5850(150)
159	Yb	1.4 мин	3143(100)*)	4334(100) ⁹⁾	5050(200)
159 7	0 Tm	9.15 мин	2648(100)*)	3670(100)	3850(100)
161	9 Lu	1.2 мин	3866(60)*)	4888(60)	5300(100)
161 7	vh	4.2 мин	2563(80)*)	3585(80)*)	4280
162		1.2 мин	6006(120)*)	7028(120)	6960(100)
162 7	Tm	21.7 мин	3770(50)*)	4790(50)	4820(50)
164	9 ¹ "	3 14 мин	5190(120)*)	6213(120)	6250(90)
164 7	1 Tm	2 MUU	2945(50)	3966(50)	3962(20)
104 6	9 ***	2 MAH	2,43(30)	и О получе	ны впервые.

ргр. ЕС 1)-9).Рассматриваемый компонент β -спектра связан с распадо на уровень: 1)294+495; 2)1048; 3)520; 4)457; 5)420; 6)2372; 7) 2329; 8)12; 9/169 кэВ дочернего ядра. 18

Рис. 6. Сравнение полученных значений Е_β+_{max} с ранее известными экспериментальными величинами

работки позитронных спектров даёт правильные результаты и позволяет определять энергии распада ядер с точностью до 30 кэВ. Таким образом показано, что используемая методика измерения граничных энергий позитронных спектров короткоживущих нуклидов в *on-line* экспериментах позволяет достичь необходимой точности значений разностей масс. Методика измерений граничных энергий позитронных спектров, разработка которой завершена этими исследованиями, успешно применяется на экспериментальном комплексе ЯСНАПП-2.

Значения разностей масс при β-распаде 12-ти удалённых от полосы β-стабильности ядер получены впервые. Эти данные удовлетворительно согласуются с соответствующими значениями из систематики Вапстра и Ауди. Сравнение новых данных о разностях масс ядер с вычислениями по различным формулам для масс ядер будет сделано позднее по мере накопления новых экспериментальных данных.

В заключении суммированы основные результаты диссертации:

 Создана спектрометрическая установка для исследования спектров α-, β- и γ-излучений в on-line режиме на экспериментальном ИЗОЛЬ-комплексе ЯСНАПП-2. Установка включает в себя транспортное устройство для доставки короткоживуших нуклидов с ионного пучка масс-сепаратора к детекторам излучений. Соискатель принимал участие в наладке аппаратуры и её эксплуатации.

2. На экспериментальном комплексе ЯСНАПП-2 создана установка и разработана методика on-line (и off-line) измерений коэффициентов внутренней конверсии γ-переходов с использованием β-спектрометра с магнитным фильтром типа миниапельсин.

3. Определены энергии изомерных состояний $1/2^+$ и $11/2^-$ в ядре ¹⁴⁷Tb и разность масс нуклидов (¹⁴⁷Tb——)¹⁴⁷Gd).

4. На основе детального исследования спектров γ -лучей, электронов внутренней конверсии и γ - γ -совпадений при β^+ -распаде $1/2^+$ ¹⁴⁷Tb(1.6 часа) построена схема распада, включающая в себя 44 низкоспиновых состояния ¹⁴⁷Gd (из них 38 новые). При анализе экспериментальных результатов впервые идентифицированы состояние $\nu 2f_{5/2}$, 1948 кэВ и состояние $5/2^+$ мультиплета ($\nu f_{7/2} \times 3^-$). Указано на возможность интерпретации уровней 2233 и 2329 кэВ, как членов мультиплета ($\nu f_{7/2} \times 2^+$) с $I^{\pi} = 5/2^-$ и $3/2^-$. Показано, что группа уровней ¹⁴⁷Gd с энергией $3.7 \div 4.4$ МэВ имеет заметную примесь трехквазичастичного компонента ($\pi S_{1/2}, \pi h_{1/2}, \nu h_{9/2}$).

5. Завершена разработка методики измерений граничных энергий позитронных спектров с помощью НрGe-детектора.

 6. Впервые измерены разности масс при β-распаде для 12-ти удалённых от полосы стабильности нуклидов.

> Рукопись поступила в издательский отдел 16 апреля 1996 года.