ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 20/- 175 6 - 8204

169/2-75 А.А.Абдуразаков, М.Будзински, Р.Ион-Михай, Т.А.Исламов, В.А.Морозов, Т.М.Муминов, М.Суботович, В.И.Фоминых, Х.Фуя, Н.Халбаев

74-21

mano

A-139

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

6 - 8204

А.А.Абдуразаков, М.Будзински, Р.Ион-Михай, Т.А.Исламов, В.А.Морозов, Т.М.Муминов, М.Суботович, В.И.Фоминых, Х.Фуя, Н.Халбаев²

Направлено в Revue Roumaine

de Physique

¹ Ташкентский государственный университет им. В.И.Ленина.

- 2 Самаркандский государственный университет.
- ³ Университет им. М.К.Склодовской, Люблин.
- 4 Политехнический институт, Бухарест.

1. Введение

¹⁶⁸₆₈ Er ₁₀₀ Четно-четное ядро лежит в области сильнодеформированных ядер. Изучение схемы возбужденных состояний этого ядра проводилось в ряде работ /1-7/ В результате этих исследований были изучены спектры конверснонных электронов и гамма-лучей, гамма-гамма совпадений, гамма-гамма- и е_к-гаммаугловых корреляций, а также изучены коллективные ¹⁶⁸ Er, состояния возбуждаемые при реакция 168 Er (d,d') 168 Er 77 Построенная на основе этих данных схема уровней ¹⁶⁸ Ег включает в себя ротационную полосу основного состояния с $\mathbf{K}^{\pi} = \mathbf{0}^{+}$, γ -вибрационную полосу с $K^{\pi} = 2^+$, полосу с $K^{\pi} = 3^-$ и $K^{\pi} = 4^-$ и, кроме того, ряд других вышерасположенных возбужденных состояний.

Уточнение схемы распада ¹⁶⁸ Тт и природы возбужденных состояний ¹⁶⁸ Ег требует более тщательного изучения гамма-спектра, спектра конверсионных электронов, мультипольностей переходов и спектров совпадений.

С этой целью в настоящей работе проведены измерения электронов конверсии, гамма-гамма совпадений с Ge(Li) детекторами и гамма-гамма угловые корреляции с использованием Ge(Li) – и Na J(Tl) -детекторов.

2. Постановка эксперимента

Источник ¹⁶⁸ Tm / T_{1/2} = 85 дней/ получался в реакции глубокого расщепления при облучении танталовой мишени на внутреннем пучке протонов синхроциклотрона ЛЯП ОИЯИ / E_p = 680 *МэВ*/. Из облученной в течение 20 часов мишени хроматографическим методом выделялась фракция тулия. Для изучения конверсионных электронов источник ¹⁶⁸ Tm электролитически наносился на платиновую проволочку / ϕ = 0,1 *мм*/. Спектры конверсионных электронов были изучены в области энергий от 6 до 3000 кэВс помощью бета-спектрографовс постоянным однородным магнитным полем / R = 0,05%/ ^{/8/}.

Спектры гамма-гамма-совпадений изучались на двухмерном анализаторе с цифровыми окнами на базе ЭВМ "Минск-2" с использованием двух полупроводниковых спектрометров с Ge (Li) -детекторами объемом 25 см³ и разрешением 3,5 кэВ на линии 1332 кэВ ⁶⁰ Со . Временное разрешение равнялось 40 нсек. При анализе спектров совпадений учитывался вклад совпадений с комптоновским распределением от остальных гамма-переходов.

Измерения гамма-гамма угловых корреляций проводились также на ЭВМ "Минск-2" в режиме двухмерного анализа. Гамма-лучи регистрировались в одном канале Ge(Li) - детектором объемом 45 см³ и разрешением 2.7 кэВ на линии 1332 кэВ 60 Со и в другом канале сцинтиляционным спектрометром с кристаллом Na I (Tl) размером о 40х40 мм. Подробное описание блок-схемы установки дано в работе 19. При измерении гаммагамма угловых корреляций в ядре¹⁶⁸ Ег. цифровые окна в спектре Na I (TI) были установлены на гамма-переходы 184 + 198 кэВ н 632 кэВ и на соответствующие фоновые участки /см. рис. 1/. При обработке спектров совпадений учитывались случайные совпадения, совпадения с комптоновским распределением от других гамма-переходов, а также геометрические поправки для Ge(Li) - детектора /10/ и для кристалла Na $I(T1)^{/11/}$

Ļ

3. Экспериментальные результаты и их обсуждение

Результаты исследования электронов внутренней конверсии и выводы о мультипольности переходов даны в *maбл.* 1. В области малых энергий /до 184 кэВ/ обнаружено 8 новых переходов: 27,90; 73,87; 74,68; 75,55; 110,05; 173,70 и 183,90 кэВ. В области энергия выше 184 кэВ наши результаты совпадают с результатами Келлера и др. $^{5/}$ Ранее известный гамма-переход с энергней 184,29 кэВ $^{5/}$ оказался двойным 183,90 и 184,29 кэВ. Новый переход с энергией 183,9 кэВ располагается между уровнями 1615,3 и 1431,4 кэВ. Другие новые гамма-переходы также находят место в рамках схемы уровней 168 Er, предложенной Келлером и др. $^{5/}$ /см. рис. 2/.

Результаты изучения гамма-гамма-совпадений приведены в *табл. 2.* Они подтверждают расположение гаммапереходов, приведенное на схеме уровней ¹⁶⁸ Er / puc. 2/.

В табл. З даются результаты измерений гамма-гамма угловых коррепяций. Сравнение экспериментально полученных значений коэффициентов угловых корреляций A_{22}^{9KCII} и A_{44}^{9KCII} с теоретическими расчетами /12/ позволило определить смеси мультипольностей для переходов 198,2; 631,6; 815,9 и 829,9 кэВ в предположении, что переход 184,30 кэВ является чистым E2 /2/ :

Ка<u>скад /632-184/ кэВ</u> разряжает последовательно возбужденные состояния 895,8; 264,1 кэВ на уровень 79,82 кэВ 168 Ег . Анализ экспериментальных значений $A_{22}^{\rm ЭКСП}$ и $A_{44}^{\rm ЭКСП}$ с помощью параметрического графика /puc. 3/ для исследуемого каскада приводит к мультипольности типа $E^{2+} < 0,02\%$ М1 для перехода 631,6 кэВ.

Каскад /198-632/ кэВ связывает возбужденные состояния с энергиями 1094,0; 895,8 и 264,1 кэВ. При мультипольности типа Е2 для перехода 631,6 кэВ, из графика Арнс-Виденбека / рис. 4/ следует смесь мультипольности E1 +<0,9% М2 и знак параметра смеси $\delta > 0$ для перехода 198,2 кэВ.

<u>Каскад /198-816/ кэВ</u> происходит между возбужденными состояниями 1094,0; 895,8 и 79,82 кэВ. При смесн мультипольностей и знаке параметра δ для перехода

4

Таблица I Относительные интенсивности конверсионных электронов при распаде1687тм K L Е, кэв L_2 Мультипольность La 0.34 /B2+MI/ 27,90 0,28 --0,34 73,87 ٠ • -74,68 0,52 0,069 0,34 0,34 E2 75,55 0,24 ---~ 79,82 3,7 37,4 37,0 **E2** 37.4 98,95 0.21 ------99,29 I.0 0.14 0,05 EI -II0.05 0.24 ------138,15 0.I /E2/ -----••• 173,70 0,05 ---E2 183,90 0,24 /E2/ -----184,29 6.64 0,68 I.0 0.76 E2 198,25 4,13 0,8 0,12 EI 0,12 272,87 0,14 0,022 0,005 M2 0.004 284,II 0,014 E2 ---348,40 0,021 0,003 E2 ----422,24 0,028 0,005 MI --447,47 0.048 2,0 0**,**3I 10,0 MI 546,76 0,020 EI -• -557,08 0,05 E2 ----• 63I,66 0.13 0.028 E2+MI • -645,7I 0,0056 EI ---673,68 0,001 EI+M2 -• -720.32 10.0I 0.053 ΕI • • 730,6I 0,014 0.055 E2+MI --741,32 0,13 0,024 E2+MI -• 748,31 0.00009 -/EI/ --815,93 0,43 0,076 E2 • ----82I,II 0,II 0,010 E2 --829,91 0,023 EI ---914,90 0.022 0,0034 E2 --I0I4,I8 0,0015 **M**2 ---

Таблица 2

Результаты гамма-гамма совпадений в 168 Ег

a.

•;

E2

EI

EI

	99 , 29	I84,30	I98,25	272,87	284,II	447,47	546,76	557,08	631,66	645 , 7I	720,32	730,61	741.32	815,95	82I,IO	R29,91	914,90	I277,4I
99,29		+				+						+					+	
184,30			+		+			+	+	+	+	+				+		+
198,25		+				+			+					+				
272,87						+							+		+			
447,47	+		+	t					+					+		t		
546,76		Ŧ										+					+	
557,08		+									+							
631,66		+	+			+				+								
720,32		+						+					+		+			
730,61	+	+				+	+											
741,32				+							+							
815,95			(+)			+				+								
821 ,10			+			+					+							
829,91		+				+												

6

II67**,49**

1277,41

I46I,74

0,00026

0,0026

0.0003

_

-

-

-

-

-

-

-

-

Эксперим	Экспериминтальные значения коэффициентов угловых корреляций в 168							
Энергия уровия (кэв)	$ \begin{array}{c} \mathbf{R}_{\text{ACRAZ}} (\mathbf{R} \times \mathbf{B}) \\ (\mathbf{I}_{i}^{\text{T}} \longrightarrow \mathbf{I}^{\text{T}} \longrightarrow \mathbf{I}^{\text{T}}) \end{array} $	A22 ± 6 A22	144 ± 6144					
895,77 264,II 79,82	632 - 184 $(3^+ \rightarrow 4^+ \rightarrow 2^+)$	+0,006 <u>+</u> 0,020	-0,220 <u>+</u> 0,038					
1094,01 895,77 264,11	$ \begin{array}{c} 198 - 632 \\ (4^{-} \rightarrow 3^{+} \rightarrow 4^{+}) \end{array} $	+0,023 <u>+</u> 0,020	+0,054 <u>+</u> 0,040					
1094,01 895,77 79,82	198 - 816 (4 ⁻ → 3 ⁺ →2 ⁺)	-0,033 <u>+</u> 0,009	+0,004 <u>+</u> 0,016					
1094,01 264,11 79,82	830 184 (4 ⁻ → 4 ⁺ →2 ⁺)	+0,200 <u>+</u> 0,032	+0 ,0 35 <u>+</u> 0,053					

Таблица З

Таблица 4

Смеся мультипольностей для исследиемых гамма-переходов в ¹⁶⁸Ег

Переход		Мультапольноста			
(кэв)	Настоящая работа	Гасселтрен и др./3/	Келлер и др./5/		
198	EI +<0,9% M2	EI + < 1% M2	EI +<0,9% M2		
632	E2 +<0,02% MI	E2 +<0,1% MI	E2 + <22% MI		
816	E2+(0,55±0,35)%MI	E2 + < 0,1% MI	E2 + <26% MI		
830	EI + < 2% M2	EI + <i.7% m2<="" td=""><td>EI +<3% M2</td></i.7%>	EI +<3% M2		

Рис. 4. График Арнс-Виденбека для каскада /198-816/ кэВ.

198,25 кэВ, найденных из анализа предыдущего каскада, следует из *рис.* 5 для перехода 815,95 кэВ смесь мультипольностей $E_2 + /O,55 \pm O,35/\%$ М1 и $\delta > 0$.

Каскад /830-184/ кэВ последовательно разряжает состояния 1094,0; 264,1 кэВ на уровень 79,82 кэВ 168 Er. Анализ этого каскада приводит к смеси мультипольности E1 +<2%M2 для перехода 829,91 кэВ / рис. 6/.

В табл. 4 приведены данные о мультипольностях гамма-переходов. полученные в наших исследованиях, и результаты исследований, приведенных в работах /3,5/. Из таблицы видно, что наши данные хорошо согласуются с данными работы ^{/3/}. В этой работе радиоактивный источник ¹⁶⁸ Tm был нанесен путем испарения в вакууме на никелевую подложку. При обработке экспериментальных результатов для е_k-гамма-каскадов, идущих через промежуточное состояние 264.1 кэВ, авторы работы /3 / принимали значение коэффициента ослабления в пределе $0,80 \le G_{22} \le 1,0$. В нашей работе источник ¹⁶⁸ Тт был нанесен электролитически на платиновую проволочку, Имея в виду, что осуществляется хорошее согласие между нашими результатами и данными работы /3/, можно заключить, что влияние внутренних возмущений в нашем источнике на функцию угловой корреляции для каскадов /632-184/ и /83О-184/ кэВ пренебрежимо мало. Такое утверждение можно сделать для каскадов /198-632/ и /198-816/ кэВ, для которых промежуточное состояние характеризуется малым временем жизни /оно является У-вибрационным состоянием, для которого характерно очень малое время жизни/.

Определение значения параметра смеси Q для переходов 631,66 и 815,95 кэВ позволяет определить экспериментальное отношение приведенных вероятностей Е2-переходов с γ -вибрационного состояния / IK $\pi = 32^+$ / на ротационную полосу основного состояния. Это отношение равно:

 $\frac{\mathbf{B}(816; \mathbf{E2}; 3 \rightarrow 2)}{\mathbf{B}(632; \mathbf{E2}; 3 \rightarrow 4)} = \left[\frac{\mathbf{E}(632; 3 \rightarrow 4)}{\mathbf{E}(816; 3 \rightarrow 2)}\right]^5 \times \frac{\mathbf{I}(816; 3 \rightarrow 2)}{\mathbf{I}(632; 3 \rightarrow 4)} \times \frac{\mathbf{Q}(816; 3 \rightarrow 2)}{\mathbf{Q}(632; 3 \rightarrow 4)}, /1/$

где Е , I , Q - энергия, интенсивности и параметр смеси соответствующего перехода.

12

Рис. 5. График Арнс-Виденбека для каскада /198-816/ кэВ.

.

,

Рис. 6. График Арнс-Виденбека для каскада /830-184/ кэВ.

ľ4

15

Используя значення энергии и интенсивности гаммапереходов, определенные в работе $^{5/}$, и значения Q, найденные нами, получаем 1,673 ± 0,053 для отношения приведенных вероятностей /формула 1/. Адиабатическая теория дает для этого отношения значение 2,50. Разницу между этими значениями можно попытаться объяснить взаимодействием между вибрационным и ротационным движением ядра^{/13/}. Общая теория этого взаимодействия развита в работах Натана и Нильсона^{/14/}, Бора и Моттельсона ^{/15/}.

Теперь можем оценить параметр смешивания γ -вибрационной и основной полосы Z , определяемый формулой /14/:

$$\frac{B(E2; 32^{+} - 20^{+})}{B(E2; 32^{+} - 40^{+})} = (\frac{1-Z_{2}}{1+6Z_{2}})^{2}.$$
 /2/

Принимая значение 1,673, определенное выше, получаем значение $Z_2 = /32,6\pm 2,4/10^{-3}$, что находится в хорошем согласии с результатами, полученными в работах /5,16/ Ядро ¹⁶⁸Ег представляет собой четно-четное ядро.

Ядро ¹⁶⁸Ег представляет собой четно-четное ядро. В работах ^{/17,18,19} рассматриваются вопросы учета взаимодействия вибрационных и ротационных движений в четночетных ядрах. Вычисления по Давыдову ^{/17,18/} и по Беляку ^{/19/} дают для отношения приведенных вероятностей Е2 переходов значения О,65 и 1,32, соответственно. Наше экспериментальное значение в случае ¹⁶⁸Ег лежит ближе к значению, полученному по теории Беляка и Зайкина ^{/19/}

Авторы приносят свою благодарность профессору К.Я.Громову и В.Г.Калинникову за полезные обсуждения и ценные замечания.

Литература

- 1. K.P.Jacob, J.W.Mihelich, B.Harmatz and T.H.Handley. Phys.Rev., 117, 1102 (1960).
- 2. J.Jursik and V.Zvolska. Nucl. Phys., 86, 405 (1966).
- 3. Hasselgren, H.S.Sahota, J.E.Thyn and F.Falk. Physika Scripta, vol. 3, 119 (1971).
- 4. Z.Preibisz, D.G.Burke and R.A.O'Neil. Nucl. Phys., A201, 486 (1973).
- 5. G.E.Keller, E.F.Zganjar and J.J.Pinajian. Nucl. Phys., 129, 481 (1969).
- 6. P.F.Kenealy, E.G.Funk and J.W.Mihelich. Nucl. Phys., 110, 561 (1968).
- 7. P.O. Tjo'm and B.Elbek. Nucl. Phys., A107, 385 (1968).
- 8. А.А.Абдуразаков, А.И.Ахмаджанов, К.Я.Громов, Т.А.Исламов, Ш.М.Камолходжаев, М.К.Прокофьев. Препринт ОИЯИ 6-4363, Дубна, 1969.
- 9. М.Будзински, Р.Ион-Михай, В.А.Морозов, Т.М.Муминов, М.Суботович, Х.Фуя, И.Халбаев. Препринт ОИЯИ, 6-7691, Дубна, 1974.
- 10. D.C.Camp, A.L.Van Lehu. Nucl. Instr. Meth., 76, 192 (1969).
- 11. А.Фергюсон. Методы угловых корреляций в гаммаспектроскопии, М., Атомиздат, 1969.
- 12. H.W. Taylor, B.Singh, F.S.Prato, R.Mc Pherson. Nuclear Data Tables, A9. 1-83 (1971).
- 13. P.Hansen, O.Nilsen and R.Sheline. Nucl. Phys., 12, 389 (1959).
- 14. O.Nathan and S.G.Nilsson. In Alpha, Beta and Gamma-Ray Spektroscope North-Holland Publishing Company, Amsterdam (1965).
- 15. A.Bohr and B.A.Mottelson. In "Lectures on Nuclear Structure and Energy Spectra (Nordita, Copenhagen (1962).
- 16. M.Gunther, D.R.Parsignault. Phys.Rev., 153, 1297 (1967).
- 17. А.Давыдов, Т.Филиппов. ЖЭТФ, 35, 440, 1958.
- 18. А. Давыдов, В. Растовский. ЖЭТФ, 36, 1788, 1959.
- 19. V.J.Belyak, P.A.Zaikin. Nucl. Phys., 30, 442 (1962).

Рукопись поступила в издательский отдел 14 августа 1974 года.