

Р. Арльт, Н.Г. Зайцева, Б. Крацик, М.Г. Лощилов, Л.К. Пекер, Г. Музиоль, Чан Тхань Минь

РАСПАД ⁸⁵ Y (5ч), ⁸⁵ Y (2,68ч) И ⁸⁵m Sr. Мультиплеты трехчастичных Уровней в ⁸⁵ Sr 38 47

1970

6300 3700 250 v

8389/2 ng

6 - 5093

Р. Арльт, Н.Г. Зайцева, Б. Крацик, М.Г. Лощилов, Л.К. Пекер, Г. Музиоль, Чан Тхань Минь

РАСПАД ⁸⁵ Y (5ч), ⁸⁵ Y (2.68ч) И ⁸⁵m Sr. Мультиплеты трехчастичных уровней в ⁸⁵ Sr 38 47

Направлено в "Известия АН СССР"

1. Введение

В ряде работ $^{/1-4/}$ показано, что у нейтронодефицитного ядра иттрия с массовым числом 85 существуют два изомера с периодами полураспада $^{/3/}$ 2,68 и 5 часов. Бета-и гамма-спектры этих изомеров изучались в работах $^{/2,3,5/}$, однако, исследования гамма-спектров проводились только с помощью сцинтилляционной техники. В работах $^{/3,5/}$ сделаны первые попытки построить схему возбужденных уровней 85 Sr из распада 85 Y.

В настоящее время изучение ядра $^{85}_{38}$ Sr₄₇ приобретает все больший интерес, особенно в связи с развитием представлений о многочастичных уровнях. 85 Sr для поисков таких уровней удобен благодаря большой энергии распада 85 Y ($Q \approx 3300$ кэв). Поэтому мы предприняли исследование схем распада изомеров 80 Y и также 80m Sr

2. Экспериментальная часть

2.1. Приготовление источников

Оба изомера Y получались при облучении Sr Cl или металлического Nb протонами с энергией 120 и 660 Мэв, соответственно на внутреннем пучке синхроциклотрона ОИЯИ с последующим химическим выделением, описанным в /6,7/.

⁸⁵ Sm получался как дочерний продукт при распаде 2,68-часового и частично также 5-часового ⁸⁵ Y и выделялся из смеси Y→Sr экстракцией Y ди-2- этилгексилортофосфорной кислотой с последующим удалением примесей на гидроокиси железа. Затем осаждался SrCO₃ и его раствор в HCI служил препаратом для исследования гамма-спектров.

2.2. Условия и результаты измерений

Для измерения гамма-спектров Y и Sr были использованы два детектора типа Ge(Li) с чувствительными объемами 6,3 и 10 см³ с энергетическим разрешением 3,5 – 5 кэв для гамма-переходов⁶⁰Co. Амплитудный анализ осуществлялся 4096-канальным анализатором.

Калибровка по энергиям и интенсивностям проводилась с помощью гамма-переходов стандартных источников¹⁶⁹ Yb и²²⁶ Ra и известных переходов изотопа⁸⁶ Y, присутствующего в измеряемом препарате. Энергия жестких гамма-переходов определялась по пикам двойного вылета. Исходя из точно известной разности энергий пика двойного вылета и соответствующего фотопика, мы получали следующую точку на калибровочной кривой. Для надежной интерпретации фотопиков и пиков вылета использовалась кривая, представляющая отношение площадей пиков двойного и одиночного вылета к площади фотопика в зависимости от E_{γ} ^{/6/}.

Помимо ^{8,5} Y в иттриевых источниках присутствовали также изотолы ⁸⁴ Y (39 м), ⁸⁵ Y (14,6 ч), ⁸⁷ Y (80 ч), ⁸⁷ Y (12,5 ч) и ⁸⁸ Y (105 дн.). Чтобы избавиться от ⁸⁴ Y, мы начинали измерения спустя 2-3 часа после конца облучения, когда ⁸⁴ Y уже в эначительной мере распался. Что касается ⁸⁷ Y, ⁶⁷ M и ⁸⁸ Y, то их спектры просты и хорошо известны, так что вычесть их вклад из общего спектра не представляло никакой трудности. Более сложной оказалась задача учесть

вклад ⁸⁶ Y, спектр которого очень богат. Хотя мы его изучили довольно подробно отдельно ⁶⁷, в некоторых случаях из-за его присутствия мы смогли определить интенсивности переходов⁸⁵ Y только со сравнительно большой погрешностью.

Измерения гамма-спектров ⁸⁵ Y и ⁸⁵ m Sr продолжались вплоть до их полного распада. Принадлежность наблюдаемых гамма-переходов к отдельным изомерам определялась по значениям периода полураспада, а также по сохранению отношений их интенсивностей в опытах с препаратами, полученными различным образом.

На рис. 1 и 2 изображены отдельные участки гамма-спектров изомеров ⁸⁵ Y и ⁸⁵m Sr , соответственно. Данные об энергиях и интенсивностях гамма-переходов, сопровождающих распад изомеров ⁸⁵ Y и ⁸⁵m Sr , приведены в таблицах 1,2 и 3. Здесь же приведены для сравнения данные, полученные в работах $^{/3,5/}$.

3. <u>О распаде ^{8 ъ m} Sr</u>

Изомерное состояние ⁸⁵ Sr (Т /2 = 70 мин.) разряжается двумя каскадными переходами с энергиями 7 и 232 кэв; параллельным прямым переходом с энергией 239 кэв и, кроме того, путем электронного захвата с последующим излучением гамма-квантов с энергией 152 кэв распадается в ⁸⁵ Rb ^{/8/} (см. также рис. 3).

В гамма-спектре ^{85 m} Sr наблюдались переходы 152 и 232 кэв. Для отношения их интенсивностей мы получили эначение 0,14 (см. табл.3). Используя этот результат и привлекая данные об относительных интенсивностях конверсионных переходов 232 и 239 кэв (J_{K-232} ; J_{K-239} = 15:2,2) из работы ^{/9/}, а также значения коэффициентов конверсии $a_{K-150} = 0,041;$ $a_{K-232} = 0,027;$ $a_{K-239} = 1,6$ из ра-

	E.	, °`.								1		•				
(%	DOBC TD													c	0	
ные (2	, I	н с) I	4		1.	б 2	н.	1			5	
UTOTIO:	74							,		1				<u> </u>	2	
y abc	HHM	0,33	14 1	%I	ı	30,20	,48	8,	6 9	9 46	8,0	,22	60,0	,I4	,47	60,
L . T	H8 788												<u>. </u>	0		
тноси	- ORI	0,5	±3,4	~		0.2	1.2	I.2	11.	1	ີ. ເຜຼ	0.3	0.2		5	0,2
γo	Наши Дани	I ,54	I5,4	0	· •	0,94	6,7	3,64	52	Ц	m	Ъ,	0,41	0,65	2,I <u>+</u>	0,44
	/3/	1940 - 1940 1940 - 1940 1940 - 1940	1				Å.	5								av de
	I AD.	in t					्र २			~		13 13 1	av _s el		_	
	CTDC CTDC		139(ł	I59(I870	Î	1	2160	2340	1		2050		I,
	97 S							i a it a			,	2 1) 		_	_	
(кэв)	981	H	21 T	Ŧ	Ŧ	Ŧ	Ŧ	Ħ	Ŧ	2H	Ŧ	24	175 H	21	24	ι <u></u> γ
E,	Наши Дани	I355	I404	I422	I584	1704	I68 I	1935	2123	2173	2352	2547	2583	2745	2786	3266
	R	1.176			1				, e às	1. P. ⁶¹			i de la com			
	^{(B-} /3/	1 (1994) 1 - 2 - 2 - 2 1 - 2 - 2 - 2 1			-					100 ¹⁰¹ 						
e (%)	стров- /3/ ща и др/3/	I3		1	1	ı	8			mao.		•081	•	•	- - >	•
NOTHLIE (%)	Достров- /3/ ский и др./3/		1	1	1	I	8	1		слаб.		Czigo•		•	- 2	•
абсолютные (%)	не Достров- /3/ ский и др. 3/		88	++	1	1	43 8	-	1	64 слаб.	46	64 J cuao.	8	51 .	68 J ~ 1	•
J _Y абсолютные (%)	Наши Достров- /3/ данние ский и др./3/	22,I5	-	- +44	0,86	1	4,43 8	0,72 -	0,58	I,64 слаб.	I,46	0,64) cueo.	0,82	0,51	I,68 ~ ¹	- 11,11
сит. Ј _У абсолютные (%)	и Наши Достров-/3/ ю данные ский и др/3/	22,I5 I3	68 °0	5 I,44 -	9 0,86 -	1	4,43 8	,25 0,72 -	6 0 , 58	5 I,64 слаб.	4 I,46	I 0,64 5 CIED.	7 0,82 -	3 0,5I	I I,68 ⁷ ¹	- 11,1
относит. Ј _у абсолютные (%)	Наши Наши Достров- /3/ анкие данние скай и др/3/	I00 22,I5 I I3	4 <u>+</u> 2 0.89 -	5±I,5 I,44 -	- 0,86 -		0±6 4,43 8	25±0,25 0,72 -	6 <u>+</u> I,6 0,58 -	4±I,5 I,64 cлаб.	6±2,4 I,46 }	9±1,1 0,64 0 cueo.	7±0.7 0,82 -	3±0,3 0,51 1	$6\pm 2, I = I, 68 \int \mathcal{X}^{I}$	- 11,11
J_{γ} относит. J_{γ} абсолютные (%)	3/ Наши Наши Достров- /3/ Данние Данние ский и др/3/	I00 22,15 IJ	4±2 0,89 -	6,5±I,5 I,44 -	3,9±0,9 0,86 -		20±6 4,43 8	3,25±0,25 0,72 -	2,6±1,6 0,58 -	7,4±1,5 I,64 слаб.	6,6±2,4 I,46 [2,9±1,1 0,64 / Canto.	3,7±0,7 0,82 -	2,3±0,3 0,5I \	7,6 <u>±</u> 2,1 I,68 $\int ^{\infty}$ I	- 1,11
J_{γ} относит. J_{γ} абсолютные (%)	в- /3/ Наши Наши Достров- /3/ Др. Данные данные ский и др./3/	I00 22,I5 I3	4±2 0,89 -	6,5±1,5 I,44 -	3,9±0,9 0,86 -		20±6 4,43 8	3,25±0,25 0,72 -	2,6 <u>+</u> 1,6 0,58 -	7,4±I,5 I,64 clad.	6,6 <u>+</u> 2,4 I,46	2,9±1,1 0,64 5 C180.	3,7±0,7 0,82 –	2,3±0,3 0,5I	7,6±2,1 I,68 ∫ ^{∼ 1}	- 11'1
J_{γ} относит. J_{γ} абсолютные (%)	остров- /3/ Наши Наши Достров- /3/ жй и др. данные данные ский и др/3/	3I IO0 22,I5 I3	- 4±2 0.89 -	- [6,5±I,5 I,44 -	- 3,9±0,9 0,86 -	I I 00	72 20 <u>1</u> 6 4,43 8	- 3,25 <u>+</u> 0,25 0,72 -	- 2,6 <u>+</u> 1,6 0,58 -	30) [7,4±I,5 I,64 cma6.	5,6±2,4 I,46	ou) [2,9±1,1] 0,64 [cueo.	- 3,7±0,7 0,82 -	2,3±0,3 0,51	⁻²⁰ [7,6 <u>±</u> 2,1] [1,68 ∬ ^{∼ 1}	- II'II -
(K3B) J_{γ} of HOCMT, J_{γ} abcondenthie (%)	Достров-/3/ Наши Наши Достров-/3/ ский и др. Данные данные ский и др./3/	23I I00 22,I5 I3	- 4±2 0.89 -	- 6,5±1,5 1,44 -	- 3,9±0,9 0,86 -		772 20 <u>+</u> 6 4,43 8	- 3,25±0,25 0,72 -	- 2,6 <u>1</u> ,6 0,58 -	(IO30) 7,4±1,5 I,64 clast.	(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(ULLIOU) [2,9±1,1] 0,64 [CLEO.	- 3.7±0.7 0,82 -	2,3±0,3 0,5I	$\int 1230$ [7,6±2,1] [1,68 $\int \infty$ 1	
E_{γ} (K3B) J_{γ} or HOCMT, J_{γ} afcontor Histe (%)	и Достров-/3/ Наши Наши Достров-/3/ ие ский и др. данные данные ский и др./3/	<u>+</u> I 23I I00 22,I5 I3	±I – 4±2 0,89 –	+I - 6,5±1,5 I,44 -	<u>+</u> I - 3,9±0,9 0,86 -		HI 772 20±6 4,43 8	HI - 3,25±0,25 0,72 -	±3 – 2.6±1.6 0.58 –	<u>+</u> I (I030) 7,4±I,5 I,64 слаб.	±I),	±Ι ((1120) [2,9±Ι,Ι 0,64 [5180.	'±I – 3,7±0,7 0,82 –	μΙ [] [2,3±0,3 [0,5I []	$\mu_{I} \int \frac{1230}{1000} \left[7,6\pm2,1 \right] I,68 \int ^{\infty} ^{1}$	

ав. Энергии и интенсивности гамма-лучей Y (T _X

= 5 d)

Таблица 1

Таблица 2

Энергии и интенсивности гамма-лучей

⁸⁶ Y ($T_{\dot{M}} = 2,68 \, \text{H}$)

	Патро и др.							
J _y (%)	Достровский и др./3/.			9				
	Наши данные	87	80	7 , 9				
	Патро и др. /5/	230 <u>+</u> I0	5I0±30	920 <u>+</u> 20				
Е у (кэв)	Достровский и др./3/.		503	925				
	Наши данные	232±I	503±0,5	915 <u>+</u> 1				

OTHOCHT. 14 <u>S</u> ~ \mathbf{E}_{γ} (kgb) 232±I I52±I

Энергии интенсивности гамма-лучей ^{86т} Sr / т _ ¬ ⁵ $(T_{\lambda} = 70 M)$ Š

Таблица 3

бот $^{/10,11,12/}$, соответственно, мы определили интенсивности отдельных ветвей распада 85m Sr . Из этих данных вытекает, что 85m Sr распадается в основное состояние посредством прямого перехода 239 кэв в 0,5% случаев, посредством каскада 7 и 232 кэв в 87,1% случаев и в 12,4% случаев превращается в 85 Rb путем электронного захвата со значением lgft = 4,5. Для определения значения lgft было использовано значение Q = 1025 кэв для полной энергии распада основного состояния 85 Sr $^{/13/}$.

4.1. Построение схемы. Баланс интенсивностей. Значения lg ft

Первые попытки построить схему возбужденных уровней ⁸⁵ Sr были сделаны в работах $^{/3,5/}$ на основе измерений у -спектра, β^+ -спектра, $\beta - \gamma$ и у-у совпадений. Наши данные позволили уточнить энергию некоторых возбужденных уровней и существенно дополнить схему, введя целый ряд новых уровней. Это было сделано на основе баланса энергий и интенсивностей. Предложенная нами схема возбужденных уровней ⁸⁵ Sr представлена на рис. 3.

Как видно из схемы распада⁸⁸ Y и из табл. 1 и 2, не наблюдается изомерный переход между обоими состояниями⁸⁵ Y. Спектры гамма-лучей 5-часового и 2,68-часового изомеров⁸⁵ Y разные, за исключением гамма-перехода с энергией 232 кэв, который является общим для распада обоих изомеров. Для того чтобы подвести баланс интенсивностей при распаде обоих изомеров, было необходимо установить вклад каждого из них в интенсивность этого перехода.

Вклад 2,68 - часового изомера мы получили из соотношения $\frac{I_{\gamma-162}}{I_{\gamma-282}} = 0,14$, найденного при изучении распада 70-минутного ⁸⁵ Sr и интенсивности перехода 152 кэв в спектре ⁸⁵ Y . При этом предполагалось, что 70-минутный уровень ⁸⁵ Sr при 239 кэв возникает только вследствие распада 2,68-часового ⁸⁵ Y . На самом же деле он заселяется также гамма-переходами с энергиями 1124 и 2547 кэв, возникающими при распаде 5-часового изомера ⁸⁵ Y . Однако интенсивность этих переходов в начале наших измерений была очень мала и ею можно было пренебречь.

Оставшаяся часть интенсивности перехода 232 кэв была отнесена за счёт распада 5-часового изомера ⁸⁵ Y .

Интенсивность заселения возбужденных уровней.⁸⁵ Sr при распаде 5-часового ⁸⁶ Y (в относительных единицах) была получена как разница относительных интенсивностей уходящих и приходящих гаммапереходов на те же уровни. Интенсивность β^+ -перехода в основное состояние ⁸⁵ Sr была, согласно работе ⁽³⁾, принята равной 55% от полной интенсивности распада 5-часового ⁸⁵ Y. Отношения ϵ/β^+ были оценены по теоретическим значениям для разрешенных переходов При этом для полной энергии распада 5-часового ⁸⁵ Y было принято значение 3800 кэв⁽³⁾.

Положив, что сумма интенсивностей всех β^+ -переходов и электронного захвата равна 100%, мы получили абсолютные эначения интенсивностей отдельных компонент β^+ -распада и электронного захвата и отсюда также гамма-переходов. На основе этих данных были вычислены эначения lgft, которые вместе с интенсивностями бета- и гаммапереходов приводятся в схеме распада.

Погрешность приведенных значений lg ft кроме специально отмеченных случаев составляет <u>+0</u>,1. Абсолютные интенсивности гамма-переходов приведены также в табл. 1 в четвертом и девятом столбцах.

В случае распада 2,68-часового ⁸⁵ У подсчёт баланса интенсивностей будет немного сложнее, так как распад идет через 70-минутный уровень ^{85m} Sr при энергии 239 кэв.

Обозначим символом N_{y1} ту часть распадов 2,68-часового ⁸⁵ Y, которая связана с последующим излучением гамма-квантов y₁. Тогда для гамма-переходов 503 и 915 кэв справедливо выражение (постоянный множитель, определенный геометрией детектор-источник, опущен) J_{508;915} (t)= $\lambda_1 N_{503;915} e^{-\lambda_1 t}$ и для переходов 152, 232 и 239 кэв выражение

 $J_{152;282;289} \quad (t) = \lambda_2 N_{152;232;289} \quad \frac{\lambda_1}{\lambda_2 - \lambda_1} \quad (e^{-\lambda_1 t} - e^{-\lambda_2 t}),$

где J_{γ_1} (t) - наблюдаемая относительная интенсивность соответствующего гамма-перехода в момент времени t , λ_1, λ_2 - постоянные распада ⁸⁵ Y ($T_{\frac{1}{2}}$ = 2,68 ч) и ⁸⁵ Sr ($T_{\frac{1}{2}}$ = 70 мин), соответственно.

При этом за начало отсчёта времени (t = 0) нужно положить момент химического выделения ⁸⁶ Y , т.е. момент, когда в препарате отсутствует дочерний 70-минутный Sr . Интенсивности заселения уровней 742 и 1154 кэв путем β^+ – распада и электронного захвата (в относительных единицах) будут тогда равны N ₅₀₈ и N₉₁₅, соответственно (см. рис. 3), а интенсивность заселения уровня 239 кэв будет равна разнице [N₁₅₂ + N₂₃₂ + N₂₃₉]-[N₅₀₃ + N₉₁₅].

Последующие вычисления проводятся таким же образом, как в случае 5-часового ⁸⁵ Y. При этом для полной энергии распада 2,68-часо-⁸⁵ Y. принято также значение 3300 кэв /3/.

4.2. Квантовые характеристики уровней ^{8.5} Sr и У

Авторами работ ^{/3},5,11/ было показано, что уровням ⁸⁰ Sr с энергиями 0; 232 и 239 кэв соответствуют квантовые характеристики 9/2⁺; 7/2⁺ и 1/2⁻.

Для нечётных изотопов иттрия модель оболочек предсказывает существование двух изомерных состояний с квантовыми характеристиками $1/2^{-}(2p\ 1/2)$ и $9/2^{+}(1g\ 9/2)$. Во всех известных случаях (87,89,91 Y, см. $^{/8/}$) это правило выполняется и нет оснований ожидать, что оно нарушается в случае 85 Y. Так как больше половины распадов 5-часового изомера 85 Y ведет непосредственно в основное состояние 85 Sr ($9/2^{+}$), в то время как распад 2,68-часового изомера приводит или непосредственно, или посредством гамма-переходов с энергиями 503 и 915 кэв к образованию уровня при 239 ($1/2^{-}$), то 5-часовому изомеру следует приписать квантовые характеристики I $\pi = 9/2^{+}$, а 2,68 – часовому изомеру I $\pi = 1/2^{-}$. В согласии с этим находятся и полученные нами значения lg ft

Более сложным является вопрос, какое из этих двух состояний является основным и какое изомерным. По модели оболочек основным должно быть состояние 2p 1/2, как это наблюдается у остальных нечётных изотопов Y ^{/8/}. Однако уже тот факт, что не удалось обнаружить изомерного перехода между обоими состояниями, указывает, что энергетический интервал между ними не должен быть большим.

На основе измерений граничных энергий β^+ -спектров изомеров ⁸⁵ Y авторы работы ^{/3/} заключили, что состояние р 1/2 (T = 2,68 часа) расположено на (40<u>+</u>30) кэв выше, чем состояние g 9/2 (T = 5 час). Однако из-за слишком большой погрешности трудно считать доказанным, что основное нижнее состояние ⁸⁵ Y типа g 9/2, а не р 1/2. Более разумно думать, что проблема эта пока открыта.

Уровень ^{8 5} Sr с энергией 742 кэв возбуждается при распаде 2,68-часового изомера ⁸⁵ Y (1/2⁻) и разряжается посредством гаммаперехода 503 кэв, ведущего на уровень 1/2⁻ (239 кэв). Определив мультипольность перехода 503 кэв как М1 или Е2, авторы рабо-73/ сделали вывод, что квантовые характеристики уровня при 742кэв должны быть или 1/2⁻, или 3/2⁻. В согласии с этим находится и наше значение l_{g} ft = 5,3 для β^+ -распада на этот уровень. Однако, как будет показано ниже, следует предпочесть значение 3/2⁻.

Следующий уровень, возбуждаемый при распаде 2,68-часового ⁸⁵ Y (1/2⁻), находится при энергии 1154 кэв. Он разряжается посредством гамма-перехода с энергией 915 кэв, ведущего также на уровень 239 кэв (1/2⁻). Значение lg ft = 6,0 соответствует в этой области скорее разрешенному бета-переходу. Поэтому можно предложить для этого уровня I^π = (3/2, 1/2⁻). Значение 3/2⁻, по-видимому, более предпочтительно (см. ниже).

Остальные уровни возбуждаются при распаде 5-часового изомера. Рассчитанная интенсивность бета-переходов, заселяющих уровни 768, 1364 и 1797 кэв, меньше суммарной погрешности в определении интенсивностей приходящих и уходящих гамма-переходов. Поэтому возможно, что эти уровни заселяются только гамма-переходами.

Если связывать слабое заселение (или его отсутствие) этих уровней при β -распаде обоих состояний. ⁸⁵ У р 1/2 и g 9/2 с действием правил отбора для переходов по спину и чётности, то указанные уровни должны иметь спины и чётности I^{π} = 5/2⁺; 5/2⁻; 3/2⁺.

Поскольку уровень 768 кэв разряжается γ , -переходами на уровни 7/2⁺ и 9/2⁺, но нет γ -перехода на уровень 1/2⁻, кажется наиболее вероятным, что он имеет спин и чётность I^π = 5/2⁺.

Уровень 1364 кэв разряжается гамма-переходами на состояния с $I^{\pi} = 1/2^{-}$ и 7/2⁺, но не 9/2⁺. Поэтому для его спина и чётности можно предпрчесть значения $I^{\pi} = 5/2^{-}$ или 3/2⁺.

Все остальные значения lg ft соответствуют разрешенным переходам, так что спины и чётности уровней при 1935; 2123; 2173; 2584; 2745; 2786 и 3266 кэв должны быть 7/2⁺, 9/2⁺ или 11/2⁺. Существование гамма-переходов, ведуших из уровней 2123 и 2173 кэв на уровень типа 5/2⁺ (768 кэв) и из уровней 2584 и 2786 кэв на уровень типа 5/2⁻ (1364 кэв), позволяет предположительно исключить для этих уровней характеристики I^{π} = 11/2⁺.

4.3. О структуре возбужденных уровней ⁸⁵₃₈ Sr₄₇

В ядре $\frac{80}{38}$ Sr₄₇ протоны полностью заполняют подоболочку (2p 3/2; 1f 5/2), а нейтроны заполняют все состояния вплоть до 2p 1/2 и 7 последних нейтронов находятся в состоянии 1g 9/2, где они образуют трехчастичную (или точнее трехдырочную) конфигурацию (g 9/2)⁻³. Конфигурационное взаимодействие этих трех дырок приводит к образованию ряда возбужденных уровней. Рассчёты таких уровней приводились в работе Тальми и Унна^{/14/} с использованием методики эффективного взаимодействия, причем необходимые параметры брались из экспериментально установленной схемы уровней⁹⁰ Zr и некоторых соседних ядер. Были использованы данные работы^{/11/} по энергетическому расстоянию уровней 9/2⁺ и 7/2⁺ (225 кэв) и 9/2⁺ и 1/2⁻ (233 кэв). Таким образом, Талми и Унна получили следующие трехчастичные уровни, основанные на конфигурации (g 9/2)⁻³: 9/2⁺ (основное состояние); 7/2⁺ (225 кэв - взято из эксперимента); 5/2⁺ (970 кэв); 13/2⁺(1180 кэв);

 $(7/2, 9/2, 11/2)^{\dagger}$ 3,266

3 (7/2,9/2) 2,786 (7/2, 9/2, 11/2)+ 2,745 21/2+ 2,57 (9/2,7/2)+ 2,584 15/2 $(7/2, 9/2)^{\dagger}$ 2,19 2,173 2.15 17/2 2,123 (7/2, 9/2)P1/2 9 9/21 9/2 1,98 2 1,935 (7/2, 9/2, 11/2)+ $(5/2^{+})$ 1,797 1.66 8 9/2 V=3 9/2" (AEM) 3 3/2+ 1,43 $(5/2, 3/2^+)$ 1,364 11/2 1,28 13/2-) 1,154 13/2 1.18 5/2* 0,87 1 (5/2+) *a, 768* 0,742 3/2-1/2 0,239 7/2* (0,225)* 0,232 7/2 * 0,00 9 3/2 V=1 9/2* 9/2* 0, à0 Π эксперимент Талми-цнна 8.5 Sr .

Рис. 4. Сравнение трехчастичных уравнений типа (g_{9/2}) в ^{••} Sr, рассчитанных Талми и Унной/14/, с нашими экспериментальными данными. Энергия уровня 0,225 Мэв взята из работы/11/. $11/2^+$ (1.280 кэв); $3/2^+$ (1.430 кэв); $9/2^+$ (1.660 кэв, $\nu = 3$) и другие с более высокими значениями спина (рис. 4). Сопоставляя эти данные с нашими результатами, мы можем отнести к трехчастичным конфигурационным состояниям (помимо основного состояния и уровня $7/2^+$ (232 кэв)) также и уровни $5/2^+$ (768 кэв) и $3/2^+$ (1364 кэв). Энергия этих уровней отличается от расчётной на 200 и 70 кэв, соответственно. Уровень $13/2^+$ при распаде ⁸⁰ Y непосредственно возбуждаться не может. Уровень $11/2^+$ может возбуждаться, но в указанной энергетической области он нами не наблюдается, так же как и уровень $9/2^+$ ($\nu = 3$). Если допустить возможность значительной погрешности в расчётах энергий этих двух, то нельзя исключить, что они находятся среди более высоких уровней, приведенных в нашей схеме.

Обращая внимание на то, что β -переход типа р (g9/2) \rightarrow n (g9/2) (j = l + 1/2, $\rightarrow l = + 1/2$), соответствующий состояниям (g9/2)³, имеет так же как во многих соседних ядрах повышенное значение lg ft, уровень 1935 ков (c lg ft = 6,5) может оказаться одним из ожидаемых членов (g9/2)³.

В ядрах с N = 41-47 часто наблюдаются низкие аномальные уровни с $I^{\pi} = 5/2^{+}/15/$.

В $_{34}^{70}$ Se₄₁ такой уровень опускается даже ниже уровня g 9/2 и оказывается основным состоянием ядра. Такие уровни описываются в рамках модели Икегами-Сано^{/15/} как весьма сложные состояния, возникающие в результате взаимодействия квазичастиц с квадрупольными фононами. Не исключена возможность, что уровень 768 кэв (5/2⁺) (и также уровень 232 кэв 7/2⁺) именно такого типа.

Уровень 1/2⁻ (239 кэв) можно характеризовать в согласии с оболочечной моделью как одночастичный, определенный нейтронной дыркой в состоянии 2 p 1/2. Модель оболочек предсказывает для ⁸⁵ Sr

существование еще двух одночастичных уровней с квантовыми характеристиками $3/2^{-}$ и $5/2^{-}$, определенных нейтронной дыркой, находящейся в состоянии 2p 3/2 и 1f 5/2, соответственно. Уровень $3/2^{-}$ должен хорошо возбуждаться путем бета-распада 2,68-часового⁸⁵ Y (1/2⁻). Можно ожидать, что эначение lg ft этого бета-перехода будет по крайней мере на единицу меньше, чем для перехода $1/2^{-} \rightarrow 1/2^{-}$ на уровень 239 кэв, как это имеет место и во всех известных аналогичных случаях (напр. ⁸⁷ Y ^{/16/}, ⁸⁹m Zr ^{/8/}). Этим требованиям соответствует уровень 742 кэв. Возможное значение I^π = 1/2⁻, приведенное для него в работе ^{/3/}, следует поэтому исключить.

В качестве следующего одночастичного уровня типа $5/2^{-1}$ можно принять уровень при 1364 кэв, т.к. экспериментальные данные допускают для его спина и чётности значение $5/2^{-1}$ или $3/2^{+}$. Следует, однако, отметить, что другое возможное значение $1^{\pi} = 3/2^{+}$ можно также удовлетворительно интерпретировать (см. выше).

Уровень при 1154 кэв ($I^{\pi} = 3/2^{-}$ или $1/2^{-}$ по экспериментальным данным) можно интерпретировать как состояние с нейтронной конфигурацией $(2p3/2^{-1}2p1/2^{-2}lg9/2^{10})$ и, следовательно, с $I^{\pi} = 3/2^{-}$. В пользу такой интерпретации имеется косвенный аргумент. Уровень этого типа не может существовать у соседнего нечётного изотопа стронимя ⁸⁷ Sr , так как здесь 49 нейтронов и, следовательно, до полного заполнения оболочки не хватает лишь одного нейтрона. Действительно, при распаде ⁸⁷ Y (1/2⁻) возбуждаются только два уровня в ⁸⁷ Sr – однодырочные нейтронные уровни типа $1/2^{-}(2p3/2^{-4}2p1/2^{-1}1g9/2^{10})_n$ при 388 кэв и $3/2^{-}(2p3/2^{-1}2p1/2^{-1}1g9/2^{10})_n$ при 872 кэв, аналогичные уровням при 239 и 742 кэв в ⁸⁵ Sr - ⁸⁶.

Уровни при 1154 и 1364 кэв можно интерпретировать также на основе модели возбужденного остова Де Шалита $^{17/}$ как результат взаимодействия дырки в состоянии 2p 1/2 с возбужденным остовом 2^+ (ядром ⁸⁶ Sr , находящимся в состоянии с $1^{\pi} = 2^+$). Вследствие этого взаимодействия в ⁸⁵ Sr должен появиться дублет возбужденных уровней с квантовыми характеристиками $3/2^-$ и $5/2^-$. Предсказанный центр тяжести этого дублета должен находиться на высоте первого возбужденного уровня типа 2^+ в ⁸⁶ Sr , увеличенной на энергию уровня $1/2^$ в ⁸⁵ Sr т.е. на высоте 1076 кэв+239 кэв = 1315 кэв. На самом деле центр тяжести дублета $3/2^-$ и $5/2^-$ в ⁸⁵ Sr находится на высоте 1280 кэв, что находится в хорошем согласии с предсказанием модели Де Шалита.

Придем к рассмотрению структуры более высоких состояний.

В ряде работ $^{/18,19/}$ отмечалось, что компоненты $\beta^+ - \epsilon^-$ -спектра, характеризующиеся самыми низкими значениями lg ft (в частности lg ft $\leq 5,5$), чаще всего связывают уровни-члены спин-орбитального дублета с $j_1 = l \pm 1/2$ и $j_2 = l \mp 1/2$. При $\beta^+ - \epsilon^-$ распаде $^{85}_{39}Y_{46}$ ($T_{12}^{\prime} = 5$ ч; $I^{\pi} = 9/2^+$ (g 9/2)) наименьшие значения lgft $\approx 5-5,5$ относятся к переходам на уровни $^{85}_{38}$ Sr₄₇ 2123; 2173; 2584; 2745 и 3266 кэв с $I^{\pi} = 7/2^+$, $9/2^+$, $11/2^+$. Эти β -переходы могут связывать уровни

Следовательно, указанные 5 уровней (возможно, и уровень 2786 кэв) скорее всего являются трехчастичными уровнями-членами мультиплета конфигурации $p(p3/2)^{-1}n(p1/2)^{-1}p(g9/2)^{-1}$, состоящего из 8 - уровней с $I^{\pi} = 5/2^{+}; 7/2^{+}; 7/2^{+}; 9/2^{+}; 9/2^{+}; 11/2^{+}; 11/2^{+}; 13/2^{+}.$

В свете этих взглядов особый интерес представляет у -переход 567 кэв, т.к. он связывает уровни 2745 и 2173 кэв - члены этого мультиплета. Как и следовало ожидать, он гораздо интенсивнее у -перехода на основное состояние с I_γ = 2745 кэв

 $\left(\frac{B(M1)_{567}}{B(M1)_{2745}} \approx 8 \cdot 10^2 ; \frac{B(E2)_{567}}{B(E2)_{2745}} \approx 2 \cdot 10^4 \right).$

В заключение авторы благодарят К.Я. Громова и Ж.Т. Желева за постоянную поддержку и интерес к работе и В.Н. Покровского за ценные замечания.

Литература

- 1. A,A. Caretto, E.O. Wiig. J. Amer. Chem.Soc., <u>74</u>, 5235 (1952). 2. D.J. Horen, W.H. Kelly. Bull.Am.Phys.Soc., 7, 341 (1962).
- 3. I. Dostrovsky, S. Katcoff, R.W. Stoenner. Phys.Rev., 132,2600(1963)
- 4. W.J. Nieckarz, A.A. Caretto. J. Inorg. Nucl. Chem., 27, 919 (1964).
- 5. A.P. Patro, B. Basu. Nucl. Phys., 37, 272 (1962).
- 6. Р. Арльт, Н.Г. Зайцева, Б. Крацик, М.Г. Лощилов, Г. Музиоль, Чан Тхань Минь. Препринт ОИЯИ Р6-4239, Дубна, 1968. Изв. АН СССР (сер. физ.) 33, 1594 (1969).
 - 7. Н.Г. Зайцева, Б. Крацик, М.Г. Лощилов, Г. Музиоль, Чан Тхань Минь, Х. Штрусный. Препринт ОИЯИ Р6-4240, Дубна, 1969. Изв. АН СССР (сер. физ.) 33. 1283 (1969).
 - 8. C.M. Lederer, J.M. Hollander, I. Perlman: Table of Isotopes. John Wiley & Sons, New-York-London-Sydney, 1968.
 - 9. К.Я. Громов, А.С. Данагулян, А.Т. Стригачев, Чжоу Мо-лун, Препринт ОИЯИ Р-1510, Дубна, 1963.

- 10.I. Bergstrom. Arkiv for Fysik, 5, 191 (1952).
- 11. A.W. Sunyar, J.M. Mihelich, G. Scharff-Goldhaber, M. Goldhaber, N.S. Wall, M. Deutsch. Phys.Rev., 86, 1023 (1952).
- Л.А. Слив, И.М. Банд. Таблицы коэффициентов внутренней конверсии,
 ч. 1, К-оболочка. Изд. АН СССР, М-Л (1958).
- 13. M. McDonnel, M.K. Ramaswamy. Bull, Am. Phys. Soc., 13,1450(1968).
- 14. I. Talmi, I. Unna. Nucl. Phys., 19, 225 (1960).
- 15. U. Ikegami, M. Sano. Phys.Lett., <u>21</u>, 323 (1966).
- 16, Н.Г. Зайцева, Б. Крацик, М.Г. Лощилов, Г. Музиоль, Чан Тхань Минь. Программа и тезисы докладов 19-го совещания по ядерной спектроскопии и структуре атомного ядра, Ереван, 1969 г. стр. 56.
- 17. A. de Shalit, Phys.Rev., 122, 1530 (1961).
- 18. К. Александер. Препринт ОИЯИ Р6-3785 (1968).
- 19. Л.К. Пекер. Материалы 4-й школы физики ФТИ Ленинград (1969).

Рукопись поступила в издательский отдел 8 мая 1970 года.