

4-81 6-81-563

М.Будзынски, Т.Бэдике, В.Жук, О.И.Кочетов, Г.Лизурей, А.И.Муминов, Х.Незгода, М.Попеску, М.Суботович, Ф.Усманов, Т.Хазратов, В.М.Цупко-Ситников

173_{Yb} УГЛОВЫЕ КОРРЕЛЯЦИИ В

Направлено в "Revue Roumaine de Physique"

ВВЕДЕНИЕ

Схема распада ¹⁷³ Lu \rightarrow ¹⁷³ Yb достаточно хорошо изучена/1/. Высоковозбужденные состояния ¹⁷⁸ Yb исследовались в ядерных реакциях^{/2-4/}. Детальное обсуждение экспериментальных и теоретических данных по ¹⁷³ Yb, опубликованных к 1975 году, проведено в работах Джелепова и Люторовича ^{/5,6/}.

В настоящей работе из измерений Ке⁻-у и у-у угловых корреляций /УК/ в распаде $^{178}L_{\rm Lu}$, $^{173}{\rm Yb}$ определены отношения смешивания δ для нескольких у-переходов и электронные параметры для переходов Ке⁻ 179,3 кзВ и Ке⁻ 272,1 кзВ. Получек ые отношения смешивания δ _{ЗКСП.} сравниваются с δ _{теор.}, рассчитанными в рамках квазичастично-фононной модели с учетом взаимо-действия Кориолиса / 8.9/.

ПРИГОТОВЛЕНИЕ ИСТОЧНИКОВ

 $^{173}\,{\rm Lu}$ был получен в реакции глубокого расщепления тантала протонами с энергией 660 МэВ на внутреннем пучке синхроциклотрона Лаборатории ядерных проблем ОИЯИ. Из облученной мишени радиохимическим методом выделялись изотопы лютеция. Затем проводилось разделение изотопов по массам на электромагнитном масс-сепараторе, при этом ионы $^{173}\,{\rm Lu}$ с энергией 25 кзВ внедрялись в алюминиевую фольгу /2 мм x 6 мм/, которая использовалась в измерениях у-у и е-у УК.

АППАРАТУРА И ЭКСПЕРИМЕНТ

Измерения y-y УК проводились на автоматизированном корреляционном спектрометре с Ge(Li) и двумя сцинтилляционными Nal(Tl) детекторами ^{/10/}. Знергетические окна устанавливались в трактах сцинтилляционных детекторов с помощью дифференциальных дискриминаторов /ДД/.

Измерения в у УК проводились на корреляционном спектрометре^{/11/} Электроны конверсии регистрировались Si(Li) детектором /50 мм² х 4 мм/, установленным в специальной камере из доралюминия, в которой создавался вакуум 10 -7 Торр. Детектор и лервый каскад предусилителя охлаждались до температуры жидкого азота. Эмергетическое разрешение составляло 920 э8 для элект-

Рис.1. а/ Спектр электронов конверсии ¹⁷³Yb;6/ спектр е-усовпадений с у76,8 кэВ; в/ спектр е-у-совпадений с у 171,4 кзВ.

ронов с энергией 100 кэВ.Регистрация у-излучения осуществлялась с помощью Ge(Li) детектора. Энергетические окна /ДД/ устанавливались в тракте Ge(Li) детектора. На <u>рис.1</u> приведены спектры электронов внутренней конверсии, спектры совпадений с у 78.6 кзВ и у 171.4 кзВ.

Слектры совпадений при измерениях у-у и е-у УК накапливались в памяти 4096-канального амплитудного анализатора ICA-70 при углах 90°, 135° и 180° между детекторами. С целью учета эффектов обратного рассеяния у-лучей измерения УК проводились также при углах 90°, 120° и 150°. Далее накопленная информация передавалась по линии связи в ЭВМ ЕС-1010, где спектры совпадений обрабатывались по программе КАТОК /12.13.14/,

При расчетах коэффициентов УК вводились поправки на случайные совпадения, центровку источника, конечные размеры детекторов. В случае в — у УК, кроме того, вводились поправки на рассеяние электронов в источнике ^{/15}/.

Основываясь на результатах выполненных нами ранее работ по измерению у-у УК для ^{2 ff} Rn^{/16/} и ¹⁵⁵Tb^{/17/}, которые указывают на отсутствие возмущения УК при внедрении в алюминиевую фольгу изотопов в случае каскадов с временами жизни проме-

		····· , , ,	,	
Каскад (кэВ)	$I_1 - I - I_2$	A ₂₂ ± A ₂₂	A ₄₄ ± A ₄₄	$A_{22} \pm A_{22} / 7 /$
272,1 - 78,6	7/2+7/25/2-	-0,285 <u>+</u> 0,008	+0,008+0,015	~0,330 <u>+</u> 0,006
285,3 - 272,8	7/27/2+7/2-	+0,Ī79 <u>+</u> 0,018	+0,025 <u>+</u> 0,042	+0,I56 <u>+</u> 0,069
171,4 - 179,3	7/2+9/25/2+	-0,143 <u>+</u> 0,011	+0,009 <u>+</u> 0,019	
171,4 - 100,7	7/2+-9/27/2	+0,2I5 <u>+</u> 0,0I5	-0,020 <u>+</u> 0,026	
Ke ⁻ 272, I-) 78,6	7/2+7/2-5/2-	0,448±0,035	0,026 <u>+</u> 0,081	+0,531 <u>+</u> 0,032
Ke [−] I00,7 - ∛78,6	9/27/25/2-	0,008 <u>+</u> 0,018	-0,026 <u>+</u> 0,067	
171,4-Ke ⁻ 100,7	7/2+-9/27/2	0,004 <u>+</u> 0,004	0,024 <u>+</u> 0,030	
¥171,4-Ke~179,3	7/2+-9/25/2-	-0,235 <u>+</u> 0,018	0,031 <u>+</u> 0,045	

Таблица 1. Коэффициенты у-у и Ке-у угловых корреляций

Таблица 2	. :	Экспериментальные	н	теоретически	рассчитанные	значения	величин	δ	•
And and a second se									

Ey (R3B)	$\frac{12\overline{1}2\overline{1}Nn_{*}\lambda}{11>} \rightarrow 11>$	Мульт	и. 8 наст.ра	о. <i>S</i> теој	5/ 19/	\$ ^{/20/}	S(dr) /22/
78,6	75512 - 55512	E2/MI	-0,I87(II)	0,290	-0,161(19)	-0,232(30)	0,204(+25,-28)
I00,7	95512 - 75512	E2/MI	-0,201(19)	0,274	-0,I9I(II)	-0,215(24)	0,110(+22,-26)
I 2 2,4	II5 512 - 955I2	E2/MI		0,257	-0,I7 (II)		
171,4	77633 - 95512	M2/EI	-0,015(15)		+0,008(5)	-0,006(8)	0,032(+18, -32)
285,3	77514 - 77633	M2/EI	+0,034(25)			+0,005(22)	0,066(+17,-23)
456,6	77514 - 95512	E2/MI		0,34I	+1,0+0,7	+0,66+0,09	0,48(+17,-19)
557,3	77514 - 75512	E2/MI		0,274	+I,84(IO)	+0,82(5)	I,8I(+53, -33)
635,9	77514 - 55 512	E2/MI		0,693	-0,80	-0,60 ^{+0,05}	0,78(+19,-17)

.

жуточных уровнейг≤10⁻⁹ с, мы считали измеренные нами УК практически невозмущенными, т.к. времена жизни промежуточных уровней исследуемых каскадов достаточно малы / Т_и= 0,43 нс; 0,032 нс и 0,04 нс для уровней 350,7; 179,3 й 78,6 кзВ соответственно/.

Полученные после введения вышеперечисленных поправок значения коэффициентов УК приведены в табл. 1.

АНАЛИЗ РЕЗУЛЬТАТОВ

Функцию y_{-y} УК каскада $J_{1}(y_{1})I(y_{2})I_{2}$ можно записать в виде

$$\mathbb{W}(\theta) = \sum_{K \to qeT_{*}} \mathbf{A}_{KK}(y_{1}y_{2}) \mathbf{P}_{K}(\cos\theta) = \sum_{K \to qeT_{*}} \mathbf{A}_{K}(y_{1}) \mathbf{A}_{K}(y_{2}) \mathbf{P}_{K}(\cos\theta),$$
 /1/

где $P(\cos\theta)$ - полиномы Лежандра. Когда вместо одного из у квантов в каскаде наблюдается конверсионный электрон / у-е, е-у УК/, в функции у-у УК /1/ необходимо заменить соответствующий коэффициент $A_{K}(y)$ на $A_{K}(e)$. В общем случае, когда Ке-переход имеет смесь мультиполей L и L'=L+1, анализ е-у УК достаточно сложен. Трудностей, встречающихся при интерпретации е-у УК, можно избежать путем выбора чисто монопольного перехода, так как в этом случае корреляция зависит только от одного электронного параметра $b_{K}(L)$, тогда

$$A_{\mathbf{K}}(\mathbf{e}) = \mathbf{b}_{\mathbf{K}}(\mathbf{L}) \mathbf{F}_{\mathbf{K}}(\mathbf{I}_{\mathbf{n}} \mathbf{I} \mathbf{L} \mathbf{L}),$$
 /2

 $F_K(I_{\rm B} [L\,L\,)$ - функции протабулированы в работе $^{\prime 18\prime}$ В данном случае параметр частицы можно получить как результат отношения

$$\frac{A_{KK}(R e^{\gamma} \gamma_2)}{A_{KK}(\gamma_1 \gamma_2)} = b_K (L).$$
(3)

Погрешность в значении полученного параметра b_K(L) определя~ ется из погрешностей измеренных коэффициентов А_{КК} .

Каскад /272,1-78,6/ кэВ

Из схемы распада /<u>рис.2</u>/ видно,что данный каскад имеет место между уровнями со спинами 7/2⁺ \rightarrow 7/2⁻ \rightarrow 5/2⁻. Данные исследования электронов внутренней конверсии /ЭК/⁻⁵⁵ указывают на то, что переход 272,1 кзВ следует считать чистым E1. Тот же вывод относительно мультипольности перехода 272,1 кзВ следует из измерений угловых распределений /УР/ у-лучей при распаде ориентированных ядер ¹⁷³ Lu^{-19,20/}.

Рис. 2. Схема распада ¹⁷³ Lu - ¹⁷³ Yb.

Используя формулу /3/, из наших данных по y-y и Ке⁻-у УК для этого каскада получаем значение электронного параметра для перехода 272,1 кэв b_2 /Ke⁻ 272,1/ = -1,572+0,130 - в полном согласии с данными работы²⁸ / b_2 /Ke⁻ 272,1/ = -1,61+0,10/ и с теоретическими расчетами Хагера и Зельтцера²¹⁷ для чистого Е1-перехода с энергией 272,1 кэв / b_2 теор. = -1,533/. Далее, принимая во внимание, что переход 272,1 кэв - чистый Е1, из коэффициентов y-y УК определяем отношение смеси для перехода 78,6 кэВ: $\delta = -0,187+0,011$.Знак и значение δ хорошо согласуются с результатами работ по изучению ЭК⁻² и УР при распаде ориентированных ядер ¹⁷³ Lu⁻ 19/см. табл.2/.

Каскад /171,4-179,3/ кэВ

Используя данные по y - y и Ke -y УК /табл.1/, мы определили электронный параметр b_2 /Ke 179,3/ = +1,621+0,176, согласующийся с теоретическим параметром $b_2 \tau_{eop.}$ +1.771^{/21/} для чистого E2-перехода с энергией 179,3 кэВ. Учитывая, что переход 175,3 кэВ чистый E2, используя Акк(y_1, y_2), определили отношение смеси δ /y 171,4/ = -0,015+0,015. Значения отношений смеси δ , установленные нами для переходов 179,3 и 171,4 кэВ, хорошо согласуются с данными работ

Каскады 171,4-100,7 кэВ и 100,7-78,6 кэВ

Нами измерены у-у УК для первого каскада и Ке⁷-у УК для обоих каскадов /см. табл.1/. Из отношения А₂₂ коэффициентов

ук (A₄₄ = 0) для каскадов 171,4-179,3 кэВ и 171,4-100,7 кэВ

Agg(y 171,4 - y 179,3)		A ₂ (179,3)
A ₂₂ (y 171,4- y 100,7)	-	A2(100,7)

/у-переход с энергией 179,3 кэВ является чистым E2 / получаем $\delta/100,7/ = -0,201+0,019$, что находится в хорошем согласии с данными работ /19,20,22/.

Что касается коэффициентов Ке⁻-у УК для обоих каскадов, то они очень малы, практически равны нулю. Это согласуется с нашим значением $\delta(100.7)$, поскольку в этом случае электронный параметр b_{2} теор. (100.7)=0.

Каскад 285,3-272,1 кэВ

Из схемы распада следует, что переход 285,3 кэВ должен иметь характер E1+M2. Используя коэффициент A₂₂(γ 285,3 γ 272,1) = = 0,179±0,018 и учитывая, что переход 272,1 кэВ чистый E1, получаем δ (285,3) = +0,034±0,025. Эта величина в пределах ошибок согласуется со значением δ из работы $^{AO/}$ по изучению γ -лучей при распаде ориентированных ядер ^{173}Lu .

В рамках квазичастично-фононной модели с учетом взаимодействия Кориолиса ^{77,8,97} были рассчитаны энергии вращательных полос ¹⁷⁸Yb, приведенные вероятности E2-и M1 -переходов, величины $\delta_{\text{теор.}} = \pm E_{\gamma}$ [70,34 B(E2)/B(M1)]^{1/2} 10⁻⁴.

В расчетах использовалась схема одночастичных уровней потенциала Саксона-Вудса^{/24/} для зоны А=173. Все параметры неадиабатичности считались равными В_K=0,05 МэВ⁻¹. Значения параметров инерции Брались из ^{/22/}, а головные энергии и параметры развязывания для полос 1/2 [521], 1/2 [510] определялись как подгоночные, а_[521]=0,520 и а_[510] =-0,178 соответственно. Матричные элементы углового момента частицы <f|j_x|i> пола-

Матричные элементы углового можента частицы <[|j_x|i> полагались равными теоретическому значению, вычисленному с помощью волновых функций ^{/25/}, кроме случаев положительной четности и <513]j_x[512>, когда их пришлось рассматривать как подгоночные параметры.

На <u>рис.3</u> приведены для сравнения теоретически рассчитанные и экспериментально определенные ^{A227} энергии уровней вращательных полос.

При расчетах приведенных вероятностей B(£2) электрических переходов значение внутреннего квадрупольного момента полагалось равным Q₀=7,0 барн. А для расчетов B(M1) магнитных переходов использовались матричные элементы операторов j₊, S₊, S_z, вычисленные с помощью волновых функций ^{A)}. Спиновые и коллективные гиромагнитные отношения брались равными: g₈₉ф^{*} = 0,5.g₈ и g_R=0,405= $\frac{2}{4}$ / g₂=0, g₈= -3,82/. Рассчитанные внастоящем эксперименте и работах ^{/19,20,22}/, приведены в <u>табл.2</u>.

ļ

выводы

Полученные нами значения $b_2(Ke^- 179,3)$ и $b_2(Ke^- 272,1)$ согласуются с теоретическими электронными параметрами, вычисленными Хагером и Зельтцером ^{/21/} для "чистых" переходов. Это указывает не только на то, что рассматриваемые гереходы являются "чистыми", но также и на то, что эффекты динамической ядерной структуры в измеренных электронных параметрах отсутствуют.

Сравнение энергий вращательных полос и величин $\delta_{reop.}$, рассчитанных в рамках квазичастично-фононной модели с учетом взаимодействий Кориолиса, с соответствующими экспериментальными данными показывает достаточно хорошее согласие.

.7

В заключение авторы выражают благодарность Я.Квасилу за ценные советы при проведении теоретических расчетов и обсуждении полученных результатов.

ЛИТЕРАТУРА

- Lederer C.M., Shirley V.S. Table of Isotopes. Wiley A. Interscience Publication Sons J., Inc., New York, 1978.
- Burke D.G. et al. Kgl.Danske Videnskab Selskab.Mat.Fys. Medd., 1966, vol.35, No.2.
- 3. Burke D.G. Nucl. Phys., 1971, A161, p.129.
- 4. Alenius G. et al. Nucl. Phys., 1971, A161, p.209.
- 5. Джелепов Б.С., Люторович Н.А. Изв. АН СССР, сер.физ., 1976, 40, с.1115.
- 6. Джелепов Б.С., Люторович Н.А. Изв. АН СССР, сер.физ., 1976, 40, с.1126.
- 7. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971.
- 8. Михайлов И.Н. и др. Изв. АН СССР, сер.физ., 1978, 42.с.2338.
- 9. Квасил Я. и др. ОИЯИ, Р4-80-401, Дубна, 1980.
- Аликов Б.А. и др. Прикладная ядерная спектроскопия, 1977, 7, с.86.
- 11. Будзынски М. и др. ОИЯИ, Р13-13021, Дубна, 1980.
- 12. Gadjokov V. JINR, E10-12352, Dubna, 1979.
- 13. Gadjokov V. JINR, E10-12353, Dubna, 1979.
- 14. Gadjokov V. JINR, E10-12354, Dubna, 1979.
- 15. Von Gimmi G. et al. Helv. Phys. Acta, 1956, 29, p.147.
- Войцеховска А. и др. Материалы XV Совещания по ядерной спектроскопии и теории ядра. ОИЯИ, Д6-11574, Дубна, 1978, с.143.
- 17. Будзынски М. и др. ОИЯИ, Р6-12970, Дубна, 1980.
- Ференц М., Розенцвейг Н. В кн.: Альфа-, бета- и гаммаспектроскопия. /Под ред. К.Зигбана/, Атомиздат, М., 1969, с.656.
- 19. Krane K.S. et al. Phys.Rev., 1975, C12, p.1999.
- Крацикова Т.И. и др. Тезисы докладов XXXI Совещания по ядерной спектроскопии и структуре атомного ядра. Самарканд, 1981. "Наука", Л., 1981, с.146.
- 21. Hager R.S., Seltzer E.C. Nucl.Data, 1968, A4, p.397.
- Схема распада радиоактивных ядер с А ≈ 171÷174. "Наука", М., 1977, под ред. Б.С.Джелепова.
- 23. Hornshoy P., Deutsch B.I. Nucl. Phys., 1965, 67, p.342.
- 24. Гареев Ф.А. и др. ЭЧАЯ, 1973, т.4, вып.2, с.357.
- 25. Базнат М.И. и др. ЭЧАЯ, 1973, т.4, вып.4, с.941.

Рукопись поступила в издательский отдел 18 августа 1981 года.