ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

12-73up.

6 - 7469

977 А. Лятушински, К.Зубер, Я.Зубер, А.Потемпа, В. Жук

МЕТОДИКА ПОЛУЧЕНИЯ КОРОТКОЖИВУЩИХ СЕПАРИРОВАННЫХ ИЗОТОПОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

6 - 7469

А. Лятушински,¹ К.Зубер,² Я.Зубер, А.Потемпа,² В. Жук¹

МЕТОДИКА ПОЛУЧЕНИЯ КОРОТКОЖИВУЩИХ СЕПАРИРОВАННЫХ ИЗОТОПОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ .

Направлено в журнал "Nucleonica"

- УМСЦ, Люблин, ПНР.
- ² Институт ядерной физики, Краков.

Лятушински А., Зубер К., Зубер Я., Потемпа А., Жук В.

6 - 7469

Методика получения короткоживущих сепарированных изотопов редкоземельных элементов

Разработана методика быстрого получения изобар РЗЭ. Измерена эффективность процесса диффузии РЗЭ из танталовой мишени в зависимости от температуры и продолжительности процесса. Измерена эффективность процесса сепарации в различных условиях работы.

Препринт Объединенного института ядерных исследований. Дубна, 1973

П 1973 Объединенный инскикуя ядерных исследований Дубна

Введение

Используемые до сих пор методы получения источников редкоземельных элементов (РЗЭ) для спектроскопических исследований с применением процесса глубокого расщепления включали следующие операции:

I. Облучение мишени на пучке протонов.

2. Химическое выделение элементов.

3. Приготовление препаратов для дальнейшего сепарирования по изотопам.

4. Электромагнитное сепарирование препаратов по изотопам.

Суммарное время операций 2 - 4 равнялось приблизительно 30 минутам. Это ограничивало возможность спектроскопических исследований изотопов с периодом полураспада $T_{T/2} \leq 10$ минут.

В работе^{/1/} была показана возможность полной диффузии РЗЭ из облученного тантала за время порядка I минуты. Автори этой работы измеряли суммарнур эффективность диффузии РЗЭ из мишени толщиной 0,2 мм в диапазоне температур 19004 +3100⁰К. Применение источника ионов с поверхностной ионизацией (ИИПИ) в электромагнитном масс-сепараторе дает возможность использования процесса диффузии, что значительно сокращает время получения радиоактивных источников, так как исключаются химические операции. Облученная мишень погружается прямо в испаритель ионного источника. Атомн РЗЭ диффундируют из катериала мишени в объем ионизатора и затем, после ионизации и электромагнитного разделения на коллекторе сепаратора, собираются отдельные изобары. Возможность получения таким путем изотопов РЗЭ из танталовой мишени была предложена в работе^{/2/}, в которой рассчитаны активности рассепарированных элементов, с учетом того, что козффициенты диффузии из тантала будут такими же, как и из графита^{/3/}.

Настоящая работа посвящена экспериментальному определению условий диффузии и электромагнитной сепарации РЗЭ из танталовой, рениевой и вольфрамовой мишеней и применению методики к спектроскопическим исследованиям.

Основы методики

В разработанной методике быстрого получения изобар РЭЭ процесс изготовления спектроскопических препаратов разделен на следующие этапы:

I. Облучение металлической мишени на пучке протонов. Время облучения подбирается в зависимости от $T_{I/2}$ исследуемого изотопа по формуле (7).

2. Транспорт облученной мишени в ионный источник.В наших экспериментах время транспорта равнялось I+2 минутам.

Э.Процесс операции сепарирования включает в себя:

а) диффузир элементов из материала мишени;

о) ионизацию на поверхности ионизатора ионного источника;

 в) экстракцир ионов из ионизатора линзовой системой масс-сепаратора и перенос сепарированных элементов на коллектор.

Время электромагнитной сепарации, главным образом, определяется скоростью диффузии. Эффективность процесса сепарации γ определяется эффективностью диффузии γ_b отдельных элементов и их коэффициентом ионизации β в ионном источнике, а также коэффициентом полезного действия масссепаратора у_с

$$\gamma = \gamma_{0} \cdot \beta \cdot \gamma_{c} = \gamma_{0} \cdot \gamma_{i}, \qquad (1)$$

где измеряемая нами эффективность ионизации $\gamma_i = \beta \gamma_c$. Коэффициент полезного действия γ_c учитывает искажения равновесного состояния в ионном источнике, потери ионов в процессах экстракции, переноса и осаждения сепарированного элемента на коллекторе масс-сепаратора.

Исходя из уравнения одномерной диффузии (первый закон Фика):

$$dM = -D\frac{dx}{dx}Sdt$$

для пластинки толщиной 5 и поверхностью 5 при условии постоянного градиента плотности <u>de</u> = const., получаем:

$$M = M_0 e^{-\frac{4D}{\delta t}t}$$

где М. - количество диффундирующего элемента в мишени в начальный момент времени (t =0); М - количество элемента в мишени в момент времени t; D - козффициент диффузии. Отспда эффективность диффузии определяется формулой

$$\eta_{0} = \frac{H_{0}-H}{H_{0}} = 1 - e^{-\frac{4D}{B}t}.$$
 (2)

Козффициент диффузии D зависит от температуры T, по формуле:

$$\ln \frac{D}{D_0} = -\frac{\Delta E}{kT} , \qquad (3)$$

где D, и. ΔЕ - постоянные величины, значения которых зависят от материала мишени и свойств диффундирующего элемента. 4 - постоянная Больцмана.

В литературе отсутствует информация о значениях коэффициента D для РЗЭ в тантале, рении и вольфраме. Поэтому нами измерялась эффективность диффузии η_D в специфических условиях работы ИИШИ в зависимости от температуры, времени и толщины мишени.

Коэффициент поверхностной ионизации в данного элемента определяется формулой Саха-Лэнгмора, выведенной для условий, близких к условиям, существующим в ИШИ

$$\beta = \frac{n_{+}}{n_{0} + n_{+}} = \frac{\alpha}{1 + \alpha}$$
$$\alpha = \frac{n_{+}}{n_{0}} = A \exp \frac{\varphi - V_{i}}{kT} ,$$

(4)

где n, - число ионов, no - число нейтралей, A - постоянная для данного элемента, У - работа выхода материала ионизатора, Vi - первый потенциал ионизации данного элемента, Т - температура ионизатора.

Не учитывая потерь, определенных коэффициентом полезного действия, можно принять, что значения η близки значениям

ß. ...

7

Согласно формуле (4), в диапазоне температур 3000+ +3500°К достаточно высокая степень ионизации получается для элементов, у которых Vi < 7 эв. Это условие выполняется для всех РЗЭ. Рассчитанные по формуле (4) значения β для ионизации РЗЭ на поверхности рениевого ионизатора (9 = =5,43 эв) при температуре T =3100°K, представлени на рис. 4.

Зависимость η от температуры ионизатора и времени сепарации также являлась предметом наших исследований.

La Ce Pr Nd Mu Su En Cod TB by the Er Tu YB Ly A 0.8 0.8 0.5 0.5

Методика измерений

Мишени толщиной 0,05 мм и 0,1 мм облучались пучком протонов с энергией 660 Мэв на синхроциклотроне ОИЯИ. Время облучения и время измерения подбирались для каждого изотопа. в зависимости от периода его полураспада.

Сепарация проводилась на электромагнитном сепараторе, работающем в программе ЯСНАПП-1/4/ при использовании ИИПИ/5/. Температуры испарителя и ионизатора источника определялись по кривой зависимости температуры от мощности тока электронов, бомбардирурщих испаритель и ионизатор. Для построения этой кривой выполнен специальный опыт, в котором использована температура плавления чистых металлов, таких как W , Re , Ta, Mo, Ir, Pt, Pd, Cu. Условия, при которых измерялись значения η_ρ и η_ι , варьировались в следующих лиапазонах:

температура			2000 <	ч ≤ 3300°К,
время сепарации		ter a		t €15 минут,
толцина мишени	en an ga		0,05	έδ ≤ 0,I MM
атомный номер ис элементов	следуемых		57 (за и	≤Z ≤ 71 склочением Z =61 и Z=62),

тантал, рений, вольфрам. материал мишени: Технические параметры сепаратора разрешали одновременно получать на коллекторе изобары всех нейтронодефицитных РЗЭ, т.е. изотопы с массами 126 ≤ А ≤ 173.

Эффективность диффузии $\eta_{\rm p}$ и эффективность ионизации

определялась по формулам n = 100(<u>In-In</u>)% (f)

(6)

Dre Zooo'K hf 3.5.10-2 rogy

10011+1+)2,

где I_н – интенсивность гамма-линии данного изотопа в мишени до сепарации, I² – то же самое после сепарации, I_к – интенсивность гамма-линии данного изотопа на коллекторе сепаратора.

Величины Ім, Гм, Ік были взяты из измерений соответствующих гамма-спектров.

Измерения проводились на Gz(Li) -детекторе объемом 50 см³ с разрешающей способностью 2,8 ков для энергии 1300 ков. Обработка гамма-спектров проводилась на ЭВМ "Минск-2" при использовании программы КАТОК/6/.

Обсуждение результатов

а) Диффузия

Зависимость эффективности диффузии η_{p} от температуры мишени для разных времен диффузии показана на рис. IA, на примере Ес. и ТЬ . Значения η_{p} для РЗЭ, диффундирурщих из тантала толщиной О, I мм, приводятся на рис. IE. Отсутствие значений η_{p} для Sm и Pm объясняется отсутствием подходящих для измерений изотопов этих элементов. Значения η_{p} для РЗЭ при различных временах диффузии изооражены на рис. 2Б, а зависимость η_{p} от времени диффузии, на примере Ес. и ТЬ дается на рис. 2A. Наблюдается резкая зависимость значений η_{p} от температурн и времени диффузии, что согласуется с формулами (2) и (3). Почти IOO% эффективность диффузии для всех РЗЭ получается при температуре

≈ 3000°К за время t ≈ 3 минутн, что согласуется с результатами работн^{/I/}. Из рис. IБ видна некоторая корреляция между значениями 400-7 данного элемента и его температурой кипения.

Рис. IA. Зависимость эффективности диффузии 7, % от температури Т для Ес (кривая I и 3) и ТЬ (кривая 2 и 4) при времени 3 мин (кривне 3 и 4) и 15 мин (кривне I и 2).

Б.. Значения величины (100- η_{p}) β для РЗЭ при температурах: кривая I - $T=2000^{\circ}$ K, 2 - $T=2200^{\circ}$ K, 3 - $T=2400^{\circ}$ K. Время t=15 мин. Кривая 4 дает значения температур кипения $P33^{/9}/T_{e}$.

Б. Значения Др РЗЭ для разных времен диффузии: кривая I - 15 мин, 2 - 10 мин, 3 - 5 мин., 4 - 3 мин. Температура T = 2400⁰K.

10

В таблицах I и 2 приведены значения эффективности диффузии некоторых РЗЭ в зависимости от материала и толщины мишеней. Видно, что эффективность получается большей для мишени с меньшей температурой плавления, Т_{па}. Однако мишени с низкой Т_{па} не могут быть непосредственно использованы в данной конструкции ИИПИ. Эффективность диффузии можно увеличить, уменьшая толщину мишени. При использовании методики для спектроскопических исследований явилась оптимальной танталовая мишень толщиной 0,05 мм.

б) Ионизация

Полученные нами значения эффективности ионизации η_i имеют зависимость от температуры поверхности ионизатора ионного источника и резкур зависимость от потенциала ионизации данного элемента (рис. 3, 4). Значения η_i получились так же как и в работах^{/4,7/}, значительно больше значений β_i рассчитанных по формуле Саха-Лэнгмора (4), но характер зависимости η_i от Z элементов остался тем же (рис. 4). Так как в формуле (4) не были учтены потери, связанные с переносом ионов через масс-сепаратор и их рассеянием на материале коллектора, истинные значения β еще выше.

Причинами некоторого расхождения между значениями ¶; , полученными экспериментально в этой работе, в работах^{/4,7/} и вычисленными по формуле (4) величинами ß, могут явиться: - геометрические параметры ионного источника и электрические условия экстракции, из-за которых проводимость выходного отверстия больше для положительных ионов, чем для нейтралей сепарированного элемента;

- работа выхода поверхности конизатора может быть выше, чем принятое справочное значение из-за окисления поверхности;

Таблица І

Значения γ_D (%) для некоторых РЗЭ в разных металлических мишенях t = 15 мин, T = 2200°K, δ =0,1 мм

	Мишень					
P3 3	Та (Т _{ПЛ} =3270 ⁰ К)	Re(T _{ПЛ} =3450 ⁰ К)	₩ (Т _{ПЛ} =3650 ⁰ К)			
Gd	37,8	I4,8	7,5			
Tm	46,2	29,2	27,8			
УЬ	48,4	47,4	-35,0			
Lu	13,9	12,0	II,6			

Таблица 2

Значения 7, (%) для некоторых РЗЭ в танталовой мишени разной толщины при температуре Т -2900°К, время диффузии 2 M 4 MAHYTH

	δ.	0,05 MM	δ=0,I MM		
r o g	2 MMH	4 MARE	2 MMH	1 M. 4 MAH	
Eu	~100	~ 100	63	95	
Gd	90	~100	50	92	
ть	93	~100	29	90	
Уb	93	~100	40	93	

12

a see the standard and the

Рис. З. Значения эффективности ионизации РЗЭ для разных температур рениевого ионизатора: кривые I – $T=3100^{\circ}$ К, 2 – $T=2000^{\circ}$ К, 3 – $T=2600^{\circ}$ К. Время сепарации t=15 мин.

Рис. 4. Максимальное значение 2; для РЭЭ, полученное: кривая I - в нашей работе, 2 - в работе⁷⁷, 3 - рассчитанное по формуле Саха-Лэнгмпра значение 3 при условиях Т_{ионизатора} =3100⁰K, A = I, У =5,43 эв. Потенциалы конизации РЭЭ взяты из работы⁷¹. - в нашем случае из-за сравнительно медленного процесса диффузии в источнике ионов не происходит резких скачков плотности паров сепарированного элемента.

Измеренные значения у: для большинства РЗЭ только в незначительной степени зависят от времени сепарации.

в) Сепарация

Приведенные на рис. I-4 значения η : и η_p дарт возможность рассчитать по формуле (I) зффективность сепарации для РЗЭ из облученных танталовых мишеней. В качестве примера на рис. 5 дается значение η для следующих условий сепарации: температура ионизатора 2400; 3100⁰K, время сепарации 3 и 15 минут.

Активность сепарированных радиоактивных препаратов зависит от условий облучения, сечения образования изотопов \mathcal{O} , времени полураспада исследуемого изотопа, времени подготовки источника для сепарации и его эффективности. В наших экспериментах время сепарации около 2-3 минут и $T \approx 3000^{\circ}$ К оказались достаточными для получения препаратов, надежных для спектроскопических измерений. Имея в виду вреия транспортировки мишени и подготовки источника масс-сепаратора, получаем суммарное время от конца облучения до конца сепарации не более 5-6 минут. Это суммарное время ограничивает применение методики для исследований изотопов с периодом полураспада $T_{1/2} < I$ минуты.

Активность получаемых на коллекторе масс-сепаратора атомов изотопа с постоянной распада λ из мишени (No атомов), облучаемой в течение to пучком протонов с интенсивностью ϕ после времени подготовки источника tn, определяется формулой:

$$N = N_0 \circ \phi \gamma e^{-\lambda t_n} (1 - e^{-\lambda t_o}).$$

На основе измеренных в работе величин γ по формуле (7) рассчитаны значения N для короткохивущих нейтронодефицитных РЗЭ. Результаты расчета для конкретных условий эксперимента приведены на рис. 6. Значения η для Sm и Pm вычислены из данных, указанных в работах ^{/3},^{7/}. Сечения образования изотопов \mathcal{C} взяты из работы ^{/8/}.

(7)

Рисунки 5 и 6 дарт возможность подобрать самые подходящие условия получения любого из указанных изотопов в зависимости от физической задачи. По данным рис. 6 можно определить изотопный состав в каждом из сепарированных изобар, облегчая тем самым составление программы исследований и интерпретацию полученных результатов. При построении рис. 6 не учитывалась возможность сбора на коллекторе масс-сепаратора, кроме элементарных ионов данного элемента М⁺ . а также и ионов его окислов МО* , загрязняющих изобару с массой А изобарой с массой А-46 . Однако, измерения показали, что в наших условиях сепарации образуртся в значительном количестве только окисли La и Се (для этих элементов М.+ МОсоотношение Мот при-≈0,2+0,3). Ухе для Р+ и Nd мерно . О.І. а для остальных РЗЭ оно еще меньше. Такое коянчество окислов существенно не мешает интерпретации спектров. (рис. 7).

Примеры использования методики для спектроскопических исследования

Применение данной методики дало возможность идентифицировать новне короткоживущие изотопы и изомеры, а также

-ĕ5 **16**

Рис. 5. Значения эффективности сепарации РЗЭ, рассчитанные по формуля (I) для разных условий работы ИМПИ. Кривая I – T==3100⁰K, t=15 мин, 2 – T=3100⁰K t=3 мин, 3 – T=2400⁰K t=15 мин, 4 – T=2400⁰K t= 3 мин, Тионизатора = 3100⁰K.

Рис. 6. Относительные значения величин N , рассчитанных по формуле (7) для отдельных изотопов РЗЭ при следующих условиях: масса мишени 0,5 г, $\beta = 10^{11}$ протон/сек.см², время облучения $t_o = 5$ мин., время подготовки радиоактивных источников $t_n =$ = 5 мин., значения χ взяты для температуры T =3100⁰К и времени сепарации t = 3 мин. провести ряд спектроскопических исследований. Примеры некоторых результатов измерений изобар, полученных из облученной в течение 5 минут танталовой мишени толщиной 0,05 мм, весом 0,5 г, приводятся в таблице 3. На рис. 7 в качестве примера приводится гамма-спектр массы с A = 149.

Делались попытки использовать методику для получения короткоживущих изотопов других элементов. Область наших исследований, которые продолжаются, приводится в таблице 4. Данные таблицы 4 указыварт на возможность использования методики для получения радиоактивных источников широкого круга элементов. Это показано на примере получения изотопов Jn из оловянной мишени. В этом случае во время облучения протонами оловянной мишени ядра отдачи тормозятся в танталовой фольге. Далее эта фольга, как и в случае с РЗЭ, помещается в ИИШИ. При этом эффективность диффузии изотопов индия из тантала достигала почти 100%. В связи с тем, что ионизационные потенциалы сопутствующих элементов Cd , Ag Pd . Rh . Ru больше 7 эв. на коллекторе масс-сепаратора получались чистые изотопы индия. Получение изотопов индия и благородных газов является примером того, что, применяя некоторые модификации, можно использовать методику для получения изотопов с разными Vi и применять мишени с низкой температурой плавления.

Выводы

Разработанная методика, сокращая время получения радиоактивных изотопов редкоземельных элементов до ~ 5 минут, дала возможность существенно расширить спектроскопические исследования, проводимые по программе ЖНАПП-1^{/4/}. Таблица З

Примеры результатов, полученных разработанной методикой ж

A .	Изотоп ^Т 1/2	Новые физические результаты	Литература		
155	¹⁵⁵ Еr (5,3 мин)	Er	Antonia de la		
154	¹⁵⁴ ^м Но(3,2 мкн) ¹⁵⁴ Но (II,8 мкн)	Е7 добавочные новые	18		
153	153 _{Но} (9,3 мин) 153 ^т Но (2,0 мин)	уровни В _г , схема распада Б _г , схема распада	19		
152	152 _{Ho} (2,7 MMM)	Er			
151	151 _{Dy} (17,0 MRH)	Е, , схема распада	17		
150	150 _{Dy} (7,1 MRH)	Е, , схема распада	16		
I49	149 _{Dy} (4,6 мян) 149mTb (4,2 мян)	Е, , новые уровни Е, , схема распада	14 15		
148	148 _{Dy} (3,5 mmm)	Новый изотон T _{1/2} =3,5 <u>+</u> 0,2 мин E _f =620,1 кэв			
147	147mTb (1,8 MRH)	E, =1397,2 KB	11,12,13		

я Результаты получены совыестно с И.Пеневым.

à a

1.1.2 化化化剂 计

20

		NEG		NIDA		ИЦИ	ИПИ	Зменний	ИШ	
4	HOM	HON		И		И	И	Пла	И	
Таблица		Конизационний потенциал V: /10/		5,42 ≤ V, ≤ 6,25		7,0	6,38 ≤ V ₁ ≤ 6,88	I0,75 ≤ V, ≤ I4,0	5,785	
отанной методики	енты и их некоторне истики	Т кипения 0К /9/		1773 4 T _K 4 3741	4. 4.	4703	3573 ≰ T _K	$I20 \leq T_{\rm K} \leq 2II$	2373	
зования разраб	юдучаские элем характер	grem chtr		P33		βĮ	Zr , Nb , Y	Kr , Xe , Ra	n N	
Примери исполь:		T _{IIA} DECEMBERS 0K /9/	3273	3453	3653	3273	2883	EL6I	205	
	Kin ou s	Marepha. Mangan	۴ā	Rc	3	L <mark>o</mark>	N O	Th	5m →Та (ядра отдачи)	

21

Рис. 7. Гамма-спектр массы A =149, полученный в условиях, сходных с условиями, показанными на рис. 6. Время измерения t=5 мин.

> Результаты измерений эффективности процесса сепарации указывают на возможность дальнейшего существенного сокращения времени получения источников при работе вблизи пучка или на пучке ускорителя.

> Авторы благодарны К.Я.Громову за поддержку и постоянный интерес к работе, В.И.Райко и И.И.Громовой за обсуждение результатов, а также А.Колачковскому за оказанную большую помощь в окончательной подготовке работы.

Литература

- 1. M.L.Andersen, O.B.Nielsen. Nucl. Instr. and Meth., 38, 308 (1965).
- 2. R.Arlt, V.A.Bystrov, W.Habenicht, E.Herrman, V.I.Rajko, H.Strusny, A.Tyrroff. Nucl. Instr. and Meth., 105, 253 (1972).
- 3. C.J.Orth. Nucl. Science and Engin. 9, 417 (1961).
- 4. G.Musiol, V.I.Raiko, A.Tyrreff. Препринт ОИЯИ, P6-4487, Дубна, 1969.
- G.Beyer, E.Herrmann, A.Piotrowski, V.I.Raiko, A.Tyrroff. Nucl. Instr. and Meth., 96/3, 437 (1971).
- 6. В. Гаджоков. ПТЭ, №5, 82 (1970).
- 7. P.G.Jonson, A.Balson', C.M.Hunderson. Nucl. Instr. and Meth., 106, 83 (1973).
- 8. Э.Рупп, Т.Фенеш. Препринт ОИЯИ, 6-4998, Дубна, 1970.
- Y.H.Freeman, G.Sidenius. Proceedings of the Second International Conference on Ion Sources, Viena, September 11-15 (1972) 724.
- 10. G.B.Moore. NAT. BUR. STAND. REP. DATA, <u>V.34</u>, 1, (1970).
- 11. D.R.Haenni, T.T.Sugihara, W.W.Bowman. Phys. Rev., <u>C5</u>, No. 3, 1113 (1972).
- 12. Y.Y.Chu, B.M.Franz, G.Friedlander. Phys. Rev., 187, 1529 (196
- 13. W.W.Bowman, D.R.Haenni, T.T.Sugihara. Phys. Rev., C7, 1686 (1973).
- 14. K.S.Toth, J.O.Rosmusen. Phys. Rev., 109, 121 (1958).
- 15. Р.Арльт, Г.Байер, В.В.Кузнецов, В.Нойберт, А.В.Потемпа, У.Хагеманн, Э.Херрманн. Изв. АН СССР, 35, №8, 1612 (1971).
- 16. R.D.Macfarlane, D.W.Seeqmiller. Nucl. Phys., 53, 449 (1964).
- 17. Р.Арльт, К.Зубер, В.Нойберт. Препринт ОИЯИ, Д6-5783, Дубна, 1971.
- 18. D.Ward, M. Neiman. Nucl . Phys., All5, 529 (1968).
- 19. K.S.Toth, R.L.Hahn. Phys. Rev., C3, 854 (1971).

Рукопись поступила в издательский отдел I октября 1973 года.