<u>C341,26</u> 7+6=51 18/7-70 СООБШЕНИЯ объединенного ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 5014 6

Ж.Т. Желев, Н.Г. Зайцева, С.С. Сабиров, М. Еникова, У.К. Назаров, В.И. Кузин, Ю.В. Норсеев

УРОВНИ ¹²³те Возбуждаемые при распаде ¹²³ј

1970

LEPHDUX

PHOPTOBL

6 - 5014

-

Ж.Т. Желев, Н.Г. Зайцева, С.С. Сабиров,
 М. Еникова, У.К. Назаров, В.И. Кузин,
 Ю.В. Норсеев

27

্ৰ

1 NE E 8

УРОВНИ ¹²³те, возбуждаемые при распаде ¹²³ ј

Уровни ¹²³ Те, возникающие при распаде ¹²³ J, были изучены в работах /1-3/. Авторы этих работ исследовали спектр гамма-лучей и измеряли гамма-гамма-совпадения. Применяемые источники содержали и другие изотопы йода (¹²⁴ J), что помешало обнаружению слабых гамма-переходов. Кроме того, почти не были изучены спектры электронов внутренней конверсии.

Целью нашей работы является детальное изучение спектров гаммалучей, гамма-гамма-совпадений при помощи Ge(Li) -детекторов и исследование спектров конверсионных электронов распада ¹²³J.

Полученные нами предварительные резу́льтаты о гамма-лучах ¹²³ J были приведены в сообщениях ^{/4,5/}.

Приборы и методика

Спектры электронов внутренней конверсии изучались при помощи магнитного бета-спектрометра с двойной двукратной фокусировкой на угол $\pi\sqrt{2}$ (R = 0,20%, Ω = 0,15%). Исследование спектра гамма-лучей ¹²³ J было проведено с помощью полупроводникового гамма-спектрометра. В работе были использованы Ge(Li) -детекторы коаксиального типа с чувствительными объемами 10; 30 см³ и разрешением ≈4,5 кэв на линии 1332 кэв ⁶⁰ Со.

В качестве источника для изучения спектра конверсионных электронов служила фракция йода, которая была выделена из мишени металлического лантана (или церия), облученного протонами с энергией 660 Мэв на синхроциклотроне ОИЯИ. Методика выделения высокоактивного препарата йода описана в работе ^{/6/}. Источники для бета-спектрометра изготавливались выпариванием активного раствора фракции йода на сереб-

ряную фольгу сразу после выделения, а измерения производились спустя 8-10 часов.

Препарат для исследования гамма-спектра приготовлялся следуюшим образом. После облучения в течение 2-3 часов металлическая цериевая мишень растворялась в азотной кислоте, а изотопы ксенона уносились током гелия и собирались на активированном угле, охлаждаемом жидким азотом. Далее ловушки с активированным углем присоединялись к вакуумной установке (10⁻⁵ мм рт.ст.), и проводилась очистка ксенона от паров воды, кислоты и посторонних газов. После очистки ксенон запаивали в ампулу, и в течение 10-15 часов производилось накопление йода. Затем ампулу разбивали и нераспавшийся ксенон откачивали, а изотопы йода оставались прочно адсорбированными на стенках ампулы. Со стенок ампул йод смывали 6 M NaOH . В выделенной фракции йода ¹²⁵J (60 дней), ¹²⁸J (13,3 часа), содержались следующие изотопы: полностью отсутствовал, так как ¹²⁴ Хе - ста-¹²² J (3,5 мин.), а бильный. Методика выделения йода из ксенона описана в работах /7,8/. Поскольку ¹²² J распадается очень быстро, то наблюдаемый гамма-спектр ¹²³ Í . В нем присутствовала тольпринадлежал практически изотопу ¹²⁵ I с энергией 35 кэв. ко еще одна гамма-линия

Полученный спектр гамма-лучей показан на рис. 1. Сравнение наших результатов с данными /1+3/, приведенными в табл. 1, показывает, что интенсивности гамма-лучей, определенные нами, хорошо совпадают с данными Серголя /2/ и на 20-30% отличаются от данных Рагаини /3/. Наряду с гамма-переходами, которые наблюдались авторами работ /1-3/, нами были обнаружены 6 новых малоинтенсивных гамма-переходов: 331, 456, 597, 697, 895 и 913 кэв.

При исследовании гамма-спектра мы не наблюдали гамма-пика с энергией 511 кэв. Возможно, что I_{у511} < 0,5%. Малоинтенсивный переход 574 кэв, обнаруженный авторами работы ^{/2/}, возможно, накладывается в нашем спектре на гамма-линию 573 кэв ¹²¹ Те, который присутствовал как дочерний продукт от распада ¹²¹ J, и поэтому мы не смогли более точно определить его интенсивность. Значение энергии этого перехода, по нашим данным, составляет 571 кэв.

Гамма-гамма-совпадения. Измерения проводились при помощи двумерного анализатора гамма-гамма-совпадений с полупроводниковы-4 ми детекторами на базе ЭВМ "Минск-2" ^{/9/}. Полученные результаты подтвердили схему уровней ¹²³ Те, предложенную в предыдущих работах ^{/2,3/} (рис. 2).

Спектр конверсионных электронов распада ¹⁴³ J исследовался на бесфоновом бета-спектрометре. Полученные нами сведения о спектре конверсионных электронов ¹²³ J приведены в табл. 1,2. Данные об интенсивностях конверсионных электронов и γ -лучей (табл. 1) использованы для определения коэффициентов конверсии ($a_{\rm K}$ _{ЭКСП.}) ряда γ переходов. При этом нормировка интенсивностей конверсионных электронов и γ -лучей осуществлена по теоретическим значениям $a_{\rm K}$ ^{теор.} /10/ перехода 159 кэв М1 /2,3/ и 529 кэв (Е2). Сравнением теоретических значений коэффициентов внутренней конверсии с экспериментальными были определены, мультипольности некоторых переходов (табл.2).

Схема уровней ¹²³ Те

Схема возбужденных состояний ¹²³ Те, возникающих при распаде ¹²³ J, предложена в работах /1-3/, где квантовые характеристики уровней экспериментально не определялись, а приводились их предположитель ные эначения. Определенные нами мультипольности некоторых переходов позволили уточнить характеристики уровней ¹²³ Те. Схема распада ¹²³ J \rightarrow ¹²³ Те приведена на рис. 2.

Четно-нечетное ядро ¹²³ Те является по своей природе сферическим, и его характеристики предсказываются по схеме оболочечной модели ядра, согласно которой нечетный 71-й нейтрон может находиться в состоянии s¹/₂ . Предсказание модели оболочек подтверждается опытными данными. В работах /11-13/ был измерен спин основного состояния ¹²³ Те , который оказался равным 1/2.

Спин ядра ¹²⁸J также предсказывается по схеме Майер /14/, согласно которой нечетный протон может находиться в состоянии d_{к/2}.

В работах /15-16/ был определен спин основного состояния ¹²³ J→I=5/2. Используя величину энергии распада ¹²³ J→ ¹²³ Te , Q = 1275 кэв, рассчитанную в работе /17/, и определенную нами заселенность уровней, мы определили значения lg ft для уровней ¹²³ Te.

Бета-распад 123 J $\rightarrow {}^{123}$ Te характерен тем, что основная его доля (98,3%) заселяет уровень с энергией 159 кэв. Его характеристики 3/2+ известны из предыдущих работ, а lgft = 5,2±0,2. Малая величина эначения lgft подтверждает ранее определенную положительную четность основного состояния 123 J $\rightarrow 5/2^+$.

Уровень 248 кэв является изомерным /18/ (Т½ =104дня; I[#] = 11/2⁻).

Бета-распад с основного состояния ³ J на этот уровень маловероятен, и мы не наблюдали соответствующих переходов на уровни 0 и 159 кэв (1_y < 0,01%).

Уровень 440 кэв. На основании определенных нами мультипольностей переходов 440 кэв (E2+M1) и 281,5 кэв (E0+E2+M1) можно приписать уровню 440 кэв квантовые характеристики 3/2⁺ или 1/2⁺, поскольку бета-переход 5/2⁺ \rightarrow 1/2⁺ со значением lg ft = 10+11 относится ко второму порядку запрещения, характеристика 1/2⁺ исключается.

Уровень 505 кэв разряжается двумя переходами 346 и 505 кэв с мультипольностями M1+E2 и E2 соответственно. Это позволяет определить однозначно спин и четность уровня 505 кэв как 5/2⁺.

Относительно интенсивно заселенный уровень 688 кэв с lg ft=6,7 может иметь квантовые характеристики 5/2⁺ или 3/2⁺, как это следует из мультипольности типа E2 переходов 529 и 688 кэв.

Уровень 697 кэв. Более однозначные результаты мы получили об уровне 697 кэв. В ранее предложенной схеме этому уровню приписали характеристики $5/2^+$ или $7/2^+$. Определенная нами мультипольность перехода 538 кэв (E2+M1), который разряжает состояние 697 кэв на состояние 159 кэв с характеристиками $3/2^+$, подтверждает эти предположения. Тот факт, что мы наблюдаем с этого уровня переход с энергией 697 кэв на основное состояние ¹²⁸ Te (1/2⁺), исключает характеристику $7/2^+$.

Уровень 895 кэв разряжается тремя гамма-переходами: на основное 1/2⁺ (0 кэв), 3/2⁺ (159 кэв) и 3/2⁺ (440 кэв) состояния.

Авторы работ /2,3/ предлагают для него характеристики 5/2⁺ или 7/2⁺. Мультипольность перехода 736 кэв, по-видимому, есть (M1+E2). Если рассмотрим теоретическое отношение приведенных вероятностей B(E2)_{у 736} и B(M3)_{у 895} при предполагаемой характеристике 7/2⁺ для состояния 895 кэв, получим:

$$\left|\frac{B(E2)_{\gamma 736}}{B(M3)_{\gamma 895}}\right| = \frac{1.6 \cdot 10^8 A^{4/3} E_{\gamma}^5}{1.8 \cdot 10^2 A^{4/8} E_{\gamma}^7} = 4.2 \cdot 10^5.$$
(1)

Соответствующее соотношение при предполагаемой характеристике 5/2⁺ будет иметь вид:

$$\left|\frac{B(M1)_{\gamma 736}}{B(E2)_{\gamma 895}}\right| = \frac{2.8 \cdot 10^{13} E_{\gamma}^{3}}{1.6 \cdot 10^{2} A^{4/3} E_{\gamma}^{5}} = 200.$$
(2)

Так как экспериментальное соотношение $\frac{I_{\gamma 736}}{I_{\gamma 895}} = 15 \pm 5$, т.е. ближе к предположению (2), мы принимаем характеристику 5/2⁺ для уровня 895 кэв.

Наряду с рассмотренными уровнями в схеме распада ¹²³ J существует еще уровень с энергией 784 кэв и характеристиками 5/2⁺ и 3/2⁺. Наши экспериментальные данные подтверждают его существование, но не позволяют более однозначно определить его характеристики.

В схеме уровней ¹²³Те не размешены переходы с энергиями 331, 571, 597, 913 кэв, суммарная интенсивность которых составляет меньше 0.2% на распад.

Литература

- 1. R. Gupta. Nucl. Phys., 14, 606 (1960).
- 2.H. Sergolle, G. Abbony, J. Bouloumie, J. Lagrange, L. Marcus and Pantrat. Journal de Phys., <u>28</u>, 383 (1967).
- 3. R. Ragaini, W.Walters, G. Gordowand Boedecker. Nucl. Phys., <u>A115</u>, 611 (1968).
- 4. Ж.Т. Желев, Н.Г. Зайцева, В.Г. Калинников, В.И. Кузин, Ю.В. Норсеев, С.С. Сабиров, В.И. Фоминых. Тезисы докладов на XI -ом рабочем совещании по ядерной спектроскопии и теории атомного ядра, 1-5 июля, Дубна, 1969 (стр. 44).

- 5. Ж.Т. Желев, Н.Г. Зайцева, В.Г. Калинников, В.И. Кузин, С.С. Сабиров, У.К. Назаров, Ю.В. Норсеев, В.И. Фоминых. Тезисы докладов на XX -ом ежегодном совешании по ядерной спектроскопии и структуре атомного ядра. Ленинград, 1970 (стр. 73).
- Н.Г. Зайцева, Ким Хон Сил, В.А. Халкин. Радиохимия, <u>8</u>, 5, 576 (1966).
 В.И. Кузин, В.Д. Нефедов, Ю.В. Норсеев, М.А. Торопова, В.А. Халкин, П. Гроз. Препринт ОИЯИ, 6-4157, Дубна, 1968.
- 8. В.Д. Нефедов, М.А. Торопова, В.А. Халкин, Ю.В. Норсеев, В.И. Кузин. Препринт ОИЯИ, 6-4440, Дубна, 1969.
- В.С. Александров, Ф. Дуда, О.И. Елизаров, Г.П. Жуков, Г.И. Забиякин, З. Зайдлер, И. Звольски, Е.Т. Кондрат, З.В. Лысенко, В.И. Приходько, В.Г. Тишин, В.И. Фоминых, М.И. Фоминых, В.М. Цупко- Ситников. Препринт ОИЯИ, 13-4273, Дубна, 1969.
- 10. Гамма-лучи. Под ред. Л.А. Слива. Изд. АН СССР, 1961.
- 11. J. Mack. Revs. Mod. Phys., 22, 64 (1950).
- 12. J. Ross, K. Murakawa . Phys. Rev., 83, 229 (1951).
- 13. M. Kalkstein. NSA, 9, No 2413 (1955).
- 14. М. Гепперт-Майер, И.Г. Иенсен. Элементарная теория ядерных оболочек. ИЛ, Москва, 1958.
- 15. E. Lipworth, H. Garvin. Bull.Am.Phys.Soc., 2, 316 (1957).
- 16. H.L. Garvin, T.M. Green, E. Lipworth. Phys.Rev., <u>111</u>, 534 (1958).
- 17. N. Zeldes, A. Grill, A. Simievic, Mat.Fys.Skr.Dan.Vid.Selsk., <u>3</u>, No. 5 (1967).
- N. Goldberg, S.Frankel. Phys.Rev., <u>93</u>, 1425 (1954); <u>100</u>, 1350 (1955).

Рукопись поступила в издательский отдел 25 марта 1970 года.

1

Данные о гамма-лучах и К -конверсионных электронах, возникающих при распаде

Р Гупта	/1/	Cepro	ць/2/	Роган	HR/3/	Hai	и данны	e
Er[Kab]	I ₍	E, (kəb)	I,	Erlkabj	<u>lr</u>	Ep[k3B]	<u> </u>	In
I59 .	100	15 9	100	159 , 1	100	15 9	100	100
-		183	0,026	183,7	0,03	182 , 5	0,02	-
-		193	0,023	192,7	0,03	192,5	0,02	•
· _		248	0,070	248,3	0,08	248	0,04	· •• :
275	0,14	282	0,053	281,0	0,08	281,5	0,04	0,027
320	0,12	-	-		+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	-	•	•
-	-	•		en e	-	33 I	. 0,008	
340	0,16	346	0,087	346,6	0,12	346	0,070	0,012
380	0,07	÷ 1	-	-	-	-	4	-
435	0,44	440	0,255	440,4	0,31	440	0,230	0,018
. .	-		•	sin the second sec	•• •	456	0,003	
500	0,28	505	0,193	505,6	0,31	505	0,2	0,006
530	2,0	529	0,789	529,0	0,31	529	0,78	0,029
•	-	538	0,195	538,0	0,32	538	0,2	0,008
•	-	574	0,007	• •	-	571	0,08	-
-	•				-	597	0,002	-
-		624	0,044	624,9	0,08	625	0,05	-
690	0,08	688	0,017	687,7	0,03	688	0,03	0,0004
					• · · · ·	697	0,002	-
-		736*	0.029	736.I	0,04	736	0,03	0,0017
,		784	0,039	784,4	0,05	784	0,03	0,00046
-		- - -	-			895	0,002	. . .
-	-		•	-		913	0.002	• • •

Интенсивность у-переходов определена с точностью 10-35%. Точность определения энергии у -переходов составляет 0,1%.

Ц.		đ	Імффеоу	INCHTN KOHBC	pcww. x I0 ³			TMI MYABTR-
ESEV	٦	Ιk. 10°	du arcii.	EI.	E2	IN.	M2	ПОЛЬНОСТИ
H	2	3	4	5	9	7	8	6
159	TOOD	TEROOD	T60	45	360	T60	00II	MI UDRHATO
281,5	1,0,4,0	44,248,0	110 <u>+</u> 22	2	0,04	35,0	160 , 0	E0+E2+MI
346	0,7±0,15	I8,6±4,0	26±7,₀0	5,66	20,0	20,2	8	MI+E2
044	2,3±0,3	28,5±3,I	I2 , 3 <u>4</u> 2,0	3 , I	0,11	П,3	38	E2+MI
505	2,0±0,2	I0, 1±2,0	5,05±1,0	2,3	6,9	7,8	8	С Ц Ц
529	7,8±0,6	46,7±5,0	9 ° 0∓0 ° 9	2,05	6,0	0.47	22,5	E2 принято
538	2,010,2	I2,5±2,0	6,25±0,8	1 ,9 7	5,8	6,9	21 , 5	E2+MI
688	0,340,I	0,65±0,2	2,1±0,7	1, 15	3,0	3,8	Ħ	, (E2)
736	0,3±0,I	2,0±0,4	6,0±2,0	1 ° 0	2,6	3,35	σ	(MI+E2)
784	0,3 <u>4</u> 0,I	0,74±0,2	2,4±0,4	0,87	2,92	2,9	7,6	MI+E2

Таблица 2

11 -

РИС.2. СХЕМА УРОВНЕЙ 123 Te.

Рис.2. Схема уровней ¹²³ Те.