

Объединенный институт ядерных исследований дубна

5120/2-81

19/x - 81 6-81-551

Ц.Вылов, В.М.Горожанкин, К.Я.Громов, В.В.Кузнецов

РАДИОАКТИВНЫЙ РАСПАД ¹⁶³ Тт - ¹⁶³ Ег

 Схема распада и свойства возбужденных состояний

Направлено в "Известия АН СССР" /сер. физ./

введение

Первые работы ^{/1-4/}, в которых сформировалась основа схемы распада ¹⁶³ Тш, позволили установить существование практически всех низкоэнергетичных /с энергиями возбуждения < 600 кзВ/ возбужденных состояний ¹⁶³Er, их разрядку и квантовые характеристики; в дальнейшем эти сведения уже мало изменялись. Для вышележащих состояний, однако, информация, полученная в этих работах, несмотря на обнадеживающее согласие с данными ядерных реакций ^{/5/}, оказалась менее достоверной. В частности, результаты у-у -совпадений ^{/6/} не подтвердили существования 13 возбужденных состояний ¹⁶³Er, введенных, в работе ^{/4/}.

Схема распада ¹⁶³ Tm, предложенная в ⁷⁶, включает 23 возбужденных состояния ¹⁶ Er. Однако ограниченный объем сведений о у-у -совпадениях переходов, как подчеркивают авторы, позволил им из 235 обнаруженных у -переходов разместить в схеме распада 74, суммарной интенсивностью 60% распадов ¹⁶³ Tm.

СХЕМА РАСПАДА 163 Tm

Схема распада ¹⁶³ Tm, вытекающая из совокупности полученных нами результатов⁷⁷⁷ /сведения о ней приведены в <u>таблице</u>/, включает 44 возбужденных состояния ¹⁶³ Er. Необходимым условием к введению возбужденных состояний в схему распада в настоящей работе являлись подтверждающие сведения об интенсивностях совпадений у-переходов.

Из 254 обнаруженных y -переходов в схеме распада размещены 220; суммарная интенсивность неразмещенных y -переходов составляет 4,44 /10/% на распад. На основании правил отбора для электромагнитных переходов и экспериментальных сведений о мультипольностях y -переходов установлены спины и четности 42 возбужденных состояний ¹⁶³ Er.

СВОЙСТВА ВОЗБУЖДЕННЫХ СОСТОЯНИЙ 168 Er

Спин основного состояния ¹⁶⁸ Er (I = 5/2) измерен Стейном и Рамсеем ^{/8}/методом поляризованных атомных пучков. В исследованиях распада ^{/2-4/} и в ядерных реакциях ^{/5/} установлены асимптотические квантовые характеристики 5/2⁻ /523/ основного состояния

Таблица.	Сведения	0	схеме	распада	¹⁶³ Tm

. •

			Ţ	-	PA	3 P	я д	ĸ	A
Eyp(aE)	I ^S I /Nn _z A/	I _f (ΔI _f)	Ip+(aIp+)	lg ft	Enep. (AE)	đL	I _{II} (aI _{II})	E f	I [¶]
0.000	5/2 5/2 523		1						1
69,228(4)	5/2*5/2 [642]	1,1(5)		7,6(1)	69,229(3)	151	22,0(11)	0,000	5/2
83,965(5)	7/2 5/2 523	0,39(17)		8,0(2)	83, 768(4)	E2+13.7(9)541	4,69(24)	0,000	5/2
91,564(18)	7/2+5/2 [6+2]	0,20(14)		7,9(3)	22,358(10)	11+3.5(7)%12	2,85(15)	69,228(4)	5/2+
					91,550(8)	121	0,335(24)	0,000	5/2-
104,319(4)	3/2 3/2 521]	2,4(15)	0,059(11)	7,2(3)	104, (20(3)	21	67,8(34)	0,000	5/2
120,38(4)	9/2*5/2 642	0,10(4)		8,6(2)	28,835(12)	11+0,8(2)#E2	0,24(5)	91,564(18)	7/2*
164,423(5)	5/2 3/2 521	1,7(5)		7.4(1)	60,105(3)	1+4,4(5); E2	20,8(10)	104,319(4)	3/2
	-				72,875(8)		∂, 263(16)	91,564(18)	7/2*
1	1	1		1	80,460(7)	มา	3,41(19)	83,965(5)	7/2-
L					164,419(8)	<u>str</u>	1,56(9)	0,000	5/2
190,02(4)	9/2 5/2 523	0,032(1)		9,08(2)	106,05(4)	(1/1)	0,11(3)	83,965(5)	7/2
249,518(21)	7/2 3/2 521			\$2,1	85,118(4)	M1	2,22(12)	164,423(5)	5/2
i		ļ		-	129,212(26)		0,107(18)	120,38(4)	9/2*
ļ	1)]	J	145,213(11)	f:2	0,223(15)	104,319(4)	3/2
	1	}	1	{	165,60(6)		0,122(27)	83,965(5)	7/2
					249,498(6)	.::1,D2	0,099(8)	0,000	5/2-
345,619(10)	1/2 1/2 521]	5,2(4)	0,182(9)	6,80(4)	241,305(5)	121	13,7(7)	104,319(4)	3/2
		<u> </u>		L	345,608(9)	72	1,16(6)	0,000	5/2
403,997(12)	3/2 1/2 [521]	1,8(3)	1	7,25(8)	239,585(5)	11	5,6(3)	16+,423(5)	5/2
			1		299,667(8)	**1	5,26(27)	104,319(4)	1/2
ļ		1	1	1	320,057(18)	ł	0,32(2)	83,965(5)	7/2
Ĺ	1	1		1	403, 389(10)	72	1,10(6)	0,000	5/2
439,555(21)	5/2 1/2 521	0,95(15)		7,50(7)	190,006(6)	241	2,14(11)	249,518(21)	7/2
	1			1	275,125(8)	31+26(6);C2	3,17(17)	164,423(5)	5/2
í					335,219(12)	91	0,66(4)	104,319(4)	3/2
1			1		355,624(13)	<u>81</u>	0,53(3)	83,965(5)	7/2
<u> </u>	<u> </u>	<u> </u>			439,575(17)		0,39(4)	0,000	5/2 ⁻
462,481(21)	3/2*3/2[402]	2,13(13)		7,14(3)	297,87(3)	(1)	0,49(3)	164,42*(5)	5/2
	ł	1	1	1	358,174(10)	rM.	0,75(4)	104, 71)(4)	3/2-
		1			£71,07(9)	72	0,046(5)	1,564(18)	7/2*
L	·				393,261(11)	91	1,48(6)	67,228(4)	5/2+
526,31(12)	5/2 3/2 402]		1	28,4	761, 77(4)	81	0,081(8)	104,423(5)	5/2
1		l	1	l	421, 32(1)	(E1)	J, 174(14)	104,319(4)	-/2
L _		1.	1	1	434,72(3)	N1	0.56(3)	91,564 (18)	7/2*

Таблица /продолжение/

					P A	3 P	я д	ĸ	A
Eyp(AB)	I [€] E /Nn _g N	Ig(aIg)	I_A+(AIA+)	lg ft	Euep(aB)	₹L	I _u (≜I _g)	Br	IŽ
531.07(1)	3/2+ 5/2+	0,63(3)		7,63(2)	461,845(12)	1+44(9),E2	0,65(4)	69,228(4)	5/2
540,564(19)	1/2*1/2[+00]	3,76(20)	0,137(9)	6,85(2)	78,041(24)	11	0,55(9)	462,481(21)	3/2*
			1	ļ	436,24(6)	1	0,169(13)	104,319(4)	3/2-
		1	· ·	1	471,330(17)	~2	4,18(22)	69,228(4)	_5/2*
574.084(26)	3/2+,5/2+	0,92(9)		7.45(7)	324,49(15)		0,052(5)	249,518(21)	7/2
			1		403,77(5)		0,165(14)	164,423(5)	5/2
					469.65(4)		0,45(3)	104,319(4)	3/2-
				1	504,878(14)	81	1,23(9)	69,228(4)	5/2*
619, 358(28)	3/2+3/2 651	2,72(12)		6,96(2)	454,954(17)		0,32(2)	164,423(5)	5/2
			1		515,012(16)	21	0,85(6)	104,319(4)	3/2
					528,18(14)		0,16(Z)	91,564(18)	7/2*
	1	1		1	550,154(16)	2 511	1,60(9)	69,228(4)	5/2*
			Í	1	619,44(10)	E1	0,067(10)	0,000	5/2-
664.25(5)	5/2*3/2 [651]	0.25(6)		8,0(1)	415,15(d)	31	0,090(9)	249,518(21)	7/2
					500,51(12)		0,15(2)	164,423(5)	5/2*
	1	1		1	560,51(5)	31 31	0,13(3)	104,319(4)	3/2
	Í	{	(1	573,23(4)	97	0,291(18)	91,564(18)	7/2*
					595,35(5)		0,24(2)	69,228(4)	5/2+
683,837(17)	1/2 5/2 523 +	0,90(7)		7,41(3)	338,28(8)	31	C,148(13)	345,619(10)	1/2
	+ 2(2-2) +				520,1(2)	52	0,053(12)	164,423(5)	5/2
	+ 1/2 [510]				579,510(13)	51	1,65(8)	104, 319(4)	3/2
					683,87(3)	F2	0,506(28)	0,000	5/2-
717,39(3)	3/2 [5/2[523] +	1,80(7)		7,09(2)	552,9+8(23)	111	0,72(4)	164,423(5)	5/2-
	+ Q(2-2) } +	1			613,054(18)	21	0,69(4)	104,319(4)	3/2
!	+ 1/2 (510)				633,77(9)		0,151(14)	83,965(5)	7/2
					217,42(3)		0,174(17)	0,000	5/2
735,36(6)	3/2*	0,89(8)		7,4(2)	161,31(3)		0,176(15)	574,084(28)	3/2+,5/2*
		1			331,355(19)	21	0,24(2)	403,997(12)	3/2
					389,59(3)	71	0,321(26)	345,619(10)	1/2
		L	1	1	666,178(19)	72	2,10(11)	69,228(4)	5/2+
779,69(7)	5/2 5/2 523 +	1		>9.9	523,75(7)	311	0,35(4)	249,518(21)	7/2
1	+ Q(2-2)}+			1	615,182(26)	81	0,342(27)	164,423(5)	5/2
	+ 1/2 (\$10)	1			675,20(11)	911	0,174(17)	104,319(4)	-/2-
1		1	1		688,12(11)		0,208(23)	91,564(18)	7/2*
1	1	1	1	1	695,81(12)	1 1	0,133(17)	83,965(5)	7/2
L		1			710,81(11)	J	0,098(10)	69,228(4)	5/2*
856,16(5)	3/2 ,5/2	0,18(4)		8,0(1)	606,4(2)	(111)	0,122(10)	249,518(21)	7/2
1		1	1		691,736(22)	941 ·	0,62(4)	164,425(5)	5/2
L		1		1	752,04(5)	21	0,383(25)	104,319(4)	1/2

Таблица /продолжение/

					PA	<u>3 P</u>	я д	K	A
E (AE)	I ^S K/Nn _z A/	Ι _ε (ΔΙ _ε)	Ip+(aIp+)	lg ft	Enep.(▲E)	σL	I _{II} (ΔI _{II})	E	1,
963,21(8)	3/2*,5/2*	0,53(7)	0,0148(14)	7,48(5)	798,74(9)		0,176(13)	164,423(5)	5/2
					858,72(6)	(E1)	0,363(29)	104,319(4)	3/2
	1	1	ļ	Į – 1	•894,26(11)	52	0,397(26)	69,228(4)	5/2+
985,94(7)	5/2	1.07(9)		7,16(3)	411,66(7)		0,106(10)	574,084(28)	3/2+,5/2+
					640,4(2)		0,076(12)	345,619(10)	1/2
	1		1		735, 97(10)	22	0,115(15)	249,518(21)	7/2-
					821,3(2)		0,068(19)	164,423(5)	5/2
1		1	1	1	881,4(5)	(21)	0,047(12)	104,319(4)	3/2
		1			*894,26(11)		0,397(26)	91,564(18)	7/2+
			1		902,18(14)	21	0,104(25)	83,965(5)	7/2
				1	916,81(9)	51	0,207(23)	69,228(4)	5/2*
1059,75(4)	1/2 3/2	0,83(6)		7,22(3)	375,87(5)	11+55(12): 2	0,165(15)	683,837(17)	1/2
1	1 -		1	1	655,760(20)	1 141	0,82(4)	403, 997(12)	3/2
					714,04(10)	31	0.078(8)	345,619(10)	1/2
	1				991 0(4)	ł	0,059(17)	69,228(4)	5/2+
1280,51(6)	1/2*,3/2*	0,75(5)	1	7,12(3)	598,12(3)		0,257(18)	683,837(17)	1/2
	•				1176,090(32)	51	0,491(38)	104,319(4)	3/2
1369,451(35)	3/2*	8,3(3)		5,99(2)	406,06(15)	32	0,054(11)	963,21(8)	?/2*,5/2*
	}	1	1	1	589,13(11)		0,053(11)	773,69(7)	5/2
	1				749,6(3)		0,060(17)	619, 555(28)	<u>.</u> .′2 ⁺
					26,8(;)	1	0,058(9)	540,564(13)	1/2+
	1		1	1	844,63(1:)		0,384(1)	525,31(12)	5/2*
		ļ		1	1205,017(24)	31	2,48(13)	164,423(5)	5/2
		i i			1205,116(25)	٦	5,25(27)	104,217(4)	·/2
				1	1300,41(6)		0,53(4)	69,228(4)	5/2+
1514,55(4)	3/2+	3,60(15)		6,22(2)	733,6(2)		0,065(7)	779,69(7)	5/2*
1	1	1	1.	1	940,62(3)	52	0,515(29)	574,084(28)	<i>:</i> .′2 ⁺ ,5/2 ⁺
1					1075,130(30)	<u>9</u>	0,80(5)	439,555(21)	5/2
1		1			1168, 77(5)	EM	0,44(6)	345,619(10)	1/2
	l l	1		1	1350, 149(32)		0,431(27)	164,423(5)	5/2
l	l	l		Į	1410,190(34)	En	0,466(28)	104,319(4)	3/2
L		1	1	1	1514,3(4)	1	0,063(10)	0,000	5/2*

Таблица /продолжение/

					P A	3	P	я	д к	A
E (AE)	t¶t/m _a N	I _E (aI _E)	Ig+(aIg+)	14 ft	Enep(AE)	₫L		In(vIn)	B _r	L.
1538,73(5)	3/2*	17,9(7)	1	5,50(2)	478,49(14)			0,049(14)	1059,75(4)	1/2 3/2
	(p 7/2 [523]+		1		575,13(26)	1		0,048(13)	963,21(8)	3/2*,5/2*
	+n 5/2 [523]+		1	4	759,41(9)			0,238(17)	779,69(7)	5/2
	+p 1/2 ⁺ [411]}		i i		803,469(22)	21		0,275(16)	735,36(6)	5/2*
	1		1	1	873,88(17)	(E2)		0,068(14)	664,75(5)	5/2+
	1	1	1	1	997,67(19)	52		0,089(17)	540,564(19)	1/2*
					1099,382(33)	31		0,55(4)	+39,555(21)	5/2
	1				1135,28(9)	21		0.34(+)	403,977(12)	3/2
					1192,34(19)	(121)		0,165(16)	345,619(10)	1/2
					1574,355(27)	El		4,35(23)	154,423(5)	5/2"
					1434,454(29)	21		8,08(43)	104,319(4)	3/2"
	1	1		1	1446,88(15)	1 -		0.092(15)	91,56=(18)	7/2+
				1	1469,424(31)			2.95(15)	69,228(4)	5/2*
1569,85(8)	3/2+	10,1(4)	1	5,72(2)	584,86(3)			0,093(9)	985,94(7)	5/2
5			ſ		790,12(6)	51		0.313(25)	779,69(7)	5/2"
	· ·		1	1	833,96(4)	¥1+61(10)2	12	0.52(3)	735,36(6)	3/2+
]					886,06(3)	E		0.377(2+)	683,837(17)	1/2
}	1	1		1	905.6(2)	191		0.22(+)	664,75(3)	3/2+
					950, 85(7)	\$1+45(18)	E2	0,195(16)	619,358(28)	3/2*
					995,8(2)	311		0,205(24)	574,084(28)	3/2*,5/2*
		1	1		1029, 18(6)	72		0.152(19)	540,564(19)	1/2+
		1			1042,66(9)	141		0.140(24)	526,31(12)	5/2*
		1	1		1130,224(23)	E		2,33(13)	439,535(21)	5/2
1		{	1	1	1165.6(2)			0,145(24)	+03,997(12)	3/2-
		1			1224, 152(24)	E1		2,12(11)	343,619(10)	1/2
1	1	1	1	1	1405.365(33)	ET I		0.78(5)	164,423(5)	5/2
					1465,750(35)	. m		1,94(11)	104,319(4)	3/2
					1500,61(4)	84		0,378(28)	69,228(4)	3/2*
				1	1569.65(10)			0.082(11)	0,000	5/2*
1593,04(4)	3/2*	2,68(11)		6,27(2)	813, 32(10)	E		0,152(25)	779,63(7)	5/2
1	i	1	1	1	928,06(11)	81		0,140(22)	664,73(3)	5/2*
1					1052,37(13)	111		0,107(16)	540,564(19)	1/2*
{	1	1	1	1	1153,453(31)) E1		1,06(6)	439,555(21)	5/2
		1		1	1189.00(13)	21		0,160(22)	403,997(12)	3/2-
[1			1247.441(27)	1 51		0.92(5)	345,619(10)	1/2
1		1	.1		1483.04(10)			0,076(14)	104, 319(4)	3/2-
		1		1	1593.05(11)			0.041(11)	0.000	5/2*

.

Таблица /продолжение/

	1	-			P A	3	P	я	X K	A
8_(all) 79*	1 ⁶ 1 /81,**	I _d (aId)	Ig+(&Ig+)	14 ft	Europ(AE)	6L		$I_{\mathfrak{g}}(\mathbf{A}I_{\mathfrak{g}})$	Br	I,
1653,09(8)	3/2+,5/2+	1,17(6)		6,56(2)	796,2(2)			0,066(12)	856,16(5)	3/2 5/2
			i		1035,95(11)			0,132(24)	619,358(28)	3/2
	1.		1		1213,52(15)			0,136(20)	439,555(21)	5/2*
			}	۰ I	1307,26(11)	4		0,178(16)	345,619(10)	1/2"
			1		1561,60(5)	2	i	0,209(17)	91,564(18)	7/2*
				1.	1583,953(36)	81		0,402(23)	69,228(4)	3/2 ⁺
1722,34(4)	1/2*,3/2*	2,81(12)		6,10(2)	662,67(11)	1		0,27(3)	1059,75(4)	1/2 3/2
					987.74(10)	H1+56(18)5	62	0,251(24)	735,36(6)	3/2+
					1005,01(9)	51		0,13+(30)	717,39(3)	3/2 5/2
				ł	1037,1(4)			0,126(13)	683,837(17)	1/2
					1181,94(16)	(32)		0,154(22)	540,564(19)	1/2+
					1318,341(26)	(31)		1,56(8)	403,997(12)	3/2"
				1	1376,79(10)	1		0,344(37)	345,619(10)	1/2*
					1618,20(19)			0,035(14)	104,319(4)	3/2-
					16;1.4(4)			0,030(9)	91,554(18)	7/2*
1801,53(4)	1/2*,3/2*	13,6(5)		5,30(2)	435.2(3)	- M1		0,096(20)	1369,451(35)	3/2*
	{p 7/2 [523]+			1	637+94(13)	(#1)		0,061(21)	363,21(8)	3/2,5/2
	+= 5/2 [523]+			1	945,27(3)	371		0,88(5)	856,16(5)	3/2,5/2
	+# 1/2*[411]]		1	1	1066,49(8)	¥1+52(18)7	22	0,200(19)	735,56(6)	3/2*
	_		1		1261,20(8)			0,2+6(29)	540,564(19)	1/2*
			1		1338,62(14)			0,095(23)	462,481(21)	3/2*
			1		1597,520(27)	1 21		7,12(36)	403,997(12)	3/2
					1455,941(33)	1 21		3,68(21)	345,619(10)	1/2"
					1637,46(12)			0,083(18)	164,423(5)	5/2-
		l .	{	1	1697,221(38)	31		0,490(32)	104,319(4)	3/2
					1732, 32(15)			0,164(11)	69,228(4)	5/2+
1826,55(6)	3/2*	5,54(22)	1	5.65(2)	457,07(5)	11,22		0,145(16)	1369,451(35)	3/2*
					863,2(3)	(111)		0,055(20)	963,21(8)	3/2+,5/2
					1046,9(2)	(21)		0,130(17)	779,69(7)	5/2
					1091,01(4)	¥1+50(20)5	r2 ا	0,34(4)	735,36(6)	3/2*
	{	1	1	1	1142,51(5)	1 51		0,62(5)	683,837(17)	1/2
	1			1	1285,82(5)	311		0,340(31)	540,564(19)	1/2*
	1			1	1565,6(5)	511		0,06+(22)	*62,481(21)	3/2*
		1		1	1386,991(28)	51		1,10(6)	439,555(21)	5/27
			[ł	1422,58(12)			0,108(13)	403,997(12)	3/2
	1		1	1	1460, 245(33)	51		0,63(5)	345,619(10)	1/2
	1	1	1	1	1662,12(5)	51		1,01(6)	164,423(5)	5/2-
	1	1	1		1722, 37(5)	1 51		0,529(31)	104,319(4)	3/2
	1	[1741,75(-)	1		0,085(?)	83,965(5)	7/2
	.1	1		1	1757,25(14)			0.064(7)	69,228(4)	5/2*

		1 1			P	A	3	P	я	A K	A
11,70.(all)	I I /EngA/	I _s (AI _d)	Ip+(6Ip+)	lg ft	Euep.(al	0	41		Ľ _n (≜Ľ _n)	R _r	If
1853,53(4)	3/2+,5/2+	2,18(10)		6,02(2)	484,03(4	5)	341	_	0,28(3)	1369,451(35)	3/2*
	1	1 1		i	1689,154	58)	51		0,374(29)	164,423(5)	5/2-
	•				1749,224	35)	El		1,04(6)	104,319(4)	3/2
	1	1 1		1	1754,256	347	22		0,362(25)	69,228(4)	5/2*
	i				1853.33(2)			0,028(6)	0,000	5/2
1872,75(6)	3/2*	2,45(11)		5,93(2)	303,06(»)			0,071(8)	1569,83(8)	3/2*
	{	1 1		í	908,18(*	8)	12		0,21(4)	963,21(8)	3/2*,5/2*
		1			1137,10(*	0)	1 11		0,380(28)	735,36(6)	3/2*
	1	1 1		1	1332,13(n ') >n		0,131(24)	540,564(19)	1/2*
		1			1345,82(19)	111,7	2	0,068(14)	526, 31(12)	5/2*
	1	1		1	1709,03(5)	(11)		0,140(10)	164,423(5)	5/2
					1767,65(*	10)			0,187(13)	104, 319(4)	3/2"
					1803,55(5)			1,31(7)	69,228(+)	5/2*
1917,73(13)	3/2*,5/2*	0,82(4)		6,35(2)	380,57(17)	(52)		0,038(8)	1538,73(5)	3/2*
					547,36(14)			0,068(13)	1369,451(35)	3/2*
		1		1	1251, 20(10)	2		0,205(14)	664,75(5)	5/2*
	•	1 1			1755,450	5)			0,149(15)	164,423(5)	5/2
					1813,60(? }			0,047(4)	104,319(4)	3/2
					1825,25(7)	12		0,199(11)	91,564(18)	7/2
					1846,22(<u>. (E</u>	(11)		0,039(11)	69,225(4)	5/2*
2040,65(8)	3/2*,5/2*	0,80(4)		6,08(2)	++7,90(16)			0,077(20)	1593,04(4)	3/2
		1			1323,64(18)			0,092(23)	717,39(3)	3/2 5/2
					1577,66(15)			0,053(6)	462,481(21)	3/2
	1				1876,2*(5)	13		256(53)	164,423(5)	5/2
					1956, 38(6)	171		0,369(19)	104, 319(4)	3/2
	1	1	1	1	1971,2(2)	ľ		0,009(2)	69,228(4)	5/2*
and and and					2040,76(16)			0,022(5)	0,000	5/2
2052,82(12)	3/2. 3/2.	1,22(7)	ł	5,87(3)	1275, 17(14)	- 111		0,183(35)	779,69(7)	5/2-
				1	1525,969	(38)	51		0,76(5)	526,31(12)	5/2*
))]	1	1649,5(5	2	1		0,054(21)	405,997(12)	5/2
		1			1880,1(3	<u>)</u>	1		0,021(10)	164,423(5)	5/2
			1		1988,40(<u>, , , , , , , , , , , , , , , , , , , </u>			0,068(6)	104, 319(4)	3/2
		1			1965,24(0,067(7)	69,228(4)	5/2
3133 AT/441	+	0.477.44-1	h	+	2072,8(2		├ ~~~		0,0162(15)	0,000	2/2
a.arg+3(13)	1	0, 175(76)	}	0,51(4)	400,74(17)	}		0,066(12)	1722,34(4)	1/2",3/2"
	1				1957,57(7)			0,054(8)	164,421(5)	5/2
	+		<u> </u>	+	2017, 96(9)			0_047(4)	104,319(4)	3/2-
2073,26(7)	1/2 , 3/2	0,158(26)		b _04(7)	961,61(12)	E1		0,122(24)	1280,51(6)	1/2. 3/2.
	1				20/9,0(4	, 			0,0145(20)	164,425(5)	5/2
	+			1	2159,980	16)	 		0,0156(24)	85,965(5)	1/2
ZZ74,5(5)		0,0082(35)	I	1 7,1(2)	2274,5(5)		_	0,0082(35)	0,000	5/2

.

Таблица /продолжение/

¹⁶³ Ег. В распаде ¹⁶⁸ Тт возбуждаются вращательные уровни 7/2⁻ 84,0 кэВ и 9/2⁻ 190,0 кэВ ротационной полосы основного состояния, между которыми наблюдаются все внутриротационные переходы, однако, вследствие очевидного двойного размещения переходов с энергиями 190,0 и 249,5 кэВ, экспериментальная оценка интенсивности Е2 -перехода 9/2⁻ + 5/2⁻ представляется затруднительной.

Состояния 3/2⁻ 104,3 кэВ, 5/2⁻ 164,4 кэВ и 7/2⁻ 249,5 кэВ относятся к ротационной полосе 3/2⁻ /521/. Обнаружены все внутриротационные переходы мажду этими состояниями, а также переходы на уровни полосы $5/2^-$ /523/. Мы не наблюдали перехода 111,10 кэВ⁶, на котором базировалось введение в схему распада состояния 9/2⁻ 360,6 кэВ этой ротационной полосы. При относительно слабом β -распаде на состояния этой полосы они заселяются главным образом при разрядке состояний полосы 1/2⁻ /521/ и высоколежащих состояний трехквазичастичного мультиплета /см. ниже/.

Вращательная полоса 1/2 /521/ в ядерных реакциях^{75/} прослежена до состояния 9/2. В распаде ¹⁶³ Tm проявляются состояния 1/2 345,6 кзв, 3/2 404,0 кзв и 5/2 439,6 кзв, отнесенные к этой полосе. Подчеркнем, что именно головное состояние 1/2 345,6 кзв этой полосы заселяется наиболее интенсивным компонентом позитронов при распаде ¹⁶³ Tm. Отметим здесь, что более точный анализ интенсивностей у-переходов при распаде ¹⁶⁸ Tm привел к существенному изменению интенсивностей электронного захвата на низколежащие уровни ¹⁶³ Er. В отличие от результатов ^{/4,6/}, наиболее интенсивно заселяется уровень 345,6 кзв, а интенсивность электронного захвата на уровень 104,3 кзв значительно уменьшилась. Имевшие место в работах ^{/4,6/} интенсивности электронного захвата на эти состояния приводили к занижению энергии распада ¹⁶³ Tm.

Обнаруженное нами в распаде 163 Tm состояние 3/2⁻ 856,2 кэВ, видимо, может быть отнесено к вращательной полосе 1/2⁻ /530/, которая наблюдалась в ядерных реакциях $^{/5/}$. В этой интерпретации, однако, настораживает тот факт, что мы не наблюдаем в распаде головного состояния этой вращательной полосы.

3

Свойства вращательной полосы положительной четности /обозначенной в таблице условно $5/2^+$ /642// подробно изучены Хьортом и др. ^{/97} при возбуждении состояний ¹⁸³Ег в ядерной реакции (a, 3n). Показано, что наблюдаемая сложная структура полосы /исследованы состояния до $I^{\pi} = 25/2^+$ / может быть объяснена в случае сильного смешивания кориолисовым взаимодействием нильсоновских орбиталей 1/2⁺/660/, 3/2⁺/651/, 5/2⁺/642/, 7/2⁺ /633/ и 9/2⁺/624/ сферической оболочки і _{13/2}. В распаде 169 Tm возбуждаются состояния этой полосы 5/2⁺ 69,2 кзВ, 7/2⁺ 91,6 кзВ и 9/2⁺ 120,4 кзВ и наблюдаются все внутриполосные переходы /^{10/}.

8

В нечетных эрбиевых изотопах, исследовавшихся в ядерных реакциях $^{5/}$, установлены лишь головные состояния вращательной полосы $3/2^+/402/$. Два состояния $3/2^+$ 462,5 кэВ и $5/2^+$ 526,3 кэВ, возбуждающиеся в распаде 163 Tm, отнесены нами к этой ротацион~ ной полосе в 168 Er· и позволяют сделать оценку ее параметра инерции $A \approx 12,77$ кэВ.

Расположенная выше вращательная полоса с возбуждаемыми в распаде состояниями $3/2^+$ 619,4 кэв и $5/2^+$ 664,8 кэв интерпретируется нами как $3/2^+/651/$. Ее параметр инерции A = 9,08 кэв близок к известному из ядерных реакций значению для этой полосы, идентифицированной в $^{167}{\rm Er}'^{5/}$. Следует отметить также наблюдаемую в распадах $^{163}{\rm Tm}$ и $^{165}{\rm Tm}'^{11/}$ аналогию характера разрядки и энергетического положения состояний вращательных полос $3/2^+/402/$ и $3/2^+/651/$.

Состояние 1/2⁺540,6 кэВ известно из ядерных реакций $^{/5/}$ и относится к вращательной полосе 1/2⁺/400/. В распаде $^{163}\,\mathrm{Tm}$ мы наблюдаем заселение состояния 1/2⁺540,6 кэВ позитронами и относительно интенсивный электронный захват с возбуждением этого состояния.

КОЛЛЕКТИВНОЕ у-ВИБРАЦИОННОЕ СОСТОЯНИЕ В 168 Er

Взаимодействие у-вибрационного фонона четно-четного остова 162 Er с энергией 900,7 кэВ $^{\prime 12\prime}$ с нечетной квазичастицей основного состояния 5/2 $^{\prime}/523$ / 103 Er приводит к возбуждению коллективного 1/2 $^{-}(5/2^{-}/523)$ + Q₂₂ с состолния с энергией 683,8 кэВ в 163 Er. В распаде 163 Tm возбуждется ротационная полоса у-вибрационного состояния: 1/2 $^{-}$ 683,8 кэВ, 3/2 $^{-}$ 717,4 кзВ и 5/2 $^{-}$ 779,7 кэВ с параметрами А_{у0}=11,82 кэВ, а_{у0} = -0,054 кэВ /зания, что А₀ =11,87 кэВ/. Малая величина параметра развязывания а_{у0} для этой полосы с K=1/2 исключает возможность другой интеопретации.

Существование этого состояния предсказывалось расчетами $^{13/}$, в которых наряду с коллективной компонентой в этом состоянии имеется 22% примеси волновой функции одночастичного состояния $1/2^{-7}510/$. Если принять, что за величину параметра развязывания вращательной полосы у-вибрационного состояния в 168 Ег ответственна примесь состояния $1/2^{-7}/510/$ (A = 12,9 кэВ, a = -0,32 кэВ $^{/5/}$, то оценка величины этой примеси 17% находится в хорошем согласии с расчетной.

Уровни этой полосы 683 кэВ и 779 кэВ наблюдались в ядерных реакциях⁷⁵⁷ и в исследовании распада ¹⁶⁸ Tm⁷⁴⁷ раньше, однако идентификация ротационной полосы у-вибрационного состояния в ¹⁶³ Er осуществлена впервые.

9

СВОЙСТВА СОСТОЯНИЙ 188 Er С ЭНЕРГИЯМИ ВЫШЕ 1 МЭВ

Основная сила распада ¹⁶³ Tm /75% распадов/, как показывает бета-силовая функция, приведенная на <u>рисунке</u>, приходится на состояния ¹⁶³Er, энергия возбуждения которых выше 1 МэВ. Из установленных нами 19 состояний ¹⁶³Er в этой области энергий возбуждения 7 состояний однозначно имеют спин и четность I^{π} = 3/2⁺.Для большинства остальных состояний, в том числе состояний, у которых спины не определены однозначно, высокие интенсивности заселения в β -распаде /соответственно, низкие lgft / делают чрезвычайно маловероятными /если не ис-ключают/ значения спинов у них выше 3/2.

Природа двух из этих состояний с наиболее низкими значениями lgft определена ранее^{/14/}.На основании экспериментально установленных разрешенных (au) β -переходов на состояния 3/2⁺ 1538,73 кэВ и 1/2⁺, 3/2⁺ 1801,53 кэВ /см. <u>рисунок</u>/ оба состояния отнесены к трехквазичастичному мультиплету:

 $\left\{ p \frac{7}{2} \right\} = \frac{7}{2} \left[\frac{523}{-n} \frac{5}{2} \right] + \frac{5}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2}$

с проекциями момента количества движения $K^{\pi} = 3/2^{+}$ и $K^{\pi} = 1/2^{+}$, соответственно. В наших измерениях подтверждено их существование на основе результатов Θ - совпадений, а также установлены новые переходы разрядки этих состояний, которые позволили уточнить значения lgft для них по сровнению с⁷⁶⁷.

Экспериментально наблюдаемая высокая плотность состояний I^m = 3/2⁺ может быть связана с тем, что трехквазичастичные состояния из-за взаимодействия квазичастичных и коллективных степеней свободы фрагментированы по многим уровням ядра.

Теоретические расчеты ^{/15/} предсказывают существенное усиление процесса фрагментации одноквазичастичных, трехквазичастичных и т.д. состояний по уровням нечетных ядер с ростом энергии возбуждения. Одновременно с ростом энергии возбуждения быстро растет плотность состояний, вследствие этого фрагментация квазичастичных состояний по уровням нечетных ядер должна приводить к росту плотности состояний с определенными спином и четностью.

Очевидно, что всей совокупности уровней ¹⁶³ Ег с энергией возбуждения выше 1 МэВ характерно фрагментирование состояний трехквазичастичного мультиплета и, как следствие этого процесса, наблюдаемые высокие интенсивности β-распада на эти уровни.

Тем не менее,обнаружение этого явления в распаде ¹⁶³ Tm уникально. С одной стороны, это вы-

10

ражается в том, что высокая плотность состояний с $I^{\pi} = 3/2^{+}$ наблюдается при энергиях 1,5-2,0 МэВ /теоретические предпосылки дают 2-3 МэВ/, а с другой - ранее нигде в исследованиях распада других нечетных ядер это явление не наблюдалось в столь выразительной форме.

ЛИТЕРАТУРА

Ą

・ これたいたいないないないないでは、 たいしいの いたいたいないぞう アン・・

- Harmatz B., Handley T.H., Mihelich J.W. Phys. Rev., 1962, 128, p.1186.
- 2. Громов К.Я. и др. Изв. АН СССР, сер.физ., 1963, 27, с.182.
- 3. Гнатович В. и др. Изв. АН СССР, сер.физ., 1967, 31, с.587.
- 4. Абдуразаков А.А. и др. ОИЯИ, Р6-5132, Дубна, 1970.
- Tjom P.O., Elbek B. Kgl.Dan.Vidensk.Selsk.Mat.-fys.Medd., 1969, 37, p.7.
- Абдуразаков А.А. и др. Изв. АН СССР, сер.физ., 1976, 10, с.2089.
- 7. Вылов Ц. и др. ОИЯИ, Р6-81-454, Дубна, 1981.
- 8. Stein S., Ramsey A.T. Phys.Rev., 1969, 179, p.1170.
- 9. Hjorth S.A. et al. Nucl. Phys., 1970, A144, p.513.
- 10. Абдуразаков А.А. и др. Изв. АН СССР, сер.физ., 1980, 9, с.1843.
- 11. Вылов Ц. и др. ОИЯИ, 6-81-462, Дубна, 1981.
- Lederer C.M., Shirley V.S. Table of Isotopes, 7th ed., John Wiley and Sons Inc., New York, 1978.
- 13. Гареев Ф.А. и др. ЭЧАЯ, 1973, т.4, вып.2, с.357.
- 14. Громов К.Я. ЭЧАЯ, 1971, т.1, вып.2, с.525.
- 15. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971, с.477.

Рукопись поступила в издательский отдел 12 августа 1981 года.