28/10-84

Объединенный институт ядерных исследований дубна

2064/84

6-84-96

1984

К.Я.Громов, Т.А.Исламов, Г.А.Кононенко, Н.А.Лебедев, В.А.Морозов, Т.М.Муминов, А.Х.Холматов

ИССЛЕДОВАНИЕ СПЕКТРА КОНВЕРСИОННЫХ ЭЛЕКТРОНОВ ¹³³Се

Направлено на XXXIV Совещание по ядерной спектроскопии и структуре атомного ядра /Алма-Ата, апрель 1984/, а также в Известия АН СССР /сер.физ./

1. ВВЕДЕНИЕ

Радиоактивный изотоп 133 Ce /T_{1/2} = 6,3 ч./ был обнаружен Стовером/1/. Работая с моноизотопным источником 133 Ce, Гершел и др./2/ установили, что этот изотоп имеет две активности с периодами полураспада T_{1/2} = 5,40/5/ ч. и T_{1/2} = 97/4/ мин. Период полураспада долгоживущего изомера 133 Ce уточнен в работе/3/ /T_{1/2} = 4,93 ч./. Экспериментальному исследованию распада этих изомеров посвящен ряд работ/4-7/, которые включают в себя измерения спектров ү-лучей/4-5/, электронов внутренней конверсии /3BK//4-7/ и ү-ү-совпадений/5/ при распаде 133 Ce.

В настоящей работе измерены спектры ЭВК при распаде 133Се на бета-спектрографе с постоянным магнитным полем при последующем усилении изображений линий ЭВК на фотопластинках. Результаты этих исследований позволили обнаружить ряд новых переходов, разместить их в схеме уровней 133La, определить и уточнить интенсивности ряда линий КЭ и мультипольности у-переходов в диапазоне энергии $E_{\rm y} = 20\pm650$ кэВ.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Фракция церия была получена в реакции глубокого расщепления гадолиния протонами с энергией 660 МэВ на синхроциклотроне ЛЯП ОИЯИ. Источники для бета-спектрографов приготовлялись методом электролитического осаждения фракции изотопов церия на платиновую проволочку диаметром 0,1 мм.

Спектр ЭВК изучался на бета-спектрографах с постоянным однородным магнитным полем/8/ и разрешающей способностью 0,03-0,07%. Для регистрации ЭВК использовались фотопластинки типа P-50. Фотометрирование полученных фотопластинок проводилось на автоматическом микрофотометре/9/, связанном с ЭВМ ЕС-1010. На рис.1 показан участок спектра ЭВК цериевой фракции, полученный в настоящей работе. С целью обнаружения слабых линий ЭВК спектры на фотопластинках были усилены с помощью радиоактивной 35s/10//см.рис.2/.

Рис.2. Участок спектра ЭВК цериевой фракции. a/ до усиления; б/ после усиления.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

а/ Распад 5-часового 133Се

Исследование спектра ЭВК цериевой фракции в диапазоне энергий 20÷650 кэВ позволило определить относительные интенсивности ЭВК около 70 у-переходов 5-часового 133Се. Среди них имеются линии ЭВК 16 ранее неизвестных у-переходов. Полученные результаты: энергии у-переходов и относительные интенсивности линий ЭВК представлены в табл.1 и 2. В табл.1 приведены сведения только о у-переходах, для которых определены относительные интенсивности К-, L₁-, L₂- и L₃-линий ЭВК. Значения относительных интенсивностей К*линий для всех наблюдаемых в нашей работе у-переходов представлены в табл.2, где также приведены данные из/5/ об относительных интенсивностях у-лучей и размещении у-переходов в схеме распада 5-часового 133Ce.

Как видно из табл.2, относительные интенсивности ү-лучей нормированы к ү-переходу 477,22 кэВ / I_{γ} = 1000/. Для связи шкал относительных интенсивностей ү-лучей и ЭВК в табл.2 мы использовали расчетное/11/ значение коэффициента внутренней конверсии ($\alpha_{\rm K}$) для перехода 58,39 кэВ типа E1: $\alpha_{\rm K}$ = 0,86. Мультипольность этого ү-перехода была установлена из отношений L_1 -, L_2 - и L_3 линий КЭ /см.рис.3 и табл.1/. Из сравнения экспериментальных и расчетных/11/ отношений интенсивностей L_1 -, L_2 - и L_3 -линий ЭВК определены отношения смешивания мультипольностей следующих үпереходов: 42,7 - M1+2,5(6)% 22; 87,939 - M1+0,26(14)% 22; 97,261 -M1+2,4(5)% 22 и 130,803 кэВ - M1+(5,4^{+1,2})% 22 /см.рис.4/. Мульти-

польности остальных у-переходов были определены на основании значений α_{κ} . Заключения о мультипольности для 40 у-переходов сделаны впервые. Выводы о мультипольности для остальных у-переходов согласуются с данными/4,5,7/.

б/ Распад 97-минутного 133Се

В^{/5/} к распаду 97-минутного 133_{Се} отнесены пять у-переходов 76,9; 97,3; 174,0; 376,7 и 557,7 кэВ. В наших измерениях удалось наблюдать линии ЭВК для всех этих у-переходов. Полученные результаты: энергии у-переходов и относительные интенсив-

				1	аолица
Сведения	об	электронах	внутренней	конверсии	5-часо-
		Br	13300		

Еу(Д Еу), кэв	$I_{K}(\Delta I_{K})$	IL, (& IL,)	$I_{L_2}(\Delta I_{L_2})$	ILS(AILS)
42,7(I)		2,5(3)	0,80(7)	≼0,4
58,39(3)	422(38)	39,8(32)	9,1(7)	13,3(II)
87,939(II)	190(30)	28(3)	2,6(3)	0,70(8)
97,26(10)	49,3(46)	6,3(6)	0,80(8)	\$0,27
130,803(10)	205(24)	23,3(25)	3,9(3)	2,1(2)
174,0(2)	0,26(4)	CJIOHH .	0,023(3)	0,021(3)
178,65(3)	6(I)	0,8(1)		-
228,59(6)	0,9(2)	0,15(3)	-	-
248,95(2)	2,3(5)	I,30(25)	0,70(15)	_
261,396(14)	2,9(4)	0,4(I)	-	-
346,39(5)	3,5(5)	0,5(I)	-	-
364,19(4)	0,8(2)	0,10(3)		
404,78(4)	3,3(7)	∑I_=0,5(I)		
477,22(4)	9,82	ΣIL=I,5(3)		
510,36(7)	6,4(IO)	ZIL=0,9(2)		

y(AEy). KaB	$I_{\gamma(\Delta I_{\gamma})}^{I_{\gamma(\Delta I_{\gamma})}}$	I _K (AI _K)	K ^{(ad} ^K)	Мультиольность) E	1	*
I	2	3	4	5	9		
2,7(I)	2,0(I)			ML+2,5(6)%E2	130	87	
(01)60'(<0,5			165	543	-
(8)39(3)	49I(IO)	422(38)	0,86	E	535	47	~
93(II)		0,50(15)		•	54I	47	~
(01)66'		I,5(4)			1468	13	96
,67(IO)		0,20(7)			1850	L7	28
,II(I2)		0,12(4)			563	47	~
(11)686	I3I(3)	(0E)06I	I,45(23)	MI+0,26(14)%H2	. 48		0
,261(10)	44,8(IO)	49,3(46)	I,I(2)	MI+2,4(5)%E2	46		0
2,6(I)		0,08(3)			1850	I74	8
(II)EO'3	÷	0,15(6)			950	83	-
(11)20'I		≈0°05			16 5	47	~
(EI)96(I3)		0,08(3)			654	S	10
(0I)E08,	457(IO)	205(24)	0,45(5)	MT+(5,4+I.2)%E2	130		0
5,5(2)		₹0,I		+	1850	L'I	12
,3(2)		0.20(6)			1468	13]	8

4

			Табли	ща 2 /продолж	ение/	
I	2	. 3	4	5	9	4
^H I59,56(I8)		0,10(4)			654	495
^H 165, 72(18)		0,4(I)			950	784
173,20(12)	<2,4	0,12(4)	>0,05	NI. BU	1153	096
174,0(2)	I,6(8)	0,26(4)	0,16(8)	23	1735	156I
177,3(3)	I,3(5)	0,25(4)	0,192(78)	N. F.	654	477
178,65(3)	31(1)	6(I)	0,193(33)	M. F.	2036	I857
204,16(12)	I,3(4)	0,18(4)	0,138(51)	N. B		
211,65(6)	7,0(5)	0,8(2)	(6)11(3)	ML.E2	I365	1153
^H 221,2(1)	Å	≈0,05			784	563
(6)/6,122	2,2(4)	0,20(7)	0,091(36)	M.R.		
224, I6(7)	3,6(4)	0,3(I)	0,083(27)	MI, B2	765	541
228,59(6)	9,7(5)	0,9(2)	0,093(21)	MI.E2	2035	I806
235,9(2)	9/3/	0,20(4)	0,022(4)	(四)		
248,95(2)	34,0(8)	2,3(5)	0,068(15)	2	784	535
256, 6(2)	I,3(5)	¢0,I	¢0,07	(M. E2)	• •	
261,396(14)	44,4(IO)	2,9(4)	0,065(9)	NI.BS	1045	784
264,7(I)	I,8(4)	≥0,I	≈0,056	MT.R2	I3IO	1045
274,84(7)	3,4(5)	0,18(4)	0,053(13)	52. TH	838	563
			Tag	лица 2 /продол	жение/	
I	2	3	4	5	6	4
278,0(I)	92	0,09(2)	≈0,0I5	RI	2062	I784
287,73(8)	4,4(6)	CJIOZH.		ч.	765	477
294,23(5)	I2,7(6)	0,5(I)	0,04(I)	CH CH	1690	1396
^H 296,0(I)		0,10(4)			950	654
300,54(IO)	6,I(IO)	0,25(4)	0,041(9)	LAL E2	2036	1735
307,30(6)	23,8(9)	0,25(4)	0,011(2)	ET	784	477
354,45(8)	5,1(6)	0,16(5)	0,03(9)	5H. H	I468	1153
319,03(7)	8,0(7)	0,28(4)	0,035(6)	EL . ES	1365	1045
339,03(5)	24,9(15)	CJOEH.			1735	1396
342,651(9)	3,0(5)	≈0,03 CJOWH.	≈0,0I		2200	1857
346, 39(5)	I06(2)	3,5(5)	0,033(5)	IM	477	130
360,96(10)	2,4(6)	≈0,07	≈0,029	IN	838	477
364,19(4)	32,0(8)	0,8(2)	0,025(6)	MT.E2	495	130
369,9(2)	4,8(IO)	≈0,06	≈0,0I3	(国)		
376,71(9)	3,9(5)	0,09(4)	0,025(12)	MI, E2		
389,37(9)	5,4(5)	0,10(3)	0,019(6)	E2(ML)	477	87
392, I6(8)	8,1(5)	0,15(3)	0,019(4)	(IN)23		

5

6

. 7

56

495

E2(MI)

0,019(4)

0,30(5)

I5,3(6)

397,75(6)

1045 **I188** 130 495 138 130 130 654 535 0 0 83 62 5 83 1045 I735 I468 1092 Таблица 2 /продолжение/ 950 563 541 535 495 541 263 541 477 654 G 四(11)2回 (M. E2) M.E2 M. R2 R.R. IL ES N.R N.R S (H E 보 2 널 2 님 5 0,076(16) 0,012(2) 0,007(2) 0,021(5) 0,017(3) 0,011(2) 0,023(7) 0,012(4) 0,0I2(3) 0,008(I) 0,0II(3) 0,022(5) 0,00982 =0,012 ≈0,0I8 #0, OI =0.04 0,94(I5) 0,30(6) (E)01°0 6.4(IO) 0,30(5) 0,13(3) = 9,82 0,6(I) 0,8(2) I,0(3) 0,4(I) 3,3(7) 3 ***0,06** ≈0,05 =0°02 1.0ª 528(12) 4,I(I0) -43,3(9) IB,4(6) I8,I(6) 5,8(5) 2,5(6) 75(IO) 6,3(5) 4,2(5) 2,8(9) **BI(2)** 80(2) 90(2) 25(4) 0001 455,28(IO) 54I,09(IO) 571,06(10) (0I)9E.0IA 475,49(6) 546,86(8) 5I0,36(7) 523,76(5) 404,78(4) 422,92(5) 432,55(4) 437,69(7) 453,27(5) 477,22(4) 407.7(I) 4I5,4(I)

Таблица 2 / продолжение/

495

1092

뇌

0,07(2)

9,6(8)

597,36(I4)

						A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER
I	2	3.	4	5	6	4
6II,83(6)	66,2(16)	0,45(5)	0,0068(7)	NT (+E2)	1396	784
6I5, 39(I2)	6,9(8)	#0°08	≈0,0087	(INI)	1092	477
617,7(2)	. 42(6)	0,30(5)	0,0071(13)	MT (+B2)	1153	535

на месте расположения линии наблюдаются 1 "сложн." - новые ү-переходы; несколько неразрешенных линий. H Примечание:

L1/L2(3KCR.)

L1/L3(3KCN.)

0

88

20ò

90

10 15 E2(%) 99 98,5 M1(%)

00

3

8

Рис.3. L₁-, L₂- L₃-линии ЭВК ү-перехода 58,39 кэВ ¹³³Се.

ĝ

польности ү-перехода 76,9 кэВ 97-минутного ¹³³Се. Рис. 5. К определению мульти-M1+(0,32+0,14)%E2 Er= 76.9 ×=8 NE KAHARA 300 11,1,1,1, 769×00 133Ce 200 8 0.2

Ey(AEy). KaB	1y(a1y)	SN K3	Ie(AIe)	$\boldsymbol{\boldsymbol{H}}_{\mathrm{K}}(\boldsymbol{\boldsymbol{e}}_{\mathrm{K}})$	MyJEFT2110JEHOCTF	ш	Ť 1
6,9(5)	350(50)	ĸ	668(65)	I,9I(3I)	MI+(0, 32+0, 14) %E2	174	67
		۲I	84(8)				
		L 2	8,8(9)				
		L 3	2,3(3)				
7,261(10)	1000(150)	Ж	(001)0011	I,I(2)	MI+2,4(5)%E2	26	0
		LT	140(13)				
		L2	17,5(18)				
		L 3	46				
74,0(5)	9(2)	K	1,94(30)	0,215(55)	꼂	174	0
		٢	CJOXH.				
		L2	0,17(2)				
		L3	0,16(2)				
76,7(3)	= 20	K	0,5(2)	±0,025	(ZEI) IN		
57,7(3)	250(50)	K	I,6(3)	0,0064(16)	23		
		Lz	0,25(3)				

ности ЭВК представлены в табл.3. Там же приведены данные из/5/ об относительных интенсивностях у-лучей, а также наши выводы о мультипольности у-переходов и размещении этих у-переходов в схеме распада 97-минутного 133Се. Интенсивности у-лучей нормированы к ү-переходу 97,26 кэВ /І, = 1000/. Нормировка относительных интенсивностей ү-лучей и ЭВК была сделана через ү-переход 76,9 кэВ типа М1 + 0,32%Е2. Мультипольность этого у-перехода была определена из отношений интенсивностей L1-, L2- и L3линий ЭВК /см.рис.5/.

ЛИТЕРАТУРА

- 1. Stover B. Phys.Rev., 1951, 81, p.8.
- Gerschel C. et al. Compt.Rend., 1967, 264, p.183.
- 3. Genrke R.J., Helmer R.G. J.Inorg. Nucl.Chem., 1976, 38,p.1929.
- 4. Gerschel C. Nucl. Phys., 1968, A108, p.337.
- 5. Henry E.A., Meyer R.A. Phys.Rev., 1978, C18, p.1814.
- Абдумаликов А.А. и др. яФ, 1966, 3, с.441.
- 7. Abdul-Malek A. et al. Nucl. Phys., 1968, A108, p.401.
- 8. Абдуразаков А.А. и др. Бета-спектрографы с постоянными магнитами. ФАН, Ташкент, 1970.
- 9. Исламов Т.А. и др. ОИЯИ, Р10-12794, Дубна, 1979.
- 10. Громова И.И. и др. ОИЯИ, Р6-82-487, Дубна, 1982.
- 11. Hager R.S., Seltzer E.C. Nucl.Data, 1968, A4, p.1.

Рукопись поступила в издательский отдел 15 февраля 1984 года

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
	Труды VII Всесоюзного совещания по ускорителян заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
A10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики - высоких энергий. Дубна, 1981.	3	p.	60	к.
A17-81-758	Труды 11 Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
A1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	р.	75	к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	р.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	р.	00	к.
A2,4-83-179	Труды XУ Международной школы молодых ученых по физике высоких энергий. Дубна, 1982.	4	p.	80	к.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	11	р.	40	к.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубиа, 1982.	2	р.	50	к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6	р.	5!	5 к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2	p.	00	к.
Sakash	HA VIONANYTHE KUNTH MOTOT AUT. HADRADIAN TO				

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79

Издательский отдел Объединенного института ядерных исследований

Громов К.Я. и др. Исследование спектра конверсионных электронов 133Се

Исследован спектр электронов внутренней конверсии /ЭВК/ 133Се при помощи бета-спектрографа с постоянным магнитным полем. Обнаружены линии 16 ранее неизвестных у-переходов. Из отношений интенсивностей L₁-, L₂- и L₃-линий ЭВК определены отношения смещивания мультипольностей у-переходов с энергиями: 42,7; 58,4; 76,9; 87,9; 97,3 и 130,8 кэВ. Заключения о мультипольности для 40 у-переходов сделаны впервые.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

Gromov K.Ya. et al. Investigation of 139Ce Internal Conversion Electron Spectra

The spectrum of electron internal conversion /EIC/ of 133Ce is studied using the beta-spectrograph with constant magnetic field. The lines of 16 earlier unknown γ -transitions are detected. The ratios of mixing of the γ -transition multipolarities with energies 42.7, 58.4, 76.9, 87.9, 97.3 and 130.8 keV are determined from the ratios of intensities of the EIC L₁-, L₂- and L₃-lines. Conclusions on the multipolarity for 40 γ -transitions are made for the first time.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984