

ИОНИЗАЦИЯ ИНЕРТНЫХ ГАЗОВ В ПЛАЗМЕННОМ ИСТОЧНИКЕ ИОНОВ ПРИ ИСПОЛЬЗОВАНИИ ЭФФЕКТА ПЕННИНГА

Направлено в журнал "Приборы и техника эксперимента"

2

* Университет им. М.Кюри-Склодовской, г.Люблин /ПНР/.

1. ВВЕДЕНИЕ

Плазменные источники ионов уже давно используются в электромагнитных сепараторах изотопов / 1/. Процесс ионизации в такого типа источниках главным образом происходит в соударениях атомов с электронами, эмиттируемыми горячим катодом, либо с вторичными электронами, образующимися в процессе ионизации. В семидесятых годах была предложена возможность добавочного использования для процесса ионизации соударений второго рода, среди которых особенный интерес представляет эффект Пеннинга / 2/. Происходит он, когда разряд в источнике возникает в смеси двух или больше компонентов /например, газ-носитель и сепарируемое вещество/, при этом энергия метастабильного состояния газа-носителя Е п должна быть больше энергии ионизации атомов сепарируемого вещества Е . При сепарации микроколичеств радиоактивных элементов необходимо подавать в ионный источник газ-носитель для обеспечения стабильности разряда^{/3/}. Подбирая тогда газ-носитель так, чтобы $\mathbf{E}_{n}^{m} > \mathbf{E}_{s}$, можно увеличить эффективность ионизации в ионном источнике, что особенно важно при сепарации радиоактивных элементов.

В настоящей работе приводятся результаты исследований эффективности ионизации в плазменных источниках ионов с эффектом Пеннинга. Измерения проводились для трех смесей газов: 1/ Хе-Не, 2/ Кг-Не и 3/ Аг-Не. Полученные результаты дали возможность определить некоторые коэффициенты, описывающие основные процессы, происходящие в плазменных источниках ионов.

2. ЭФФЕКТИВНОСТЬ ИСТОЧНИКА ИОНОВ С ЭФФЕКТОМ ПЕННИНГА

Влияние эффекта Пеннинга на процесс ионизации в плазменных источниках ионов рассматривалось нами раньше в работах /4-6/. Было показано, что эффективности ионизаций в ионном источнике выражены формулами:

а/ для сепарируемых атомов

$$\eta_{s} = C \frac{k}{e} \left(\frac{m_{s}}{T_{a}}\right)^{1/2} n_{e} \left[\kappa_{1s} + \left(\frac{Q_{s}}{Q_{n}} \left(\frac{m_{s}}{m_{n}}\right)^{1/2} \frac{1}{\kappa_{3}} + \frac{\kappa_{5}}{\kappa_{2}\kappa_{3}}\right)^{-1}\right], \quad /1/$$

гда: m_n , m_g - массы атомов газа-носитолл и сопарируемого вещаства; Q_n , Q_g - потоки газа-носитоля и сопарируемого вещества, водимых в источник; T_a - томпература газов в разрядной камере; С - постоянная, зависящал от выбора систамы едийиц, геометрии разрядной камеры и системы экстракции ионов; θ - заряд электрона; n_e - концентрация электронов плазмы; $\kappa \ln = \kappa оэффициент ионизации электронами атомов газа-носитоля; <math>\kappa \ln = \kappa оэффициент ионизации электронами атомов сепарируемого вещества; <math>\kappa_2$ - коэффициент эффекта Пеннинга; κ_3 - коэффициент образования метастабильных атомов газа-носителя в плазме; κ_5 - коэффициент потерь метастабильных атомов газа-носителя в столкновениях со стабильными атомами газа-носителя.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ионные токи и эффективность измерялись на типовых плазменных источниках ионов, используемых в электромагнитных масс-сепараторах Лаборатории ядерных проблем ОИЯИ и Люблинского университета /ПНР/. Их конструкции и системы питания подробно описаны в работах^{7,8}. В проведенных экспериментах был использован в качестве газа-носителя Не,у которого энергия метастабильных состояний равна 20,6 эВ, 19,8 эВ / 2^1 S₀, 2^3 S₁ /. Сепарируемым веществом были газы Ar, Kr, Хе, непрерывным потоком поступающие в ионный источник. Энергия ионизации этих газов равна 15,7; 14,0 и 12,1 эВ соответственно. Из сравнения энергии ионизации этих газов с энергией метастабильных состояний Не видно, что во всех случаях эффект Пеннинга возможен.

'Во время измерений плотность тока разряда была около 500 мА/см², при этом разрядное напряжение изменялось от 50 до 150 В. Ускоряющее ионы напряжение /45 кВ/ и остальные параметры экстракционной системы масс-сепаратора оставались постоянными в течение всего эксперимента.

Результаты, полученные в определенных выше условиях эксперимента, приведены на рис.1-3. Кривые на этих рисунках показывают отношение эффективности источника для сепарированного вещества к эффективности источника для атомов Не. Это отношение дано в зависимости от обратной функции натекания газа-носителя Q_n^{-1} так, чтобы возможным было сравнение полученных результатов с теоретическими предсказаниями. Согласно формулам /1/ и /2/, относительная эффективность источника для сепарируемого вещества будет:

$$\frac{\eta_s}{\eta_n} = \sqrt{\frac{m_s}{m_n}} \left[\frac{\kappa_{1s}}{\kappa_{1n}} + \left(\frac{Q_s}{Q_n} \sqrt{\frac{m_s}{m_n}} \frac{\kappa_{1n}}{\kappa_3'} + \frac{\kappa_{1n}\kappa_5}{\kappa_3\kappa_2} \right)^{-1} \right]. \quad /3/$$

Рис.1. Зависимость отношения эффективности источника ионов для аргона η_{Ar} к эффективности источника для гелия от обратной величины потока гелия /газ-носитель/, поступающего в ионный источник. Напряжение разряда 50; 100 и 150 В.

Рис.3. Относительная эффективность источника ионов для Хе как функция обратной величины потока гелия.

Рис.2. Относительная эффективность источника ионов для Кг как функция обратной величины потока гелия, поступающего в ионный источник.

Как нами показано в работе /6/, сравнивая полученные экспериментальные результаты с кривыми, вычисленными по Формуле /3/. можно определить некоторые коэффициенты из этой формулы и описывающие процессы, которые происходят в плазме ионного источника. Величины этих коэффициентов для исследуемых нами разрядов в смесях Xe-He, Kr-Heи Ar-He, собраны в таблице. В литературе нет подобного типа данных для исследованных смесей газов, хотя знание их важно с точки зрения понимания и эффективного использования плазменных источников ионов. Как видно из полученных результатов, в использованном режиме работы источника отношения коэффициентов ионизации для сепарируемого вещества к ls и для газа-носителя к 1 больше отношений поперечных сечений ионизации электронами с энергией, отвечающей разрядному напряжению /ряд 4 таблицы/. Это можно объяснить вкладом в процесс ионизации вторичных электронов, образующихся в соударениях атомов с первичным пучком электронов. Оценки вклада показывают, что, например, для разрядного напряжения 100 В вторичные электроны достигают 40% всего количества электронов, существующих в объеме плазмы ионноТаблица

источника ионов плазме щ процессы основные описывающих коэффициентов, Соотношения

	IEO	0.6	3,7	9• I0 ⁻²		
Xe - He	I25	I0,5	3,7	1,3•10 ⁻³	8,6	
	- OOI	I2,5	3,5	4•I0 ⁻³	0.6	
	75	I3,5	3,3	I•10 ⁻²	9,83	
	ຄ	I8,0	I,6	I,3•I0 ⁻³	6'41	
Ar - He Kr - He	I20	8,0	3,7	01.1	7,9	-
	I25	0,11	3,7	8.10 ⁻³	8,1	
	00I	10,1	3,3	2.IO	9,05	
	75	I4,0	2,4	[1.10 ⁻¹	п.7	,
	20	25 , I	I,6	-0I•I	I6,8	
	150	6,7	. 3,7	2.IO ⁻³	6,62	
	IZ5	7,0	3,5	2•I0 ⁻³	6,8	
	001	7,5	3,3	2.10 ⁻³	7,28	
	20	I6 , 5	I,6	, oi•i	II,4	
CMecb	Напряя. разряна В/В/ Соотна коэфия ниентов	$\frac{\kappa_{1s}}{\kappa_{1n}}$	[×] 1n ×3	<mark>к</mark> 5 К2	°.H e	

го источника. Эта величина согласуется с данными работ Бома/3/, по оценкам которого вклад вторичных электронов составляет 30-70%.

Из таблицы видна также разница между величиной отношения $\kappa_{1s}/\kappa_{1n}^{\dagger}$ и отвечающего ему отношения сечений σ_s/σ_{He} , которая уменьшается с ростом разрядного напряжения, что доказывает уменьшение вклада вторичных электронов в процесс ионизации.

Интересными и значительными, с точки зрения использования ионного источника, являются полученные значения отношения к_{1,} /к 3, т.е. отношения коэффициента ионизации атомов носителя коэффициенту образования атомов носителя в метастабильном состоянии. Менлются они в пределах от 1,6 до 3,7; это доказывает, что количество метастабильных атомов Не в плазме ионного источника близко количеству положительных ионов Не⁺. Учитывая. что сечения ионизации Леннинга того же порядка, что и сечения ионизации электронным ударом, можно предполагать значительную роль эффекта Пеннинга в процессе ионизации атомов примеси. Для определения количества ионов, образуемых за счет эффекта Пеннинга, можно использовать кривые на рис.1-3 и формулу /3/. В этой формуле ее первый член определяет процесс ионизации электронным ударом, а второй - эффектом Пеннинга. Если этот эффект невозможен, то отношение эффективности источника, определенное только первым членом формулы /3/, не должно зависеть от величины Q., Правильность этого вывода показана в работе /4/ для разряда, возникающего в смеси Hg-Xe. в которой эффект Пеннинга не происходит. На рис.4 кривые а/ представляют зависимость отношения η_s / η_n с учетом только первой части уравнения /3/ /электронная ионизация/, кривые б/ проведены по полученным в эксперименте точкам. Сравнивая ход этих кривых, можно полагать, что эффект Пеннинга увеличивает эффективность ионизации атомов Аг в ~2 раза. Зависимость вклада эффекта Пеннинга в процесс ионизации Kr и Ar иллюстрируется рис.5.

Из уравнения /3/ вытекает, что, уменьшая поток атомов сепарируемого вещества в разрядную камеру, можно получить значительное увеличение эффективности его ионизации. Такая возможность показана для случая, когда газом-носителем являлся Не, а сепарируемым веществом :Ar /puc.6/. Кривые а/ и б/ измерены при двух различных натеканиях :Ar в разрядную камеру источника ионов.

Приведенная зависимость эффективности источника от Q_в /разные натекания примеси в разрядную камеру/ имеет существенное значение при работе с микроколичествами радиоактивных атомов, особенно при работе ионного источника непосредственно на пучке протонов, когда количество сепарированного вещества очень мало. Соответствующим выбором газа-носителя, который повышает эффективность работы ионного источника, можно значительно увеличить собираемую на коллекторе сепаратора активность изучаемых изотопов.

Рис.4. Зависимость отношения эффективности источника для Ar к эффективности источника для He /кривая б/; кривая а/ - та же зависимость высчитана с учетом только первого члена уравнения /3/.

Рис.5. Процентный вклад эффекта Пеннинга в общую ионизацию атомов Ar /a/ и Kr /б/.

Рис.6. Относительная эффективность источника для Ar как функция Q_{He}^{-1} для двух значений потока Ar, поступающего в разрядную камеру.

ЛИТЕРАТУРА

- 1. Габович М.Д. Физика и техника плазменных источников ионов. Атомиздат, М., 1972.
- 2. Massey H.S.W., Burhop E.H.S., Gilbody H.B. Electronic and Ionic Impact Phenomena. Clarendon, Oxford, 1971.
- 3. Bohm D. The Characteristics of Electrical Discharges in Magnetic Fields. A.Guthrie and R.K.Wakerling, New York,1949.
- 4. Maçzka D., Gromova I.I., Zuk W. Nucl.Instr. and Meth., 1978, 157, p.483.
- Maczka S., Meldizon A., Zuk W. J.Phys.D: Appl.Phys., 1980, 13, p.L185.

- 6. Mączka D. et al. Nucl.Instr. and Meth., 1981, 186, p.335.
- Zuk W., Maczka D., Pomorski J. Nucl.Instr. and Meth., 1965, 37, p.249.
- 8. Афанасьев В.П. и др. ОИЯИ, 13-4763, Дубна, 1969.

Рукопись поступила в издательский отдел 10 августа 1982 года.

6

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

Д13-11182 Труды IX Международного симпозиума по ядерной элект-5 p. 00 ĸ. ронике. Варна, 1977. Д17-11490 Труды Международного симпозиума по избранным проблемам статистической механики. Дубна, 1977. 6 р. 00 к. Сборник аннотаций XV совещания по ядерной слектроско-D6-11574 2 p. 50 K. пии и теории ядра. Дубна. 1978. D3-11787 Труды III Международной школы по нейтронной физике. Алушта, 1978. 3 р. 00 к. A13-11807 Труды III Международного совещания по пропорциональным и дрейфовым камерам. Дубна, 1978. 6 р. 00 к. Труды VI Всесоюзного совещания по ускорителям заря~ женных частиц. Дубна, 1978 /2 тома/ 7 p. 40 ĸ. Д1,2-12036 Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978 5 р. 00 к. Д1,2-12450 Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978. 3 р. 00 к. Труды VII Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1980 /2 тома/ 8 р. 00 к. DI1-80-13 Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979 3 р. 50 к. Д4-80-271 Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979. 3 p. 00 k. Д4-80-385 Труды Международной школы по структуре ядра. Алушта, 1980. 5 р. 00 к. D2-81-543 Труды VI Международного совещания по проблемам квантовой теории поля. Алушта, 1981 2 р. 50 к. Д10,11-81-622 Труды Международного совещания по проблемам математического моделирования в ядерно-физических исследованиях. Дубна, 1980 2 р. 50 к. Д1,2-81-728 Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981. 3 р. 60 к. Д17-81-758 Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981. 5 p. 40 ĸ. Д1,2-82-27 Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981. 3 р. 20 к. P18-82-117 Труды IV совещания по использованию новых ядернофизических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981. 3 р. 80 к. .

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

	Мончка Д., Лятушинский А., Васяк А. 6-82-615 Ионизация инертных газов в плазменном источнике ионов при использовании эффекта Пеннинга				
- -	Показано, что эффективность ионного источника можно уве- личить, используя дополнительно ионизацию Пеннинга. Приведены эначения некоторых коэффициентов, определяющих основные про- цессы, происходящие в плазменных источниках ионов.				
	Работа выполнена в Лаборатории ядерных проблем ОИЯИ.				
lli.	Препринт Объединенного института ядерных исследований. Дубна 1982				
	Mączka D., Latuszynski A., Wasiak A. 6-82-615 Noble-Gas Ionization in the Ion Source with Penning Effect				
	It is shown that the ion source efficiency can be in- creased when the Penning ionization was utilized. The results are presented of estimates of certain coefficients for the processes taking place in the source plasma.				
	The investigation has been performed at the Laboratory of Nuclear Problems, JINR.				
1					
·					
_	Preprint of the Joint Institute for Nuclear Research. Dubna 1982				