Б-97 объединенный институт ядерных исследований Дубна

> Т. Бэдике, А. Гельберг, Р. Ион-Михай, С. Сэледжэану, Н.Г. Зайцева, Е. Ианович

6

5095

29/11-10

ИЗУЧЕНИЕ ПОВЕДЕНИЯ ЯДЕР ОТДАЧИ РЕНИЯ В ОБЛУЧЕННЫХ НЕЙТРОНАМИ СОЕДИНЕНИЯХ РЕНИЯ МЕТОДОМ ИЗМЕРЕНИЯ ВОЗМУЩЕННЫХ УГЛОВЫХ КОРРЕЛЯЦИЙ

1970

XIGHGEPHPIX

PAGPAGAN

6 - 5095

Т. Бэдике, А. Гельберг, Р. Ион-Михай, С. Сэледжэану, Н.Г. Зайцева, Е. Ианович

ИЗУЧЕНИЕ ПОВЕДЕНИЯ ЯДЕР ОТДАЧИ РЕНИЯ В ОБЛУЧЕННЫХ НЕЙТРОНАМИ СОЕДИНЕНИЯХ РЕНИЯ МЕТОДОМ ИЗМЕРЕНИЯ ВОЗМУЩЕННЫХ УГЛОВЫХ КОРРЕЛЯЦИЙ

Направлено в журнал "Radiochimica Acta"

OUBCHLING ALL MILTERY SICTIMUK MICHOROBANI SMS NEWTERA

Институт Атомной физики, Бухарест

8392/2 up

До последнего времени изучение химических эффектов, сопровождающих ядерные превращения в твердых телах, проводилось главным образом методами радиохимического анализа ^{/1/}. Однако эти методы не могут считаться достаточно удовлетворительными для выяснения первичного состояния "горячих" атомов в облученном веществе, т.к. при интерпретации результатов всегда следует учитывать влияние эффектов, которые возникают при обязательном в этих случаях растворении вещества. Более достоверное представление о поведении ядер отдачи можно получить при использовании некоторых физических методов, не требующих химической обработки облученного соединения. В последнее время для изучения химического поведения ядер отдачи стали привлекаться методы измерения угловых корреляций ^{/2/}, спектроскопии Мессбауэра ^{/3/}, электронный парамагнитный резонанс ^{/4/}.

Так, в работе ^{/2/} была сделана попытка выяснить химическое поведение "горячих" атомов рения в облученных нейтронами соединениях рения, исключив влияние вторичных эффектов и используя для этого измерения возмущенных угловых корреляций.

В работах ^{/5,6/} мы довольно детально изучали химические формы стабилизации ядер отдачи рения, образующихся при облучении ряда неорганических соединений рения протонами с энергией 660 Мэв, используя радиохимический анализ. Было показано ^{/5/}, что химическое поведение радиорения не зависит от энергии отдачи, получаемой атомом в различных ядерных реакциях: Re (n, γ) Re* и Re (p, pxn) Re* .

Изучив угловые корреляции при распаде рения в соединениях, облученных нейтронами, можно полагать, что подобные результаты будут наблюдаться и при облучении тех же соединений рения высокоэнергичными протонами. В последнем случае нельзя проводить измерения непосредственно после облучения из-за сложности общего радиоактивного состава облученных кристаллов.

Настоящее сообщение посвящено изучению угловых корреляций при распаде радиоактивного рения в облученных тепловыми нейтронами соединениях рения в зависимости от ряда факторов: химической формы облучаемого соединения, величины потока нейтронов, последующей обработки кристаллов. Полученные результаты служат основой для понимания поведения ядер отдачи в облученных твердых телах.

Экспериментальная часть

<u>Соединения</u>. В качестве мишеней для облучения использовались соединения $NH_4 ReO_4$, $NaReO_4$, $K_2 ReCl_6$ с естественным составом изотопов рения. Соли были синтезированы нами и дополнительно перекристаллизованы ^{/5/}.

<u>Облучения</u>. Мишени облучались тепловыми нейтронами в реакторе Института атомной физики (Бухарест). Основная часть экспериментов была проведена при интенсивности потока нейтронов 10¹³ л /см².сек и времени облучения 1 час.

Последующая обработка мишеней. Облученные соли служили источниками для измерения угловой гамма-гамма-корреляции при распаде рения как сразу после облучения, так и после обработки облученных кристаллов: растворения, перекристаллизации, термического отжига. Измерения угловых гамма-гамма-корреляций. При облучении соединений рения тепловыми нейтронами получались изотопы ¹⁸⁶ Re (T_½ = 90 час) и ¹⁸⁸ Re (T_½ = 16,7 час).

Если облучение проводилось в течение сравнительно короткого времени, то в основном возникал изотоп ¹⁸⁸Re. Для измерения угловых корреляций гамма-лучей, возникающих при β^- -распаде¹⁸⁸ Re (гамма-переходы происходят в ¹⁸⁸Os), был выбран каскад 931-155 кэв, поскольку интенсивность этих гамма-лучей достаточно велика, каскад имеет место между уровнями 0⁺(E2) 2⁺(E2) 0⁺ и анизотропия должна быть большой, период полураспада промежуточного уровня мал $T_{\frac{1}{2}} = (0,71 \pm 0,03).10^{-9.77/}$ сек, но все же достаточен для возмущения угловых корреляций ^{/8/}.

Измерения производились с помощью автоматической установки, на которой регистрировались совпадения сцинтилляционными детекторами NaJ(Tl) (76 x 76 мм) при углах 90,135 и 180°. Фотопики гамма-переходов 155 и 932 кэв хорощо разрещались в спектре суммарных совпадений (рис.1). Случайные совпадения были измерены и вычтены, а экспериментальные коэффициенты угловой корреляции (A₂ и A₄) были скорректированы на конечный телесный угол.

Известно, что функция угловой корреляции определяется выражением

 $\mathbb{W}(\theta) = 1 + A_{2 = \Im K \subset \Pi_{\bullet}} \frac{P}{2} (\cos \theta) + A_{\bullet} = P_{\bullet} (\cos \theta),$

где Р, Р, -полиномы Лежандра,

Рис. 1. Спектр гамма-лучей, возникающих при распаде ¹⁸⁸ Re: а) одиночный спектр, б) спектр гамма-гамма-совпадений с суммарным пиком 1087 кэв.

Результаты эксперимента

Влияние химического состава облучаемых соединений

В таблице 1 приведены результаты измерения угловых корреляций при распаде ¹⁸⁸ Re в кристаллах NaReO₄ , NH₄ReO₄ и K₂ReCl₆ .

Таблица 1

Экспериментальные коэффициенты угловых корреляций и коэффициенты затухания каскада 933-155 кэв в ¹⁸⁸0s в кристаллических соединениях рения (ф' = 10¹³ п /см²сек, время облучения 1 час)

Соединение	G A	G A	6	G	R % /5/	
	2 ² 2. •	~4 ~4	2	~ 3	п, у	р,рхл
NaReO 4	0,246 <u>+</u> 0,036	0,716 <u>+</u> 0,033	0,689 <u>+</u> 0,101	0,624 <u>+</u> 0,029	100	96,4
NH ReO	0,367 + 0,019	0,648 <u>+</u> 0,028	1,028 <u>+</u> 0,053	0,567 <u>+</u> 0,027	-	66,6
K ₂ ReCl	0,277 <u>+</u> 0,038	0,827 <u>+</u> 0,043	0,776 <u>+</u> 0,106	0,721 + 0,037	60-70	68,7
Теория	A ₂ = 0,357	$A_{4} = 1,147$	1. 1	1		

Видно, что значения G₂ и G₄ отличаются от 1 и для каждого соединения они различны.

В таблице приведены также значения R -содержания радиорения в валентной форме, соответствующей валентности рения в облучаемом соединении и называемого удерживанием ^{/9/}. Эта величина определялась радиохимическим методом ^{/5/}.

Влияние дозы, полученной кристаллами $K_2 \operatorname{ReCl}_6$ при облучении, на величину угловой корреляции представлено на рис.2 изменением G_4 . Следует заметить, что G_4 определяется более точно чем G_2 вследствие большого значения A_4 . Поэтому G_4 является более удобным параметром для сравнения результатов.

На рис.2(а) видно, что G_4 , увеличиваясь с ростом потока нейтронов, достигает при $\phi = 3,5.10^{16}$ в /см² значения, которое остается затем практически постоянным в исследуемом диапазоне ϕ . Аналогичный ход кривой был получен и для R (рис.26), которое стремится к 100% с увеличением потока протонов.

Влияние последующей обработки кристаллов

Растворение, перекристаллизация

Результаты, полученные при измерении угловых корреляций для растворов облученных солей и для вновь выкристаллизованных солей приведены в таблице 2.

		~					~
· ·	•	n	π	и	TT	- A	
	a	0		**	ц	u	-

Экспериментальные коэффициенты и коэффициенты затухания угловых корреляций ¹⁸⁸ Re в зависимости от обработки облученных кристаллов ($\phi' = 10^{13}$ в /см².сек, время облучения 1 час)

Соединение	Условия обработки	G2 A 2	G ₄ A ₄	G ₂	G,
	la. - ¢1.•	0,367 <u>+</u> 0,019	0,648 <u>+</u> 0,028	1,028 <u>+</u> 0,053	0,567 <u>+</u> 0,027
NH ₄ ReO ₄	растворение в HCl + HNO	, 0,362 <u>+</u> 0,110	1,130 <u>+</u> 0,092	1,014 <u>+</u> 0,308	0,985 <u>+</u> 0,080
	перекристал- лизация	0,327 ± 0,063	0,792 <u>+</u> 0,066	0,916 <u>+</u> 0,176	0,693 <u>+</u> 0,058
	-	0,277 <u>+</u> 0,038	0,827 <u>+</u> 0,043	0,776 <u>+</u> 0,106	0,721 <u>+</u> 0,037
K ReCl	растворение в 4 М НСІ	0,380 <u>+</u> 0,040	0,854 <u>+</u> 0,064	1,064 <u>+</u> 0,112	0,745 <u>+</u> 0,056
26	перекристал- лизация из 4 М HCl	0,351 <u>+</u> 0,012	0,702 <u>+</u> 0,023	0,983 <u>+</u> 0,034	0,612 <u>+</u> 0,020

Из таблицы видно, что для NH₄ReO₄ последующее растворение облученных кристаллов довольно заметно влияет на возмущение угловой корреляции, почти восстанавливая ее до невозмущенной, а последующая перекристаллизация вновь увеличивает возмущение.

Для K₂ReCl₆ G₄ меняется значительно слабее в зависимости от последующей обработки.

Термический отжиг

На рис. 3,4,5 представлено изменение G_4 при термическом отжиге облученных кристаллов NaReO₄, NH₄ReO₄ и K₂ReCl₆, соответственно, и также показано изменение R при отжиге этих кристаллов, облученных высокоэнергичными протонами ^{/6/}. Для всех солей рения наблюдается изменение G₄ в зависимости от времени отжига. Оно происходит, в основном, в течение первых часов, а затем с увеличением времени отжига G₄ принимает более или менее постоянное значение.

Интересно отметить аналогию, наблюдаемую в изменении G_4 и $R_{}$ для кристаллов NaReO₄ -на обеих кривых имеется минимум.Что касается изменения G_4 и $R_{}$ для солей NH₄ReO₄ и K₂ReCl₆, то имеется некоторое отличие в ходе соответствующих кривых. Однако для NH₄ReO₄ G_4 не определялось при времени отжига меньше 30 минут в отличие от $R_{}$. Для K_2 ReCl₆ G_4 при отжиге меняется незначительно по сравнению с неотожженным образцом, а $R_{}$ меняется сильно уже при коротком времени отжига, оставаясь затем с увеличением времени отжига практически постоянным.

На рис.6(а) показано изменение G_4 для кристаллов K_2 ReCl₆ в зависимости от температуры при одном и том же времени отжига. С увеличением температуры до 200°С G_4 стремится к 1, а затем с ростом температуры до 300°С остается постоянным. Величина R имеет такую же зависимость (рис. 6б).

Обсуждение результатов

Рассматривая полученные результаты, можно сделать заключение о том, какое влияние оказывают на изменение величины коэффициентов затухания угловой корреляции химический состав облучаемой соли, условия облучения и последующей обработки кристаллов.

Рис. 4. Изотермический отжиг облученных кристаллов

Возмущение угловой корреляции определяется факторами G_2 и G_4 , зависящими от взаимодействия радиоактивного ядра с внеядерными электрическими или магнитными полями и отличающимися от G_2 = = $G_4 = 1$ для невозмущенной угловой корреляции.

В принципе возмущение может вызываться электрическим квадрупольным или магнитным дипольным взаимодействиями, и эти взаимодействия могут быть как стационарными, так и зависящими от времени. Каждый тип возмущения характеризуется типичной зависимостью G_2 от G_4 (рис.7). Полученные нами данные так же, как и результаты других авторов, явно указывают на магнитную природу возмущения. К сожалению, как видно на рис.7, стационарное взаимодействие мало отличается от нестационарного. С другой стороны, изучаемые соединения рения не являются магнитоупорядоченными, и, следовательно, мы имеем дело с магнитным, зависящим от времени, возмущением.

Как было указано выше, гамма-переходы происходят в ¹⁸⁸ Os; можно считать, что за время, равное почти 1 нсек, электронные оболочки/осмия уже равновесны. Из возможных валентных состояний осмия (Os³⁺, Os⁴⁺, Os⁶⁺, Os⁸⁺) первые три имеют значения электронного спина, отличные от нуля, они равны 5/2, 2 и 1, соответственно. По-видимому, следует считать, что возмущение угловой корреляции вызывается релаксацией электронного спина. Наличие дефектов в кристаллической решетке приводит к понижению симметрии электронных волновых функций, что может вызвать усиление возмущения.

Как видно из табл. 1, для всех солей рения ($NaReO_4$, NH_4ReO_4 , K_2ReCI_6) в различной степени наблюдается возмущение угловой корреляции. Это говорит о том, что возникающие при облучении нарушения кристаллической решетки имеют различный характер, зависящий от химического состава соли, определяющего, в свою очередь, разный характер внеядерных полей. Как видно, наибольшее отклонение G_4 от 1 наблюдается для NH_4ReO_4 . Из исследованных нами соединений

рения соль $\mathrm{NH}_4\mathrm{Re}\,O_4$, как содержащая ион NH_4^+ , подвергается наибольшему радиолитическому воздействию облучения /10/, приводящему к образованию разнообразных фрагментов радиорения и тем самым - к более сильному изменению внеядерных полей по сравнению с NaReO_4 . Различие наблюдалось и для R

Иногочисленными исследованиями /11/ было показано, какое большое влияние на поведение ядер отдачи в твердых телах оказывает последующая после облучения обработка.

Так, растворение облученных кристаллов изменяет не только агрегатное состояние вещества, но и приводит к химическому взаимодействию радиоактивных атомов и фрагментов с молекулами растворителя. Растворение облученных кристаллов обычно вызывает частичное ослабление возмущения угловой корреляции вследствие малого значения времени корреляции в жидкости. Такой эффект наблюдался, например, для NH ₄ReO₄ (табл.2), и он может быть вызван изменением химического состава радиоактивных фрагментов в процессе растворения.

Большой интерес представляют обычно исследования термического отжига облученных кристаллов, поскольку при нагревании уменьшается число дефектов, возникающих при облучении, и при этом решетка приобретает более стабильную и симметричную структуру, что приводит к ослаблению возмущения. Результаты, полученные нами для G₄ и R при отжиге облученных кристаллов, характеризуют изменения, происходящие с дефектами в твердом теле.

Изотермы отжига NaReO₄ показывают конкурирующие процессы восстановления – окисления и мы высказали предположение^{/6/}, что эти реакции могут происходить как в твердом теле, так и при растворении. Однако проследив за изменением G₄ при отжиге кристаллов, можно считать, что реакции протекают в твердом теле при взаимодействии атомов отдачи с дефектами и при перераспределении положительных и отрицательных вакансий в отжигаемых кристаллах.

При отжиге кристаллов $NH_4 ReO_4$ и $K_2 ReCl_6$ значение G_4 плавно стремится к 1, причем для $K_2 ReCl_6$ это увеличение очень незначительно, не говоря о том, что состояние дефектов в твердом теле уже как-то стабилизировано. Изменение же R может определяться реакциями, происходящими при растворении отожженных кристаллов.

Другое объяснение тому, что изменение К более сильно, чем изменение G₄, можно дать, исходя из того, что при облучении K₂ReCl₈ нейтронами происходит одновременный радиационный отжиг кристаллов за счет гамма-лучей, имеющихся в реакторе, так что последующий термический отжиг уже не вызывает значительных изменений в твердом теле.

Выводы

- Методом измерения возмущенных угловых корреляций при распаде
 ¹⁸⁸ Re изучалось поведение ядер отдачи рения в облученных нейтронами неорганических соединениях рения.
- Показано, что величина экспериментальных коэффициентов угловых корреляций и коэффициентов затухания зависит от химической формы облучаемого соединения, интенсивности потока нейтронов, условий последующей обработки облученных кристаллов.
- З. Сравнение результатов измерения возмущенных угловых корреляций
 (G₂ и G₄) и величины удерживания (R) позволяет обсуждать механизм поведения ядер отдачи Re в некоторых облученных кристаллических соединениях рения.

Литература

1. А.Н. Мурин, Р.В.Богданов, С.М. Томилин. Успехи химии 33, 619 1964.

- 2. J. Sato, Y. Yokoyama and T. Yamazaki, Radiochim, Acta, 5, 115 (1966).
- 3. А.Н. Несмеянов, А.М. Бабешкин, Н.П. Косев, А.А. Беккер, В.А. Лебедев. Chem. Effects Nucl. Transf., 2, 419 IAEA Vienna (1965).
- 4. J. Fenger and S.O. Nielsen, Chem. Effects Nucl. Transf., 2, 93, IAEA Vienna (1965).
- 5. E. Ianovici and N. Zaitseva. J. Inorg. Nucl. Chem., 31, 3309 (1969).
- 6. E. Ianovici and N. Zaitseva. J. Inorg. Nucl. Chem., 31, 2669 (1969).
- 7. Т.Бэдике, Н.Г.Зайцева, В.А. Морозов, Т.М. Муминов, С.Сэледжэану. Препринт ОИЯИ 6-4350, Дубна, 1969.
- 8. E. Karlson, C.-L. Lerjefors and E. Matthias. Nucl. Phys., 25385(1961).
- 9. W.F.Libby, J. Am. Chem. Soc., 62, 1930 (1940).
- 10. N. Getoff, Chem. Effects Nucl. Transf., 2, 279 IAEA Vienna (1965).

11. G.Harbottle, Ann. Nucl. Sci., 15, 89 (1965).

Рукопись поступила в издательский отдел 9 мая 1970 года.

and the second second second second