ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

УДК 539.163

U-689

6-86-726

иноятов

Анвар Хидоятович

НОВЫЙ КОМБИНИРОВАННЫЙ ЭЛЕКТРОСТАТИЧЕСКИЙ БЕТА-СПЕКТРОМЕТР И ВОЗМОЖНОСТИ ЕГО ПРИМЕНЕНИЯ В ЗАДАЧАХ ПРЕЦИЗИОННОЙ СПЕКТРОМЕТРИИ НИЗКОЭНЕРГЕТИЧЕСКИХ ЭЛЕКТРОНОВ

Специальность: 01.04.16 - физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Лаборатории ядерных проблем Объединенного института ядерных исследований.

Научный руководитель доктор физико-математических наук

Официальные оппоненты: доктор физико-математических наук кандидат физико-математических наук

А.И.Феоктистов М.И.Бабенков

Ц.Вылов

Ведущее научно-исследовательское учреждение: Институт атомной энергии им. И.В.Курчатова, Москва.

Защита диссертации состоится "<u>26</u>" <u>MaeSpl</u> 1986 г. в <u>час.</u> на заседании Специализированного совета Д-047.01.03 при Лаборатории ядерных проблем Объединенного института ядерных исследований, г.Дубна, Московской области.

Автореферат разослан "___ Дехедиб 1986 г.

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Ученый секретарь Специализированного совета доктор физико-математических наук

Ю.А.Батусов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТН

<u>Актуальность проблемы</u>. Прецизионная спектрометрия низкоэнергетических электронов играет важную роль в решении многих задач современной физики. Одной из актуальнейших задач является проблема ненулевой массы (анти)нейтрино. Считают, что наиболее чувствительным методом измерения массы электронного антинейтрино (m_y) является исследование формы бета-спектра трития в области граничной энергии (~18,6 кэВ).Именно этим методом в экспериментах ИТЭФ (Козик В.С. и др. нФ, 1980,т.32,с.301) впервые было получено указание на наличие массы у антинейтрино

I4 $\mathfrak{sB} < \mathfrak{m}_{\mathfrak{p}} c^2 < 46 \mathfrak{sB}$.

Однако вывод о величине массы антинейтрино основывается на нескольких предположениях, главным из которых является возможность точного определения приборной форми линии (ПФЛ) системы источник-спектрометр. В свою очередь, точность определения ПФЛ прямым образом связана с учетом формы калибровочных линий, в качестве которых обычно используют линии электронов внутренней конверсии (ЭВК) или Оже-электронов. В частности, неучет лишь естественной ширины (Г) калибровочных линий может привести к генерации массы антинейтрино при истинном нулевом значении (В.Н.Покровский и др. ОИЯИ, Рб-85-405, 1985).

В экспериментах ИТЭФ (а ноэже и других групп - SIN (Швейцария) и INS (Япония)) в качестве калибровочных линий использовались M₁-и L₁-конверсионные линии перехода 20,7 кэВ из распада ¹⁶⁹Yb. Однако до настоящего времени прямых экспериментальных данных по величинам $\Gamma(M_1, L_1)$ из распада ¹⁶⁹Yb в литературе не опубликовано.

Другим подходом к определению ПФЛ является использование линий К-серии Оже-алектронов элементов с меньшими Z. В частности, группа INS использует линии KLL-Оже-переходов из распада ¹⁰⁹cd. Точность определения КФЛ при этом подходе зависит от правильной оценки соотношения интенсивностей между компонентами Оже-переходов. К сожалению, экспериментальные данные об энергиях и интенсивностях Оже-переходов, а также их ширинах в этой области Z весьма немногочисленны. Добавим также, что отсутствие таких данных (в частности, по KLM- и KMM-пере-

> Объексисиный институт Вдерных ис экаобаний БЫБЛИНСТЕНА

ходам в атомах с Z < 35) не позволяет делать однозначние выводи о применимости теоретических приближений, используемых для описания Ожепереходов.

Решение этих задач связано с разработкой техники и методики прецизионной спектрометрии электронов в области энергии ниже 50 кэВ.

Цель работи. Создание комбинированного электростатического бетаспектрометра для исследования электронов в области энергий 0,5-50 кэВ. Исследование относительной эффективности детектора электронов (канальный электронный умножитель) спектрометра и оптимизация режима его работи.

Усовершенствование методики приготовления радиоактивных источ-

Прецизионные измерения естественных ширин атомных уровней тулия с помощью низкознергетических ЭНК из распада ¹⁶⁹уь.

Исследование К-серии Оже-электронов железа из распада 57Со.

Анализ результатов измерений и сравнение их с предсказаниями теорий.

<u>Метод исследования и научная новизна результатов</u>. Для исследования спектров электронов в области энергий 0,5-50 кэВ создан новый тип комбинированного электростатического спектрометра. В этом спектрометре впервые для задач ядерной физики объединены интегральный анализатор со сферическим замедлителем и дифференциальный анализатор типа двойного цилиндрического зеркала. Использование такой комбинации анализаторов позволило исключить отрицательное влияние релятивистских эффектов, возникающих при больших энергиях анализируемых электронов, на характеристики спектрометра. Достигнутое приборное разрешение $\Delta E = 5$ зВ (при $E_e \sim 20$ кзВ) является наилучшим для спектрометров, работащих в этой области энергий.

С целью оптимизации режима работи спектрометра изучена эффективность регистрации детектора электронов — канального электронного умножителя (КЗУ). Получена зависимость эффективности от энергии регистрируемых электронов в диапазоне 60-1000 эВ. Определен оптимальный реким работи КЗУ, при котором можно добиться увеличения отношения ник/фон примерно в 2 раза без заметного ухудшения аппаратурной форми линии.

Усовершенствована методика приготовления радиоактивных источников электронов методом испарения в вакууме.

Впервые проведены прямые измерения естественных ширин атомных уровней тулия с помощью низкоэнергетических ЭЕК из распада ¹⁶⁹Yb, используемых в качестве калибровочных в экспериментах по определению массн антинейтрино из анализа формы бета-спектра трития.

2

Проведены исследования К-серии Оже-электронов железа (Z = 26) из распада ⁵⁷Со. Измерения интенсивностей и энергий КLM- и КММ-переходов проводились впервые. Из анализа результатов измерений относительных интенсивностей КLM-переходов впервые сделан вывод о неприменимости релятивистских расчетов, выполненных в рамках теории jj-связи, для описания интенсивностей этих переходов в области 2 ~ 25.

<u>Научная и практическая значимость работи</u>. Созданный электростатический спектрометр и усовершенствованный метод приготовления источников испарением в вакууме позволяют проводить прецизионные измерения спектров электронов в малоизученной низкоэнергетической области энергий E_o ≤ 50 кэВ.

Результати измерений естественных ширин атомных уровней тулия с помощью линий ЭЕК из распада ¹⁶⁹Yb, а также относительных интенсивностей К-серии Оже-электронов железа (2 = 26), возникающих при распаде ⁵⁷Co, представляют интерес с точки зрения точности оценки ПФЛ в экспериментах с тритием. Кроме того, сведения об интенсивностях Ксерии Оже-электронов железа расширяют базу данных для проверки существующих модельных расчетов и могут быть использованы (в особенности отношения интенсивностей Оже-групп) при определении выходов флюоресценции, вероятностей К-захвата и др.

На защиту выносятся следущие положения и результаты:

I. Новый тип комбинированного электростатического бета-спектрометра в области энергии 0,5-50 кэВ.

2. Определение относительной эффективности канального электронного умножителя спектрометра и оптимизация режима его работн.

3. Усовершенствование метода приготовления радиоактивных источников электронов испарением в вакууме.

4. Результаты прямых измерений естественных ширин атомных уровней тулия с помощью ЭЕК из распада ¹⁶⁹уь.

5. Результаты измерений относительных интенсивностей и энергий спектров КLL-, КLM-, КММ-Оже-переходов в железе. Выводы из сравнения измеренных интенсивностей с предсказаниями теорий.

Апробация работн. Основние результати диссертации докладивались и обсуждались на XXXII (Москва, 1983), XXXVI (Харьков, 1986) Всесовзных совещаниях по ядерной спектроскопии и структуре атомного ядра; Школе по ядерной физике (Хольцау, ГДР, 1986); Международном симпозиуме "Бета-распад и нейтрино" (Осака, Япония, 1986); Международном симпозиуме по слабым и электромагнитным взаимодействиям в ядрах (Гайдельберг, ФРТ, 1986); XVII сессии Всесовзной школи по ядерной физике им. В.М.Галицкого (МКФИ, 1986); Международной конференции по ядерной фи-

3

зике (Харрогейт, Англия, 1986); на семинарах по физике атомного ядра ЛЯП ОИЯИ, кафедры радиационной физики физического факультета ТашГУ им. В.И.Ленина и опубликованы в 5 работах в виде статей в журнале Nucl.Instr. and Meth., сб. "Прикладная ядерная спектроскопия", а также в виде сообщений и препринтов ОИЯИ.

<u>Объем работи</u>. Диссертация состоит из введения, трех глав и заключения и содержит I32 страницы текста, 8 таблиц на IO страницах, 52 рисунка на 35 страницах и списка литературы из I48 наименований на I8 страницах.

СОДЕРЖАНИЕ РАБОТЫ

Во введении дается обоснование актуальности темы исследования, сформулированы цели работы и описывается структура диссертации.

<u>В первой главе</u> проведен обзор основных методов энергетического анализа в электронной спектроскопии.

Методи прецизионного анализа энергетического распределения электронов основаны на применении электростатической и магнитной оптики. В течение многих лет главным методом для анализа бета-частиц являлся магнитный анализ. За это время были разработаны различные конструкции магнитных спектрометров. Высокие разрешения (<0,1%) достигаются, в основном, в области больших энергий E_e>50 кэВ. При энергиях электронов ниже 50 кэВ возникают значительные трудности, связанные с работой в области слабых магнитных полей.

В спектрометрах с железным ярмом, при H<25 Э, форма поля начинает изменяться с изменением величины напряженности магнитного поля. К искажению приводит также и остаточная намагниченность железа. В случае безжелезных спектрометров необходима тщательная защита спектрометров от внешних магнитных полей и высокая стабильность источников питания катушек. Внешние поля должны быть скомпенсированы с помощью катушек Гельмгольца до уровня ~ 10⁻⁴ Э (в зависимости от размеров спектрометра). При этом, однако, нужно учитывать главный недостаток катушек Гельмгольца – низкую эффективность в присутствии быстро меняющихся внешних полей.

Достижения в разработке электростатических спектрометров связани с развитием электронной спектроскопии для химического анализа (ЭСХА). Для исследований ЭСХА в области I эВ - 2 кзВ электростатические спектрометры обладают рядом преимуществ перед магнитными, а именно: простотой формирования расчетного поля и экранировки магнитных полей, меньшими габаритами и незначительными энергетическими затратами на питание источников напряжения. При попитке расширить область анализа до 10-50 кэВ возникают трудности, связанные с отрицательным влиянием релятивистских эффектов на разрешение спектрометров. Для улучшения разрешения нужно использовать предварительное замедление анализируемых электронов, что позволяет существенно повысить возможности электростатических спектрометров для анализа спектров электронов с высоким разрешением в широком диапазоне энергий.

С точки зрения современной физики, одной из актуальнейших задач является вопрос о наличии масси у (анти)нейтрино. Считают, что наиболее чувствительным методом измерения масси антинейтрино является анализ формы бета-спектра трития волизи граничной энергии ($\simeq 18,6$ кэВ). При этом корректность решения задачи в значительной степени определяется точностью исследования ПФЛ системы источник-спектрометр. В свою очередь эта задача связана с методами прецизионной спектрометрии спектров дискретных излучений калибровочных нуклидов. Учитивая ожидаемие оценки величины массы антинейтрино ($m_5c^2 \sim 10+30$ эВ), такие исследования должны быть проведены с приборами, обладающими высоким энергетическим разрешением (лучше 10 эВ) в области 20 кэВ. Это и является одной из первоочередных задач для решения проблемы наличия массы у электронного антинейтрино.

Вторая глава посвящена описанию нового комбинированного электростатического спектрометра для изучения электронов с энергией от 0,5 до 50 кэВ /1,2/.

В этом спектрометре (рис. I) впервые для задач ядерной физики объединены два типа анализаторов: интегральный с тормозящим полем и диф-

Рис.І. Блок-схема алектростатического спектрометра.

ференциальный с двойным цилиндрическим зеркалом. Такой подход позволил исключить релятивистские эффекты, характерные для спектрометров с одним анализатором. Анализатор с тормозящим полем состоит из двух концентрических сфер I и 2, между которыми проложено положительное тормозящее напряжение U. Радиоактивный источник находится на поверхности сферы I. Напряжение замедления приложено к источнику, а сфера 2 заземлена. Измерение энергии замедленных электронов проводится с помощью двойного цилиндрического зеркала. Напряжение анализа ч приложено к внешнему цилиндру, а внутренний заземлен.

Электроны вылетают из источника с энергией E₀, проходя сферы I и 2, замедляются до энергии E₂ и через коническую щель f попадают в цилиндрический анализатор. Энергия анализируемых электронов равна

$$E_{a} = E_{a} + qU = aqu, \qquad (I)$$

где а - постоянная прибора, q = -I - заряд электрона.

Регистрация электронов осуществляется во втором фокусе D₂ с помощью канального электронного умножителя (КЗУ) типа Bendix CEM 4503, диаметр входного окна которого составляет I2 мм.

Развертка спектра производится по замедляющему напряжению U. При таком способе анализа энергия электронов (E_a) , регистрируемых детектором, а также абсолютный разрешаемый интервал энергий (ΔE_a) остаются приблизительно постоянными во всем диапазоне измерений (0,5: 50 кэВ). Расчет электронных траекторий в цилиндрическом зеркале выполнен численно и проанализирован простым графическим методом. В результате были выбраны следующие оптимальные параметры прибора:

 $r_1 = 50 \text{ MM}; r_2 = 105 \text{ MM}; 2L = 615 \text{ MM}; a = 1,96$, (2)

где r₁ и r₂ - соответственно радиусь внутреннего и внешнего цилиндров, 2L - расстояние между источником и детектором. Тогда для энергетического разрешения спектрометра в целом можно записать:

$$\frac{\Delta E_0}{E_2} \approx 0.02 \frac{u}{U} . \tag{3}$$

Это приближение получено в предположении высокой точности стабилизации U, которая равна ~ 10⁻⁵. Следовательно, для достижения высокого энергетического разрешения необходим режим анализа с малыми значениями u относительно U.

Спектрометр защищен тремя цилиндрическими магнитными экранами из мю-металла, которне размещени внутри вакуумной камерн и перекривают все пространство сферн и цилиндрического анализатора. С этой же целью шесть цилиндров меньших размеров размещени вокруг источника и детектора. В результате величина остаточного магнитного поля в спектрометре меньше I мГс. Вакуумная система спектрометра обеспечивает безмасляный вакуум ~7.10⁻⁷ Торр, который достигается в течение I5-20 мин. с помощью форвакуумного насоса 2HBP-5Д с азотной ловушкой и магнитного электроразрядного насоса HOPД-250. Для устранения помех от паразитных излучений, связанных с работой HOPД-250 (характеристическое излучение, вторичные электроны) и приводящих к увеличению фона детектора, создана специальная экранирующая система.

В основном, спектрометр сделан из немагнитной нержавекцей стали. Предварительное замедление электронов позволяет обойтись без требуемой для обичного цилиндрического анализатора точности изготовления и настройки деталей. Простота конструкции обеспечивает удобство демонтажа всех элементов спектрометра, что существенно при его загрязнении радиоактивными препаратами. Процедура полной разборки и сборки спектрометра занимает несколько часов.

Система управления спектрометра (см. рис. I) полностью автоматизирована на основе блоков и микроЭЕМ в стандарте КАМАК. Разработанный пакет программ обеспечивает:

а) управление режимами работи;

б) управление замедляющим напряжением U и его стабилизацию;

в) формирование и счет импульсов от КЭУ;

г) визуализацию и предварительную обработку данных;

д) связь с базовой ЭВМ для последующей полной обработки данных.

Исследование характеристик спектрометра было проведено с помощью источника, приготовленного внедрением ионов 169 уь с энергией ~ 500 эВ в бериллиевую подложку на электромагнитном масс-сепараторе. Фрагменти спектров электронов L₁20,7 (E_e \simeq I0,6 кэВ) и M20,7 (E_e \simeq I8,4 кэВ) приведены на рис.2 и 3, соответственно. Как видно, полученное энергетическое разрешение в области I0 каВ составляет $\Delta E \simeq 5$ зВ ($\Delta E/E \simeq 0,05\%$; $\Delta p/p \sim 0,025\%$), что является наилучшим для спектрометров, работакщих в данной области энергий. Оценка же абсолютной эффективности спектрометра дала значение $\sim 0,1\%$ от 4%.

Как уже отмечалось, наилучшее энергетическое разрешение достигается при малых энергиях анализа E_a (см. (I), (3)). Однако при малых E_a уменьшается и эффективность регистрации электронов с помощью КЭУ. Для достижения компромисса между двумя основными параметрами (энергетическим разрешением и эффективностью) спектрометра были проведены эксперименты по исследованию относительной эффективности КЭУ в области от 60 до 1000 зВ и выбору оптимального режима его работы ^{/3/}. Использовался метод сравнения интенсивности двух конверсионных линий -КI4,4 и L₁I4,4 из распада ⁵⁷Со. Опыт показал, что в исследуемом диапазоне эффективность КЭУ изменяется примерно в 3 раза. В связи с этим

6

Рис.2. Фрагмент спектра электронов (L₁20,7) при распаде ¹⁶⁹Yb. Рис.3. Фрагмент спектра электронов (M20,7)при распаде ¹⁶⁹уь.

был предложен и реализован метод ускорения электронов перед их регистрацией КЗУ, позволивший добиться улучшения отношения эффект/фон примерно в 2 раза без заметного ухудшения аппаратурной линии в целом (рис.4).

<u>В третьей главе</u> изложени результати измерений естественных ширин атомных уровней ^т с помощью низкоэнергетических ЭНК из распада ¹⁶⁹ ур⁴,а также относительных интенсивностей К-серии Оже-электронов жалеза (z=26), возникащих при распаде ⁵⁷Со⁻⁵. Эти исследования связани с оценкой точности определения КФЛ в тритиевых экспериментах, которая, как правило, строится с помощью линий электронов внутренней конверсии или Оже-электронов. Поскольку разработка методики прецизионной спектроскопии низкоэнергетических электронов в значительной степени связана с качеством радиоактивных источников, то здесь же описана техника и методика изготовления тонкослойных источников ¹⁶⁹ уь, ⁵⁷Со и ²⁰¹т1.

Исходя из конкретной задачи в качестве наиболее оптимального был выбран метод приготовления источников испарением в вакууме. В диссертации рассмотрены некоторые вопросы механизма этого процесса, а также

8

Рис.4. Форма линии КІ4,4 (⁵⁷Со), измеренная в режиме ускорения (сплошная линия) и без ускорения (пунктирная линия).

лись для последующих измерений.

В диссертации рассмотрен вопрос об определении естественной ширины атомных уронней с помощью линий электронов внутренней конверсии^{/4}.Проанализирована правомерность применения полуэмпирического соотношения

 $W^n = R^n + I^n, \qquad (4)$

где Г – ширина лоренциана на полувысоте (естественная ширина атомного уровня), R – ширина исходного гауссиана (разрешение спектрометра с гауссовской формой линии), W – ширина свертки лоренциана с гауссианом; n = I,2+I,3. Показано, что использование формулы (4) с фиксированным значением n может привести к заметным погрешностям в определении Г по известным W и R (см. рис.5).

При определении величин $\Gamma_i(\mathbf{Tm})$ из распада ¹⁶⁹Yb мн использовали приближение, согласно которому в виде свертки G ж L представлялась лишь правая часть электронной линии, не искаженная процессами взаимодействия электронов с веществом. Для обработки спектров на ЭЕМ СМ-4

нических соединений, находящихся в исходном радиоактивном препарате. Для уменьшения влияния первого из них методом нейтронно-активационного анализа была показана необходимость предварительного отжига нагревателя в вакууме при температуре, заметно превышающей температуре, заметно превышающей температуру испарения исследуемого вещества, а для уменьшения влияния второго режим изготовления источника выбирался таким образом, что большая часть органических соединений осаждалась на подвижный танталовый экран.

приведено описание эксперименталь-

ной установки. Отметим два основных

эффекта, ухудлакцих качество источ-

ников. изготавливаемых этим методом:

улетучивание тантала из танталово-

го нагревателя и улетучивание орга-

Методом испарения в вакууме были изготовлены источники ⁵⁷Со, ¹⁶⁹уь и ²⁰¹т1, которые использова-

Рис.5. Погрепность в определении Г при известных W и R при n = 1,25; 1,3.

била создана программа диалоговой графической оптимизации. Характерный фрагмент аппаратурного спектра ($M_{I}20,7$, 169 Yb) и результат его обработки показан на рис.6. Добавим, что разрешение спектрометра R било определено из обработки линии KI4,4 (57 Co) при фиксированном значении $\Gamma(K) = I,25$ эВ и составляло

1	=	-30	В	R	=	4,9 <u>+</u> 0,3	эΒ	,
1	=	-50	В	R	=	6,8 <u>+</u> 0,2	эΒ	•

С целью проверки предположения о независимости R от энергии электронов эта величина определялась также и по линиям L₁30,6 ($E_e \simeq 15,8$ эВ) и L₁32,3 ($E_e \simeq 17,4$ кэВ) из распада ²⁰¹т1 при фиксированном Γ_{L_1} (Hg) \simeq $\simeq II,3$ эВ. Результати подтвердили наши ожидания.

Основные результаты измерений естественных ширин атомных уровней тулия (z = 69) с помощью ЭЕК из распада ¹⁶⁹уь сведены в таблицу I. Для сравнения там же приведены и данные других авторов. Следует отметить, что результаты Беннета и др. (Phys.Rev.C, I985, v.3I, p.I97) определялись из косвенных экспериментов – из измерений рентгеновских переходов типа $L_1M_{2,3}$ и M_1N_3 .Данные же Краузе и Оливера (J.Phys.Chem. Ref.Dat., I979, v.8, p.329) являются полуэмпирическими расчетами. Что касается результатов Кески-Ракхонена (ADNDT, I974, v.I4, p.I39) и Сивьера (В кн.: Low Energy Electron Spectrometry. - Willey Interscince,

Рис.6. Линия $M_T 20,7$ (¹⁶⁹уь), измеренная при R = 6,8 эВ; $\int 2^2 = 0,87$.

New-York, 1972, р.220), то эти данные дают лишь качественную информацию о Г. (Тт), так как представлены в графической форме.

<u>Таблица I</u>. Естественные ширины атомных уровней для z = 69 (тт.), эВ. В скобках даны полные ошибки

Атомный уровень	Наст. работа	Bennett et al. (ЭКСП.)	Krause et al. (полуэмп.)	Keski- Rahkonen (pacy.)	Sevier (полуэмп.)
K	35,5(3)		30,1(10)	32	30
L	4,4(3)	, - ,	5,47(80)	7	5
Lo	4,0(4)	_	4,49(50)	5	3
L	4,0(5)	-	4,48(40)	4	3
M	13,9(3)	I4(3)		20	I4
M2	9,2(8)	7,I(20)	-	II	9
Ma	9,5(12)	7,7(14)	·	II	7

Спектры К-серии Оже-электронов железа из распада ⁵⁷Со измерялись в энергетическом диапазоне 5,2+7,I кэВ при приборном разрешении ΔЕ ≃7 эВ ^{75/}. Источники ⁵⁷Со изготавливались методом испарения в вакууме. Обработка спектров производилась на ЭВМ ЕС-IО40 с помощью программы, в которой форма линии выражалась аналитической функцией. Пример измеренного КIM-спектра и результат его обработки показан на рис.7.

Основние выводы из результатов измерений К-серии Оже-электронов железа заключаются в следуищем.

Относительные интенсивности наиболее сильных $\text{KL}_{1}\text{L}_{2}(^{1}\text{p}_{1})$ -, $\text{KL}_{2}\text{L}_{3}(^{1}\text{d}_{1})$ - и $\text{KL}_{1}\text{L}_{1}(^{1}\text{s}_{0})$ -переходов существенно расходятся с результатами релятивистских и нерелятивистских расчетов в схеме промежуточной связи с учетом взаимодействия конфигурации, что подтверждает систематический характер этого расхождения для атомов с z < 40. Это обстоятельство свидетельствует о необходимости учета в расчетах более тонких эффектов. Относительные энергии кLL-переходов довольно хорошо согласуштся с результатами полуэмпирических расчетов Даркинса (ADNDT, 1977, v.20, p.3II).

Из сравнения (табл.2) измеренных относительных интенсивностей (в частности, из отношения кL_{3M_{2,3}/KL_{2M_{2,3}) с результатами релятивистских расчетов в схеме јј-связи (чен и др. - Арпрт, 1979, v.24, р.13) и нерелятивистских расчетов в схеме промекуточной связи (Бабенков и др. - В сб.: Ядерн.спектроскоп. и структ. ат.ядра. Тезисн докл. Зб совец. - Л., Наука, 1986, с.268) впервне сделан вывод о неприменимости релятивистских расчетов в схеме јј-связи для описания кLM-переходов в атомах с Z = 26. Адекватная теория, описыващая кLM-переходы в этой области.}}

Таблица 2.	Относительные	интенсивности	И	энергии	кым-переходов
	в железе (2 =	26)			

Полоното	Относ	ительные ин ^{КL₁M_j/KL₁M₁}	Относительные энергии (эВ)		
переходы	Наши данные эксп.	теор.а) рел., јј-с е	теор.а) нерел.,пром. св.	Наши данные эксп.	Ларкинс теор. ^{б)}
KL ₁ M ₁	I,00	I,00	I,00	-162(2)	-167
KL1M23	I,67(8)	I,50	I,62	-123(2)	I2 4
KL ₂ M1	0,32(15)	0,48	0,58	-37(5)	-39
KL ₃ M1	0,75(I5)	0,86	0,90	-26(4)	-27
KL ₂ M ₂	4,73(30)	2,16	4,II	0	0
KL ₂ M ₂	2,90(20)	4,33	3,62	+ I2(I)	+I2
KL ₂ M _{4 5} N ₁	0,15(7)	0,14	_	+56(5)	-
^{KL} 3 ^M 4,5 ^N 1	0,4 3(6)	0,30	- 1	+68(I)	-

а) Данные для z = 26 получены графической интерполяцией.

б) Значения получены с учетом перераспределения интенсивностей в дублетах и квартете $KL_3M_3({}^{3}P_{0}+{}^{1}P_{1}+{}^{3}D_{2}+{}^{3}D_{3})$.

по-видимому, должна основываться на схеме промежуточной связи. Относительные энергии переходов находятся в хорошем согласии с полуэмиирическими данными Ларкинса.

Значительные погрешности в определении относительных интенсивностей из-за наложения КММ-группы на низкоэнергетический склон конверсионной линии КІ4,4 не позволили сделать однозначные выводн о применимости релятивистских и нерелятивистских расчетов, выполненных соответственно в схемах јј- и промежуточной связи.

Упомянутое выше наложение приводит также к тому, что при использовании линии КI4,4 кэВ для точного определения ПФЛ в тритиевых экспериментах необходимо учитивать и вклад КММ-группи. Из измерений интенсивностей К-серии Оже-электронов и линии ЭВК КI4,4 кэВ нами определены следующие отношения: кLL : кLM : КММ : КI4,4 = 4,0(6):I,0(I): 0,05(2):3,0(3).

<u>В заключении</u> приводятся основние результати, полученние в диссертации.

I. Создан новый комбинированный электростатический спектрометр для изучения электронов с энергией 0,5+50 кэВ. В этом спектрометре впервые для задач ядерной физики объединены два типа анализаторов: интегральный со сферическим тормозящим полем и дифференциальный типа двойного цилиндрического зеркала. Управление и контроль работы спектрометра осуществляется с помощью микроЭЕМ в стандарте КАМАК. Полученное аппаратурное разрешение △Е≈5 эВ в области энергий ~ 20 кэВ является наилучшим для спектрометров, работакщих в данной области энергий.

2. Проведены исследования относительной эффективности КЭУ электростатического спектрометра. Получена зависимость эффективности регистрации от энергии электронов в диапазоне 60-1000 эВ. Из эксперимента следует, что при малых энергиях электронов эффективность падает примерно в 3 раза.

3. С целью достижения компромисса между эффективностью регистрации и энергетическим разрешением спектрометра проведен эксперимент с ускорением электронов, регистрируемых КЭУ. Из эксперимента определен оптимальный режим работы КЭУ, при котором можно добиться увеличения отношения пик/фон примерно в 2 раза без заметного ухудшения аппаратурной формы линии спектрометра.

4. На основе амализа явлений, сопровождающих процесс испарения в вакууме, и эксперимента по оценке эффекта улетучивания материала нагревателя выбрана оптимальная процедура приготовления тонкослойных радиоактивных источников электронов для прецизионной спектрометрии низкоэнергетических электронов.

5. Впервые проведени прямые измерения естественных ширин атомных уровней ты с помощью низкоэнергетических ЭЕК из распада ¹⁶⁹уь, используемого в качестве калибровочного источника в экспериментах по измерению массы антинейтрино (см. табл. I).

6. Проведены исследования К-серии Оже-переходов в железе (z = 26) из распада ⁵⁷Со. Измерения интенсивностей и энергий кім- и КММ-переходов проводились впервые. Из анализа результатов измерений относительных интенсивностей кім-переходов впервые сделан вывод о неприменимости расчетов, выполненных в рамках теории јј-связи для описания интенсивностей этих переходов в области z ~ 25. Расчеты интенсивностей кім-переходов в этой области z должны проводиться в рамках теории промежуточной связи.

Основные результаты диссертации опубликованы в следующих работах:

І. Ц.Вылов, А.Минкова, А.Х.Иноятов, С.Бацев, К.Я.Громов, А.Маринов, П.Петев, В.Т.Сидоров, В.Г.Чумин, Ш.Бриансон, Р.Ж.Вален, Б.Легран, О.Гобло, Д.Лекутюрие. Электростатический бета-спектрометр в области энергий 0,5-50 кэВ. – Дубна, 1982. – ІЗ с. (Препринт/Объед. ин-т ядерн.исслед.: Р6-82-918); В сб.: Прикладная ядерная спектроскопия, вып.ІЗ. – Л.: Энергоатомиздат, 1984, с.I2-2I; В сб.: Тезисн докладов XXXII совещания по ядерной спектроскопии и структуре атомного ядра. – Л.: Наука, 1983, с.496.

- Ch.Briancon, B.Legrand, R.J.Walen, Ts.Vylov, A.Minkova, A.Inoyatov. A new combined electrostatic electron spectrometr. - Nucl.Instr. and Meth., 1984, v.221, p.547-557.
- 3. А.Х.Иноятов, Ш.Бриансон, К.Бурин, Р.Вален, Ц.Вылов, Б.Легран, А.Минкова, В.Н.Покровский. Об относительной эффективности регистрации канального электронного умножителя электростатического бетаспектрометра. – Дубна, 1985. – II с. (Сообщение/Объед. ин-т ядерн. исслед.: Р6-85-753); В сб.: Ядерная спектроскопия и структура атомного ядра. Тезисы докладов XXXVI совещания. – Л.: Наука, 1986, с.525.
- 4. В.Н.Покровский, А.Х.Иноятов, И.А.Простаков, Ш.Бриансон, Ц.Вылов, Б.Легран, А.Минкова, А.А.Пасько. Измерение естественных ширин атомных уровней тулия из распада ¹⁶⁹уь. – Дубна, 1986. – 10 с. (Препринт/Объед. ин-т ядерн.исслед.: Р6-86-I34); In: International Symposium on weak and electromagnetic interactions in nuclei. – Heidelberg, 1986, p.251.
- 5. А.Ковалик, А.Х.Иноятов, А.Ф.Новгородов, В.Брабец, М.Ришави, Ц.Вылов, О.Драгоун, А.Минкова. Исследование КЦ- и КЦМ-спектров Оже-электронов железа при распаде ⁵⁷Со – ⁵⁷Fe. – Дубна, 1986. – 10 с. (Препринт/Объед. ин-т ядерн.исслед.: Рб-86-I33); В сб.: Ядерная спектроскопия и структура атомного ядра. Тезисн докладов ХХХУІ совещания. – Л.: Наука, 1986, с.249.

Рукопись поступила в издательский отдел 4 ноября 1986 года.