e4135 M = 69овъели ИНСТИТУТА ЯДЕРНЫХ ИССЛЕЛОВАНИЙ II vona

1971

6 - 6000

Н.Б.Михеев, В.И.Спицын, А.Н.Каменская, Б.А.Гвоздев, В.А.Друин, И.А.Румер, Р.А.Дьячкова, Н.А.Розенкевич, Л.Н.Ауэрман

ВОССТАНОВЛЕНИЕ ФЕРМИЯ ДО ДВУХВАЛЕНТНОГО СОСТОЯНИЯ В ХЛОРИДНЫХ ВОДНО-ЭТАНОЛЬНЫХ РАСТВОРАХ

6 - 6000

Н.Б.Михеев, В.И.Спицын, А.Н.Каменская, Б.А.Гвоздев, В.А.Друин, И.А.Румер, Р.А.Дьячкова, Н.А.Розенкевич, Л.Н.Ауэрман

ВОССТАНОВЛЕНИЕ ФЕРМИЯ ДО ДВУХВАЛЕНТНОГО СОСТОЯНИЯ В ХЛОРИДНЫХ ВОДНО-ЭТАНОЛЬНЫХ РАСТВОРАХ

Corregumentaria unterrete внерных неследованы **SHEMHOTERA**

В литературе отсутствуют сведения о получении Fm в двухвалентном состоянии, хотя для него прогнозирован стандартный потенциал перехода Me²⁺ de³⁺ +e, равный -(1,2 + 1,3) в.^{/1,2/}.

Для восстановления фермия до двухвалентного состояния необходима система, в которой может быть создан высокий восстановительный потенциал, достигнута стабилизация двухвалентной формы фермия и осуществлена ее идентификация.

Этим требованиям отвечает процесс одновременного восстановления магнием в водно-спиртовых растворах хлоридов самария и фермия, когда образующийся малорастворимый $SmCl_2$ захватывает Fm^{2+} . Имеюшая здесь место истинно-изоморфная сокристаллизация позволяет осуществить как идентификацию, так и стабилизацию двухвалентного состояния фермия, поскольку он в виде Fm^{2+} входит в матрицу кристаллической решетки SmCl₂.

Фермий-252 получали на ускорителе тяжелых ионов У-300 в Лаборатории ядерных реакций ОИЯИ (Дубна) по реакции:

²³⁸U (¹⁸0, 4n)²⁵² Fm.

Идентификация ^{252}Fm и измерение его активности проводились методом *а*-спектрометрии при использовании полупроводникового детектора с разрешением не хуже 40 кэв. При получении ^{252}Fm в результате сопутствуюшей реакции образуются соизмеримые количества изотопа ^{245}Cf , присутствие которого затрудняет измерение ^{252}Fm . Вследствие этого измерения ^{252}Fm проводились через 8 часов после окончания облучения, когда активность ^{245}Cf уменьшалась более чем в 10^3 раз.

3

Выделение фермия из облученной окиси-закиси урана проводили с помощью фторидов самария или европия, служащих носителями фермия. После растворения фторидов в смеси азотной и борной кислот осаждали гидроокись, промывали ее спиртом и растворяли в 0,5 мл 7М раствора хлористого водорода в этаноле. К полученному раствору добавляли 1 мл этанольного раствора хлорида самария ([Sm] = 50 мг/мл), содержащего ⁸⁵ Sr, 50 мг магния и еще 0,5 мл 7М *HCI* в этаноле. При этом образовывался малорастворимый осадок SmCl₂ красного цвета, захватывающий ⁸⁵ Sr и ²⁵² Fm.

^{оз} S_{r и} ²⁵² Fm.

Для измерения активности фермий отделялся от самария и магния экстракцией 30-процентного раствора роданида метилтриоктиламмония в ксилоле из 0,6 М раствора роданида аммония, содержащего 0,1М H_2SO_4 , как это было рекомендовано Муром для экстракции других актинидов/3/. После двухкратной промывки органической фазы фермий реэкстрагировали 1 М HCIO₄. Измеряемый препарат представлял собой платиновый диск, на котором был упарен раствор фермия в хлорной кислоте. После прокаливания диска при 500°С активный слой не превышал 50 мкг/см².

На рис. 1 и 2 приведены спектры препаратов, полученных из аликвотной части раствора до восстановления, и из осадка SmCl₂. Активность⁸⁵ Sr измерялась с помощью многоканального анализатора, снабженного Ge-Li-детектором. Для определения активности ⁸⁵ Sr использовалась водная фаза после экстракции.

Нами рассматривалось распределение между осадком SmCl₂ и раствором микроколичеств фермия относительно микроколичеств стронция, которое подчинялось уравнению (1):

$$\ln \frac{a}{a-x} = \lambda \ln \frac{b}{b-y} , \qquad (1)$$

где а и b – количества фермия и стронция в системе, x и y – количества их в твердой фазе, λ – коэффициент распределения. Это уравнение получено из полулогарифмических уравнений сокристаллизации/4/ каждого микрокомпонента с макрокомпонентом SmCl₂. Величина λ является константой при условии постоянства термодинамических параметров в системе.

^{2.} 4

Рис. 1. Спектр а -излучения препарата, полученного из аликвотной части раствора до восстановления.

Рис. 2. Спектр а -излучения препарата, полученного из осадка SmCl₂ .

Помимо этого, для постоянства λ необходимо, чтобы оба микроэлемента были в двухвалентном состоянии. Если же в растворе кроме сокристаллизующейся формы микроэлемента Fm^{2+} присутствует Fm^{3+} , не захватывающийся при сокристаллизации, то с уменьшением отношения $[Fm^{2+}]/[Fm^{3+}]$ величина λ будет падать. Если стандартные окислительно-восстановительные потенциалы перехода $Me^{2+} \neq Me^{3+} + e$ самария и фермия близки, то изменение соотношения $[Sm^{2+}]/[Sm^{3+}]$ скажется на изменении отношения $[Fm^{2+}]/[Fm^{3+}]$, т.е. на величину λ . Изменение отношения $[Sm^{2+}]/[Sm^{3+}]$ в эксперименте достигалось при проведении опытов по кристаллизации и перекристаллизации осадка $SmCl_2$ в присутствии фермия и стронция. В первом случае отношение $[Sm^{2+}/Sm^{+3}]$ больше, чем во втором, т.к. в процессе кристаллизации $SmCl_2$ образуется его пересышенный раствор.

Для доказательства восстановления фермия в растворе до двухвалентного состояния достаточно показать, что его сокристаллизация с $SmCl_2$ происходит за счёт истинного изоморфизма. В связи с этим было изучено влияние на величину λ добавки $LaCl_3$ – соли сильносорбирующегося катиона. Помимо этого, была изучена сокристаллизация с $SmCl_2$ иттрия, элемента, для которого двухвалентное состояние не известно, европия, который в условиях образования $SmCl_2$ количественно переходит в двухвалентное состояние и, наконец, иттербия, эначение стандартного окислительно-восстановительного потенциала которого для перехода $Me^{2+} \gtrsim Me^{3+}$ не лежит между соответствующими величинами для самария и европия.

Наконец, была изучена сокристаллизация Fm с EuCl₂, образующимся в тех же условиях, при которых происходит осаждение SmCl₂. Нами было показано, что выделяющийся в этих условиях осадок EuCl₂ изоструктурен •SmCl₂. Однако при восстановлении европия в системе создается потенциал, недостаточный для восстановления иттербия и самария. Результаты опытов представлены в таблице 1.

Обсуждение результатов

Из таблицы 1 следует, что Y, для которого двухвалентное состояние не известно, не сокристаллизуется с SmCl, В противоположность

6

TABJINIJA I.

Значения коэффициентов распределения исследуемых микроэлементов относительно микроколичеств Sr при кристаллизации и перекристаллизации SmCl₂ и EuCl₂.

Элемент	Осадок	SmCl ₂	Осадок ЕиСе2
	кристаллизация	перекристаллизация	кристаллизация
<u>Ү</u> 88	0,004 ± 0,001		-
נ Еи	I,3 ± 0,2 I,5 ± 0,3**)	I,8 ± 0,5	
ҮВ ¹⁷⁵	0,28 ± 0,02 0,11 ± 0,03**)	0,042 ± 0,007	< 0,005 ± 0,001
252 Fm	0,95	I ,2 0	0,015
	0,72	I,I0	
	I,30		
	0,7I**/	0,72***	

Доверительный интервал дан с надежностью 0,68.
Процесс кристаллизации проводился в присутствии Lall,
[La] - I мг/мл.

7

этому, Еи и Yb, восстанавливающиеся при образовании SmCl₃, захватываются осадком со своими собственными коэффициентами кристаллизации, причем $\lambda_{16} < \lambda_{E_{0}}$, т.к. растворимость YbCl₂. значительно больше, чем растворимость EuCl₂. Фермий также сокристаллизуется с осадком SmCl₂. Иттербий и фермий не сокристаллизуются с EuCl₂, хотя последний изоструктурен с SmCl₂. Добавка лантана не сказывается на величину $\lambda_{E_{0}}$, но несколько снижает λ для Yb и Fm, что может быть объяснено изменением отношения коэффициентов активности Yb/Sr и, соответственно, Fm/Sr в растворе. На основании этих фактов можно сделать однозначный вывод о том, что Fm при восстановлении SmCl₃ до SmCl₂ переходит в двухвалентное состояние.

Основываясь на том, что фермий, так же как и иттербий, мало захватывается осадком $EuCl_2$, можно заключить, что стандартный потенциал перехода $Fm^{2+} \rightarrow Fm^{3+} + e$ более отрицателен, чем для европия. При сравнении распределения микроэлементов с осадком $SmCl_2$ во время его кристаллизации и перекристаллизации, видно, что эти коэффициенты постоянны для Fm и Eu, но отличаются для Yb. Таким образом, отношение $[Sm^{2+}]/[Sm^{3+}]$ сказывается на полноте восстановления Yb, но не влияет на степень восстановления Eu и Fm, следовательно, стандартный потенциал Fm положительнее, чем Yb.

Авторы выражают глубокую благодарность академику Г.Н. Флерову за большой и постоянный интерес к выполнявшейся работе.

Литература

1. G.T. Seaborg, Annual Review of Nuclear Science 18, 53 (1968).

- 2. L.J. Nugent, R.D. Baybarz, J.L. Burnett, J. Phys. Chem., <u>73</u>, 1177 (1969).
- 3. F.L. Moore. Analyt. Chem., <u>36</u>, 2158 (1964).
- 4. N.B. Mikheev, V.I. Spitsyn. Atomic Energy Review 3, 3 (1965).

Рукопись поступила в издательский отдел

12 августа 1971 года.