

8.0 . . .

6-4721

И.Адам, П.Галан, К.Я.Громов, Ж.Т.Желев, В.В.Кузнецов, М.Я.Кузнецова, Н.А.Лебедев, О.Б.Нильсен, Т.Пазманова, Я.Урбанец, М.Фингер

ИССЛЕДОВАНИЕ ИЗЛУЧЕНИЯ 152 ТЬ

1969

E Xrends

И.Адам, П.Галан, К.Я.Громов, Ж.Т.Желев, В.В.Кузнецов, М.Я.Кузнецова, Н.А.Лебедев, О.Б.Нильсен, Т.Пазманова, Я.Урбанец, М.Фингер

ИССЛЕДОВАНИЕ ИЗЛУЧЕНИЯ ¹⁵² ТЬ

Направлено в "Известия АН СССР"

Институт им. Нильса Бора, Копенгаген.

6-4721

Спектр низколежащих коллективных возбужденных состояний в сферических чётно-чётных ядрах согласно простой модели квадрупольных колебаний состоит из вырожденных мультиплетов^{/1/}. По расположению первого возбужденного состояния 2⁺ (344,4 кэв) ядро ¹⁵² Gd ранее рассматривалось как сферическое ядро. Однако реальная схема возбужденных состояний ¹⁵² Gd /2-11/ существенно отличается от схемы такого модельного представления. В связи с этим изучение возбужденных состояний чётно-чётного ядра ¹⁵² Gd , находящегося в переходной области от сферических к деформированным ядрам, привлекает многих исследователей.

В последнее время появились работы $^{/4-10/}$, в которых авторы рассматривают низколежащие уровни чётно-чётных ядер переходной области, в частности ядра 152 Gd , как ротационные состояния, связанные с основным состоянием (0⁺) и бета-вибрационным состоянием с энергией 615,6 кэв (0⁺). Авторы $^{/6,7/}$ наблюдали в реакции 150 Sm(a, 2n) 152 Gd уровни 152 Gd , интерпретируемые как члены ротационной полосы основного состояния с J = 0⁺, 2⁺; 4⁺; 6⁺ и 8⁺, и уровни – члены бета-вибрационной полосы с J = 0⁺; 2⁺; 4⁺ и 6⁺. В работе $^{/6/}$ при изучении реакции 152 Gd (d, d') наблюдались также уровни с энергией 1121 кэв (3⁻), 1314 кэв (1⁻) и 1467 кэв (5⁻), принадлежащие полосе октупольного вибрационного возбуждения с K = 0.

 $B^{/2,8,10,11/}$ на основе исследования γ -лучей, конверсионных электронов, спектров позитронов и спектров е- γ -, γ - γ - μ β^+ - γ совпадений были предложены схемы распада ¹⁵² Tb \rightarrow ¹⁵² Gd.

В настоящей работе продолжено исследование излучения ¹⁵² Tb : изучались спектры *у* -лучей и конверсионных электронов в жесткой области спектра, а также в области энергий меньше 300 кэв.

Экспериментальная часть

Методы получения и приготовления радиоактивных источников тербия подробно описаны в работах^{/8,10/}. В данной работе использовались источники типа I, II, III х[/]. Гамма-спектр ¹⁵² Ть измерялся с помощью полупроводникового коаксиального Ge(Li) - детектора с чувствительным объемом ≈ 12 см³ и 4096-канального амплитудного анализатора. Спектр гамма-лучей ¹⁵² Ть в области энергий до 400 кэв измерялся с помощью плоскопараллельного Ge(Li) - детектора с размерами 0,7 см² х 0,35 см и 1024-канального амплитудного анализатора с использованием препарата III . Энергии и относительные интенсивности гамма-лучей представлены в табл. 1. Указанные в таблице ошибки определения интенсивностей гамма-лучей не включают погрешности (≈ 10%), обусловленные возможной неточностью знания зависимости эффективности регистрации гамма-лучей от энергии.

Спектр конверсионных электронов в области энергий ниже 1000 кэв изучался с помощью тороидального шестизазорного бета-спектрометра / 12, с использованием препарата III. Эти измерения позволили нам обнаружить ряд слабых по интенсивности переходов с энергиями 113,5;

х/Препарат I – тербий, выделенный из мишени тантала, облученной протонами с энергией 660 Мэв. Препарат II – тербий, выделенный как дочерний продукт из диспрозия. Препарат III – ¹⁵²Tb , полученный при разделении изотопов тербия с помощью масс-сепаратора. 115,3; 143,8; 155,1; 175,0; 180,0; 194,9; 208,8 кэв и приписать их распаду ¹⁵²Tb . Спектр конверсионных электронов в области энергий > 700 кэв исследовался на магнитном бета-спектрометре $^{/13/}$ с двукратной фокусировкой на угол $\pi\sqrt{2}$ с использованием препаратов I и II .

В работе $^{/14/}$ сообщалось о наблюдении переходов с энергиями 138,27; 148,94; 149,51; 181,71; 206,6; 209,18; 233,09 и 270,55 кэв. Переходы с энергиями 148,94; 149,51 и 181, 71 кэв авторами $^{/14/}$ отнесены к распаду 151 Tb , а переходы с энергиями 138,27 и 206,6 кэв - либо к 151 Tb , либо к 152 Tb . Нами не наблюдались конверсионные электроны, соответствующие переходам с энергиями 138,27 и 206,6 кэв, что исключает принадлежность их к распаду 152 Tb .

Конверсионные электроны с Е_е = 144,7 кэв мы идентифицировали как К 194,9 кэв. Отсутствие гамма-лучей данной энергии позволяет предположить, что переход с энергией 194,9 кэв типа EO. Энергии и относительные интенсивности К -конверсионных электронов соответствующих переходов приведены в табл. 1.

При определении относительных интенсивностей конверсионных электронов в случае измерений на β -спектрометре типа $2\pi\sqrt{2}$ интенсивность конверсионных электронов перехода 1047,9 кэв принималась равной 18 (в единицах J_{K 615,6} = 1000). Ошибка в определении J_{K 1047.9}, равная ~ 10%, в полученные интенсивности конверсионных электронов не включалась.

Нами обнаружено более 120 новых переходов при распаде ¹⁵² Тb. Привлекая эти данные о распаде ¹⁵² Tb , мы еще раз проанализировали спектры e-y-, y-y- и $\beta^+ - y$ – совпадений ^{/8,11/}. Этот анализ позволил ввести ряд новых уровней в ядре ¹⁵² Gd . При детальном рассмотрении совпадений (e_k 344,4) ($y \approx 700$), (e_k 271,2) ($y \approx 700$) и (' e_k 615,6) ($y \approx 700$) обнаруживается, что совпадения гамма-лучей

с энергией ~700 кэв с К 271,2 и К 615,6 кэв наблюдаются в меньшем количестве, чем совпадения с конверсионными электронами К 344,4 кэв. В спектрах совпадений с К 271,2 и К 615,6 кэв наблюдаются гамма-лучи энергии 700 кэв с $J_{\gamma 700}$, равными (16,0±3,2)^{X/} единицы и (12,7±1,5)^{X/} единицы соответственно, а в спектре совпадений с К 344,4 кэв – $J_{\gamma 700} = (29,0\pm9,0)^{X/}$ единиц.

Интенсивность гамма-лучей с энергией ~ 704 кэв в гамма-спектре равна (34,7±1,6)единицы (табл. 1). Исходя из этих данных следует сделать заключение, что гамма-пик с энергией 704 кэв сложный и состоит по крайней мере из двух пиков, причем один из них обязан переходу, идущему на уровень 344,4 кэв (2⁺) с $J_{\gamma} = (20,3\pm2,4)$ единицы, другой – переходу, идущему на уровень 615,6 кэв (0⁺) с $J_{\gamma} = (14,4\pm$ ±1,8) единицы.

Анализ спектров е- у - и β⁺ -у - совпадений^{/8,11/} позволил рассчитать относительные доли позитронов с граничными энергиями 1480, 1690, 1750, 1870, 2044, 2185, 2460 и 2800 кэв, заселяющих уровни с энергиями 1318,6 (1314,7); 1109,8; 1047,9; 931,1; 755,6; 615,6,344,4 кэв и основное состояние ¹⁵²Gd соответственно. Результаты анализа сведены в табл. 2. В этой таблице представлены также для сравнения данные работы^{/15/}.

Рассчитанные экспериментальные значения коэффициентов внутренней конверсии (КВК) и выводы о мультипольности для большинства переходов в ядре ¹⁵² Gd приведены в табл. 1.

При определении экспериментальных эначений КВК принималось, что переход с энергией 344,4 кэв является переходом типа E2 (_ _ _ = 0.031)

 $(a_{k \text{ reop}} = 0,031).$

х/Интенсивность совпадений рассчитана в относительных единицах (Ј_{у344,4} = 1000).

6

Обращает внимание, что величины КВК для многих переходов в области высоких энергий имеют большие эначения. Это затрудняет на данном этапе введение и анализ высоколе кащих уровней ¹⁵²Gd и тре бует более тщательного исследования излучения ¹⁵²Tb в области энергий выше 2,0 Мэв.

<u>Схема распада</u> ¹⁵²Tb → ¹⁵²Gd

Предлагаемая схема распада 152 Tb \rightarrow 152 Gd представлена на рис. 1, Наряду с уже известными уровнями наши данные позволяют ввести возбужденные состояния 152 Gd с энергиями 1314,7 (1⁻); 1320,0 (3⁺); 1434,0 (3,4⁺); 1547,0 (4⁺); 1757,3 (1,2⁺); (2113,8); 2601,5; 2694,0; 2812,0; 2867,0; 2923,0; 2983,0; 3000,0; 3140,0; 3278,0; 3294,4; 3508,4; 3516,4 кэв. Не подтвердились введенные нами ранее ^{/8/} уровни с энергиями (967,1); 1532,4; 1697,1; 1790,3; 1840,4; 1930,2; 2014,7; 2101,7 и 2521,7 кэв.

Наблюдение переходов с энергиями 1756 и 1412 кэв при распаде 152 Eu (0⁻) в^{/17/} исключает уровни с энергиями 2101,7 и 2521, 7 кэв. В работе^{/8/} был введен уровень с энергией 967,1 кэв на основании совпадений (e_k 615,6) (у 350). Однако, как показывает дополнительный анализ этих совпадений, переход с энергией 351,5 кэв, вероятно, следует разместить в другом месте схемы распада идущим с уровня 1282,7 кэв (4⁺) на уровень 931,1 кэв (2⁺). Уровни, переходы с. которых отмечены точками, введены на основе анализа спектров e-y- и β^+-y - совпадений. Уровни, переходы с которых отмечены кружками, введены на основе энергетического баланса и баланса интенсивностей.

Приписание уровню 2720,7 кэв квантовых характеристик 0^{+ / 8/} оказалось ошибочным, так как в настоящей работе наблюдались гаммалучи, соответствующие прямому переходу с энсргией 2720,0 кэв. Следует обратить внимание на уровни с энергией 1314,7 кэв (1^-) , 1318,6 кэв (2^+) и 1320 кэв (3^+) .

Анализ спектров конверсионных электронов и γ -лучей с привлечением данных, полученных при исследовании спектров е - γ - Совпадений ^{/8,10/}, показал, что при распаде ¹⁵²Tb + ¹⁵²Gd имеется ряд переходов с близкими энергиями: 700,2 ; 703,0; 703,5; 969,6; 974,4; 975,6; 1314,7; 1317,8 кэв. Как отмечалось выше, расположение перехода 703,0 кэв между уровнями 1318,6 и 615,6 кэв и перехода 703,5 кэв между уровнями 1047, 9 и 344,4 кэв подтверждается в совпадениях (е 615,6) (γ 700), (e_k 271) (γ 700) и (e_k 344,4) (γ 700). Из совпадений (e_k 344,4) (γ 970) следует, что γ -лучи с энергией ≈ 970 кэв полностью идут на уровень 344,4 кэв (2⁺). Для размещения перехода 975,6 кэв вводится уровень с энергией 1320,0 кэв. Спин и чётность этого уровня из-за отсутствия прямого перехода 1320,0 кэв на основное состояние ¹⁵²Gd (0⁺) можно предположить равным 3⁺ или 4⁺.

Переход с энергией 700,2 кэв расположен нами между уровнями 1314,7 и 615,6 кэв. Однако для того чтобы согласовать полученную интенсивность конверсионных электронов этого перехода ($J_k \approx 1,5\pm0,3$) с утверждением ^{/3,16/}, что уровень 1315,0 (у нас 1314,7) кэв имеет квантовые характеристики 1⁻ и разряжается переходами 1314,7; 969,4 и 700,2 кэв типа E1 с соотношением интенсивностей $J_{\gamma 1314,7}$: $J_{\gamma 969,6}$: $J_{\gamma 700,2} = 1:0,43:0,04^{/3/}$ или 1:0,86:0,077^{/16/}, необходимо предположить, что существует по крайней мере еще один переход с энергией, близкой к 700 кэв. Размещение этого перехода возможно между уровнями 2247,8 и 1547,0 кэв.

Совпадения (e_k 765) (γ 1140) можно отнести как к совпадениям (e_k 766,3) (γ 1137,5), так и к совпадениям (e_k 764,3) (γ 1139)^{/10/}. Таким образом, следует предположить существование гамма-перехода с энергией 1139 кэв типа Е2 , расположенного в схеме распада между уровнями с энергией 1484,0 кэв (0^+) и 344,4 кэв (2^+) , а гамма-переход с энергией 764,3 кэв следует разместить между уровнями с энергией 2247,8 и 1484,0 кэв (0^+) .

Анализ спектров $\beta^+ \gamma -$, $\gamma - \gamma -$, $e - \gamma$ – совпадений позволил определить доли позитронного заселения уровней и рассчитать значения $lg f \tau$ при распаде ¹⁵² Tb (табл. 2, рис. 1). На рис. 1 приведены также значения $lg f \tau$, рассчитанные на основании баланса интенсивностей.

Обсуждение

Обращает на себя внимание то, что характер разрядки и квантовые характеристики уровней ядер ${}^{154}_{64}$ Gd ${}_{90}$ и ${}^{152}_{62}$ Sm ${}_{90}$ несколько похожи на характер разрядки и соответствующие характеристики уровней ядер ${}^{152}_{64}$ Gd ${}_{88}$ и ${}^{150}_{62}$ Sm ${}_{88}$ (рис. 2). Это также видно из сравнений аналогичных состояний этих ядер ${}^{/8,9,10,18/}$, хотя первые два ядра имеют ярко выраженные ротационные полосы основного состояния, характерные для деформированных ядер, другие два ядра – по расположению первого 2^+ уровня и других уровней напоминают сферические ядра.

Как и в работах $^{/8-10/}$, нами проведено сравнение отношений приведенных вероятностей переходов, разряжающих аналогичные уровни ядер 152 Gd , 150 Sm , 154 Gd и 152 Sm . В табл. З сравниваются отношения приведенных вероятностей для переходов, разряжающих уровни бета-вибрационной и гамма-вибрационной полос в ядрах 152 Gd , 150 Sm $^{/9,18,19/}$, 154 Gd $^{/20,21/}$ и 152 Sm $^{/21,22/}$.

Как видно из табл. 3, значения отношений приведенных вероятностей переходов внутри полос близки друг к другу для этих ядер. Однако наблюдается значительное ослабление $B(E2,2^+_{\beta} \rightarrow 0^+_{\epsilon})$ при переходе от деформированного ядра ¹⁵⁴ Gd к ¹⁵² Gd и от ¹⁵² Sm к ¹⁵⁰ Sm. Не исключено, что это уменьшение величины $B(E2,2^+_{\beta} \rightarrow 0^+_{\epsilon})$ связано с разными деформациями 2^+_{β} – состояния и основного состояния (0⁺), в частности ядра ¹⁵² Gd . В работе ^{/23/} в ядре ¹⁵⁰ Sm обнаружено деформированное состояние типа 0⁺ с энергией 1255 кэв. По-видимому, в ядре ¹⁵² Gd состояние с энергией 1047,9 кэв (0⁺) является деформированным состоянием, как это отмечалось уже в работе ^{/15/}. Исходя из рассуждений ^{/9/}, можно предположить, что с уровнем 1047,9 кэв (0⁺) связана вращательная полоса. Уровень с энергией 1318,6 кэв (2⁺), по-видимому, является членом этой квази-бета-вибрационной полосы с K = 0.

На рис. З и 4 отражено поведение уровней, принадлежащих ротационной полосе основного состояния, бета-вибрационной полосе, октупольной полосе и гамма-вибрационной полосе для чётно-чётных ядер гадолиния. На этих рисунках приведены данные настоящей работы и работ

Уровни с энергией 1109,8 кэв (2^+) и 1320 кэв (3^+) в ядре ¹⁵² Gd нами рассматриваются как члены гамма -вибрационной полосы с K = 2. Обнаруженный при изучении реакций $(d,d)^{/4/}$ уровень ¹⁵²Gd с энергией 1547 кэв, по-видимому, следует рассматривать как член этой полосы со спином и четностью 4^+ , так как этот уровень хорошо укладывается на кривую зависимости 4^+ - уровней для ядер гадолиния (рис. 3,4).

Как видно из рис. 4, проявляются определенные закономерности поведения уровней ротационной полосы основного состояния и уровней бета- и гамма-вибрационных полос этих ядер. По мере удаления от сферических ядер к деформированным энергии 2⁺, 4⁺, 6⁺ - уровней ротационной полосы основного состояния убывают, тогда как энергии $0^+, 2^+, 4^+$ – уровней бета-вибрационной полосы возрастают и уже для ядра ¹⁶⁰Gd экспериментально не наблюдаются. Это, по-видимому, объясняется тем, что ядро ¹⁶⁰Gd обладает наибольшей стабильностью деформации остова, что затрудняет проявление возбуждений бета-вибрационного характера. С другой стороны, энергетический характер расположения возбужденных состояний гамма-вибрационной (K = 2) и октупольной (K = 0) полос практически не зависит от деформации ядер.

- K.Adler, A.Bohr, T. Huus, B.Mottelson and A.Winther. Revs. Mod. Phys., <u>28</u>, 432 (1956).
- 2. K.S.Toth, O.B.Nielsen, O.Skilbreid. Nucl. Physics, <u>19</u>, 389 (1960).
- 3. I.Marklund, O.Nathan, O.B.Nielsen. Nucl. Physics, <u>15</u>, 199 (1960).
- 4. R.Bloch, B.Elbek and P.O.Tjøm. Nucl. Physics , <u>A91</u>, 576 (1967).
- 5. M.Sakai, Nucl. Physics, A104, 301 (1967).
- Y.Gono, M.Ishihara and M.Sakai. International Symposium on Nuclear Structure, p.26, Dubna, D-3893, U.S.S.R. July, 4-11 (1968).
- 7. Г.Хагеманн, М.Олесен. Доклад на XVII совещании по ядерной спектроскопии. Харьков, 1967.
- К.Я.Громов, В.В.Кузнецов, М.Я.Кузнецова, М.Фингер, Я.Урбанец,
 О.Б.Нильсен, К.Вильский, О.Скилбрайт, М.Йоргенсен. Изв. АН СССР,
 сер. физ., <u>31</u>, 154 (1967); Nucl. Phys., <u>А99</u>, 585 (1967).

11

- 9. Э.Я.Луре, Л.К.Пекер, П.Т.Прокофьев. Изв. АН Латвийской ССР (сер.физ.-тех.наук), 6, 3 (1967).
- 10. В.В.Кузнецов. Диссертация, Дубна, 1967.
- 11. К.Я.Громов, Д.А.Енчев, Ж.Т.Желев, И.Звольски, В.Г.Калинников, В.В.Кузнецов, Ма Хо Ик, Г.Музиоль, Хань Шу-жунь. ЯФ, 1, 562 (1965).
- 12. O.B.Nielsen, O.Kofoed-Hansen, Kgl. danske vid. Selskab. Mat.-fys. medd., 29, 6 (1955).
- 13. J.Adam, V.G.Chumin, Yu.N.Denisov, M.Finger, K.Ya.Gromov, M.Ya.Kuznetsova, Lu Si-ting. Preprint, E-2494, Dubna, 1965.
- 14. J. Kormicki, H. Niewodniczanski, Z. Stachura, K. Zuber, Mrs. M.Budziak. Acta Phys. Polon., <u>31</u>, 317 (1967).
- 15. Б.С.Джелепов, О.Е.Крафт, Ю.В.Наумов. Изв. АН СССР, сер. физ., 30, 1286 (1966).
- 16. Б.С.Джелепов, Н.Н.Жуковский, А.Г.Малоян. ЯФ, 1, 941 (1965).
- 17. Н.А.Воинова, Б.С.Джелепов, Н.Н.Жуковский, Ю.В.Калиничев, А.Г.Малоян, А.Г.Сергеев. ЯФ, <u>3</u>, 3 (1966).
- 18. Л.В.Грошев, А.П.Демидов, В.А.Иванов, В.Н.Луценко, В.И.Пелехов. Изв. АН СССР, сер. физ., <u>27</u>, 216 (1963).
- 19. R.K.Smither. Phys. Rev., 150, 964 (1966).
- 20. Б.С.Джелепов, А.Г.Дмитриев, Н.Н.Жуковский, А.Г.Малоян. Изв. АН СССР, сер. физ., <u>30</u>, 1265 (1966).
- 21. И.Лиу, О.Б.Нильсен, П.Саллинг, О. Скилбрайд. Изв. АН СССР, сер. физ., <u>31</u>, 63 (1967).
- 22. J.S.Greenberg, G.A.Burgmyon, D.A.Bromley. Contribution to the Int. Conf. on Heavy Ion Phys., Dubna, USSR, Oct., 13-19 (1966).
- 23. R.A.Kenefick, R.K.Sheline. Phys. Rev., 139, 1479 (1965). Рукопись поступила в издательский отдел 29 сентября 1969 года.

ТАБЛИЦА І

Энергии и относительные интенсивности конверсионных электронов и гамма-лучей при распаде 152 Гв. Коэффициенты внутренней конверсии переходов в 152 Gd

•	N310 ПП	^Е перех. (кэв)	Iĸ	Ir	dr. 104	Мультипольн.
	Ι.,	II3,5	2,2			
	2	II5,3	2,4		•	
	3	117,2	28,8 <u>+</u> 2,9	~1,0	~500	(E2)
	4.	143,8 ^{a)}	I,5			
	5	155,1 ^{a)}	I,6			
	6	175 , 0 .	9,3 <u>+</u> 1,0			
	7	180,0	4,I		1	
	8	194,9 ^{a)}	II,4 <u>+</u> I,2			
	9	208,8	9,7 <u>+</u> I,0			
	10	270,55 ^{₿)}	23,5 ^B)	~10	~407	E2 (
	II	271,2	489 <u>+</u> 49	168,5 <u>+</u> 6,5	502 <u>+</u> 75	E2
	12	310		~6		1. A.
	13	315,5	~38	18,3 <u>+</u> 3,6	~360	E2
	I 4	344,4	1790 <u>+</u> 70	1000	310	E2
	15	35I,5	~6,2	9,5 <u>+</u> 3,0	~II3	> EI
	I 6	368	~3,7	13,4 <u>+</u> 1,3	~48	EI
	17	387,78 ^{₿)}	I40 <u>+</u> 30	,15,0 <u>+</u> 1,5	1616 <u>+</u> 420	E0+E2
	18	4II,2	62,I <u>+</u> 4,0	60,0 <u>+</u> 3,0	180 <u>+</u> 24	E2
	19	432,5	406 <u>+</u> 40	< 5	14060	EO
	20	496,7	9,9 <u>+</u> 0,5	3,9 <u>+</u> 0,4	440 <u>+</u> 66	>E3
	2 I	511	_	174 <u>+</u> 9		
	22.	527,I	19,3 <u>+</u> 1,0	3,I <u>+</u> I,0	1078 <u>+</u> 366	>M2,E0+E2
	23	543,5 ^{a)}	6,0 <u>+</u> I,0	3,3 <u>+</u> I,0	3I5 <u>+</u> II3	E3
	24	557,0	~I,2	10 ,3<u>+</u>3, 4	~2,0	EI
	25	586,7	168 <u>+</u> 8	132 <u>+</u> 7	220 <u>+</u> 28	EO+E2
	26	615,6	1000	< 3	> 57670	EO
	27	623,I	9,0 <u>+</u> 0,9	I3,8 <u>+</u> 0,7	113 <u>+</u> 17	MI
	28	675,6	2,9 <u>+</u> 0,6	9,5 <u>+</u> 0,9		E2
	29	679,2	I,5 <u>+</u> 0,5	4		
	30	700,2 ^{a)}	I,5 <u>+</u> 0,3			
	3 I	703,0	10.0+1.0	84.7+I.6		E2
	32	703,5				E2

Жеме пп	^Е перех. (кэв)	I ^X	٦	dr: 104	Мультипольн.		
33	764,3	9,5 <u>+</u> 2,0	207+00		(E2)		
<u>`</u> 34	766,3	4,5 <u>+</u> I,5	1 29,712,0		(E2)		1
35	778,8	7,4 <u>+</u> 0,8	76 3+3 8		EI	•	
36	785,3 ⁸⁾	I,0 <u>+</u> 0,3					
37	853,0 ^{a)}	2,3 <u>+</u> 0,5	~I,0	~ 400	> M3	•	1
38	893,2 ^{a)}	4,2 <u>+</u> 0,4	9,9 <u>+</u> 0,5	74 <u>+</u> II	E3		1
39	928,9	I,2 <u>+</u> 0,5	r -				
40	931,2	5,3 <u>+</u> 0,8	28,2 <u>+</u> 1,4		MI,E2	-	
4I	957,6 ^{a)}	0,30 <u>+</u> 0,03	~I,I	~47	MI E3		1
42	969,6	I,0 <u>+</u> 0,3	17,3 <u>+</u> 5,2 [°]		EI		
43	974,4	5			EO+E2		
44	975,6	113,4 <u>+</u> I,0	158,2 <u>+</u> 5,0				
45	990,7	I,25 <u>+</u> 0,25	I4,6 <u>+</u> I,5	I4,8+4,0	E2,EI	•	9
46	1010,4	2,4 <u>+</u> 0,4	7,0 <u>+</u> 0,4	60 + I4	E3	•	
47	1047,9	18,0 <u>+</u> 1,8	< 8	> 390	EO	. /	
48	1061,6 ^{a)}	0,9 <u>+</u> 0,I	~1,0	~156	M3		1
49	1090,0	2,6 <u>+</u> 0,8	I6,2 <u>+</u> I,6	28+10	MI.E2		·
- 50	II09,8	6,3 <u>+</u> 0,6	37,8+3,8	29+6	MI		
51	II37,5	2,7 <u>+</u> 0,3	II,3 <u>+</u> I,2	4I+9	E3		1
52	II86,0	0,28+0,06	3,0+1,0	16,0+7,2	E2		. [
53	1203,0	~0,15	I,5+0,5	~17	E2		
54	1208,0 ^a)	~0,15	5,4 <u>+</u> 0,5	~4.8	EI		
55	1217,0 ^{a)}	0,3 <u>+</u> 0,I	< 0,5	>104	> M3		
56	1261,7	2,1 <u>+</u> 0,2	12,6+0,6	28,9+5,2	MI		
57	I299 , 5	I,28 <u>+</u> 0,I3	25,3+2,5	8,8+I,8	EI		
58	1314,7	0,75 <u>+</u> 0,15	18,2 + 1,3	7,I+I,8	EI		
59	1317,8	0,88 <u>+</u> 0,I3	8,4 <u>+</u> 1,0	18,I+4,3	E2.MI		
60	1326,6	I,30 <u>+</u> 0,20	10,7 <u>+</u> 1,0	2I.0+5.0	MI		1
6I	I342,0 ^{a)}	0,80 <u>+</u> 0,08	3,0 <u>+</u> 0,4	46 + I0	M2		
62	1348,7	1,08 <u>+</u> 0,II	12,1 <u>+</u> 0,6	15,4+2,8	E2		
63	1352,7	0,60 <u>+</u> 0,06	3,6 <u>+</u> 0,6	29+7	E3.EI+M2		ł
64	1362,0	0,36 <u>+</u> 0,07	~1,0	~62	M2		1
65	I368,4 ^{a)}	0,35 <u>+</u> 0,07	3,6 <u>+</u> 0,2	I6,6+4,2	E2.MI		1
66	1374,0	0,10 <u>+</u> 0,02	2,8 1 ,0	6.2+2.7	EI EI		
67	I383,5 ^{a)}	0,50 <u>+</u> 0,07	< 6,5	>13	> E2		
68	I406,0	0,13 <u>+</u> 0,04	~I.0	~??	мт		

69 70	I4II,7	0 55:0 00	· · · · · ·		•
70		0,56 <u>+</u> 0,08	9,7 <u>+</u> I,0	I0,0 <u>+</u> 2,3	• E2
	I447,2 ^{a)}	0,34 <u>+</u> 0,06	4,I <u>+</u> 0,6	I4,4 <u>+</u> 3,9	E2,MI
71	I484,I	0,75 <u>+</u> 0,08	<i,0 '<="" td=""><td>>I30</td><td>> M4,E0</td></i,0>	>I30	> M4,E0
72	1491,0	~0,15	* .		
73	1496,0	0,52 <u>+</u> 0,06	2,5 <u>+</u> 0,4	36 <u>+</u> 8,6	M2
74	1507,4 ^{a)}	0,I44 <u>+</u> 0,0I5	I,5 <u>+</u> 0,5	I6,6 <u>+</u> 6,I	MI,E2,E3
75	1518,4	I,02 <u>+</u> 0,08	9,0 <u>+</u> 0,9	I9,6 <u>+</u> 3,8	E3,MI
76	1533,4 ^{a)}	0,070+0,014	I,5 <u>+</u> 0,2	8,I <u>+</u> 2,2	E2
77	1561,0 ^{a)}	~0,2	~0,8	~ 43	M2
78	1585.8 ^{a)}	0,44+0,05	I2,9+0,7	5,9 <u>+</u> I,I	EI
79	1597.0	0,49+0,07	9,8 , 1,0	8,7 <u>+</u> 1,9	E2
80	1605.I	0.17+0.04	4,3+0,6	6,8 <u>+</u> 2,I	E2 (EI)
8I	1632.0	0.26+0.03	4.I+0.7	II,0+2,8	E2,MI
82	1639.0	~0.I	2.7+0.7	~6,4	E2,EI
83	1662.8	0.33+0.08	I.6+0.3	36+12	M2
84	1670.2	0.90+0.09	9.6+I.0	I6.2+3.2	E3 (MI)
85	1730.5^{a}	0.14+0.02	I.4+0.3	I7.3+5.2	E3
86	1735.8	0.084+0.013	~I.0	~15	E3 MI
87	1738.6	0.TT+0.02	- 0.5	> 38	> M2
88	1757.3	0.43+0.05	9.0+0.5	8.3+T.6	F2
89	1762.0	0.037+0.008	~T.0	~6.4	E2
90	1771.3	0.49+0.05	4.5+0.5	T8.9+3.8	E3
9T -	T778.7	0.1840.03	$T_{2}^{+0.3}$	26+9	M2
92	1790.0	0 72+0.07	6.0÷0.9	20.8+4.8	M2
97	T798 5 ^a)	0,7210,07	2 5+0 3	6 942.4	E2
9/1	1820.0	0,10,0,03		9.613.8	MT E2
95	T8/13 0 ^a)	0,10,10,03	22103	8 713 T	MT E2
96	1857 0		4 3+0 5	5.6 <u>1</u> 2,0	E2
20	1007,0	0 4140 08	6 9 1 0	TO 312.9	NT NT
00	1002,5	0,4170,00	2310 h	9212.8	MT
20 00	10/1,2 T00/ 78)	0,12210,024	2, 2, 0, 10, 10	8 743 T	NT NT
799 TOO	T 80/ 08)	0,11 <u>+</u> 0,02	2,2 <u>1</u> 0,0	~5.8	F2
	1094,0		24 617 2		ע גע
	1903,4	10,10,17	24,0 <u>7</u> 1,2	11,0 <u>7</u> 2,1	TTM, CIT
	1910,0		7 2.0 7	0 0 0 0	л
105	1921,6	0,41 <u>+</u> 0,06	(,2 <u>+</u> 0,1	<i>³</i> ,0 <u>+</u> 2,2	
L04	1955,8	0,052+0,006	~1,5	~>,(
105	1941,8	0,55±0,05	{ I0,0 <u>+</u> I,0	-	EC.
	1944 ₈ °	/~0,I			

•

14

							_
	1912 ПП	^Е перех. (кэв)	Iĸ	IX	d 104	іультипольн.	
	107	1955,6 ^{a)}	0,II3 <u>+</u> 0,023	5,3 <u>+</u> 0,5	3,7 <u>+</u> I,0	EI	
	I08	1962,9	0,060 <u>+</u> 0,025	~I,0	~10,4	MI	
	109.	1976,3	•	2,0±0,3			
	IIO	2015,0 ^a)	0,051 <u>+</u> 0,013	•			
	III	2020,I ^{a)}	0,027 <u>+</u> 0,006	~I,0	~4,7	(E2)	
	II2	2029,5	0,025 <u>+</u> 0,0I0		• •		
	II3	2035,0 ^{a)}	0,052 <u>+</u> 0,008	~I,0	~9,0	MI,E3	
	II4	2044,5 ²⁾	~0,24)	~0,5			
	115	2052,I	0,007 <u>+</u> 0,002				
•	II6	2065,3 ^{a)}	0,091 <u>+</u> 0,025	I,0 <u>+</u> 0,5	I6 <u>+</u> 9	≥MI	
	117	2070,0	0,073 <u>+</u> 0,0II	I,5 <u>+</u> 0,7	8,4 <u>+</u> 4,4	MI,E2	
	II8	2076,6	0,058 <u>+</u> 0,010	2,3 <u>+</u> 0,3	4,4 <u>+</u> I,I	E2	
	II9	2084,4 ^{a)}	0,023 <u>+</u> 0,003				
	I20	2094,0	0,28 <u>+</u> 0,03	3,0 <u>+</u> 0,3	I6,2 <u>+</u> 3,2	M2	
	12I	2105,0	0,04I <u>+</u> 0,006	~ 0,5	~14		."
	122	2113,8	0,064 <u>+</u> 0,0I0	2,0 <u>+</u> 0,3	5,5 <u>+</u> I,4	- E2	
	123	2I20,0 ^a)	0,061 <u>+</u> 0,016	I,8 <u>+</u> 0,3	5,9 <u>+</u> 2,0	E2	
	I24	2151,3 ^a)	0,157 <u>+</u> 0,016	3,0 <u>+</u> 0,2	9,I <u>+</u> I,8	E3	
	I25	2I60,4 ^{a)}	0,04 <u>+</u> 0,0I	~0,5	~14		
	I26	2170,4	0,055 <u>+</u> 0,008	I,2 <u>+</u> 0,2	7,9 <u>+</u> 2,0	MI, (E3)	
	I27	2180,6 ^{a)}	0,068 <u>+</u> 0,008	~ 0,5	~24	> M2	
	I28	2186,2	0,I4 <u>+</u> 0,03	3,0 <u>+</u> 0,3	8,I <u>+</u> 2,2	MI, E3	•.
	129	2197,2	0,10 <u>+</u> 0,02	~I,0	~17,3	M2	
	130	22II,7 ^{a)}	0,06 <u>+</u> 0,02	~0,5	~2I	> M2	
	131	22I8,0 ^a	0,I4 <u>+</u> 0,05	~0,2	~I2I	> M5	
	132	2253,3	0,II <u>+</u> 0,02	I,7 <u>+</u> 0,3	II,2 <u>+</u> 3,3	M2,E3	
	133	2258,5	0,10 <u>+</u> 0,03	I,8 <u>+</u> 0,5	9,6 <u>+</u> 4,2	MI,M2,E3	
	I 34	2265,4	0,09 <u>+</u> 0,02	2,5 <u>+</u> 0,5	6,2 <u>+</u> 2,0	MI,E2	
	135	2276,6 ^a	0,04 <u>+</u> 0,0I	I,7 <u>+</u> 0,5	4,I <u>+</u> I,7	E2	
	136	2291,0 ^a	0,20 <u>+</u> 0,04	~I,0	~3,5	> M3	
	137	2308,8	0,04 <u>+</u> 0,0I	~0,5	~138	M2	
	138	2321,7	0,II±0,02	~0,5	~ 38	> M3	
	139	2344,6	0,18 <u>+</u> 0,02"	I,8 <u>+</u> 0,3	17,3 <u>+</u> 4,3	> M2	
	140	2357,0°	0,08 <u>+</u> 0,02	~0,5	~28	M3	-
	141	2366,5	0,45 <u>+</u> 0,08	5,3±0,3	I4,4 <u>+</u> 3,5	M2	
×.,				-			

NeNo TIT	Еперех. (кэв)	Iĸ	Ir	d. 10"	Мультипольн.
I42	2376,4	0,65 <u>+</u> 0,09	10,6 <u>+</u> 0,6	I0,6 <u>+</u> 2,2	M2
I43	2386,0	0,140 <u>+</u> 0,014	1,3 <u>+</u> 0,3	I8,6 <u>+</u> 5,2	M3
I44	2400,5	0,II <u>+</u> 0,03	~I,0	~19	M3
I45	2406,5	0,45 <u>+</u> 0,09	18,0 <u>+</u> 0,9	4,3 <u>+</u> I,I	E2
I46	2428,4 ^{a)}	0,17 <u>+</u> 0,04	I,6 <u>+</u> 0,3	18,4 <u>+</u> 6,2	M3 .
I47	2465,5	~0,02	· · ·		
I48	2491,4 ^a)	0,10 <u>+</u> 0,02			• • •
I49	2497,0 ^{a)}	0,06 <u>+</u> 0,02	~0,5	~2I	M3
150	2506,2 ^a	~ 0,02			
151	2518,3 ^{a)}	0,060 <u>+</u> 0,006	I,4 <u>+</u> 0,3	7,4 <u>+</u> 2,I	E3,MI
I52	2522,6	0,045 <u>+</u> 0,005	I,8 <u>+</u> 0,4	4,3 <u>+</u> 1,2	E2,MI
153	2536,5	0,170 <u>+</u> 0,017	3,7 <u>+</u> 0,2	8,0 <u>+</u> I,4	E3,M2
I 54	2551,3ª	0,0I6 <u>+</u> 0,003	I,2 <u>+</u> 0,4	2,3 <u>+</u> 0,9	EI.
I55	2570,2 ^a	0,050 <u>+</u> 0,005	2,5 <u>+</u> 0,5	4,3 <u>+</u> I,I	E2,MI
I 56	2578,0	0,047 <u>+</u> 0,007	I,0 <u>+</u> 0',3	8,I <u>+</u> 2,0	E3,M2
157	2587,4 ^{a)}	0,236 <u>+</u> 0,024	5,3 <u>+</u> 0,5	7,7±1,5	E3,M2
I58	2601,5	0,044 <u>+</u> 0,005	I,7 <u>+</u> 0,4	4,5 <u>+</u> I,4	MI,E2
159	2620,0 ^a	0,130 <u>+</u> 0,013	3,6 <u>+</u> 0,4	6,2 <u>+</u> I,3	E3,MI
I 60	2656,0	0,024 <u>+</u> 0,005	<i,0< td=""><td>. >4,I</td><td>> E2</td></i,0<>	. >4 , I	> E2
161	2663,5	0,05 <u>+</u> 0,02	≤2,3	≥3,8	≯ E2
162	2667,2	0,07 <u>+</u> 0,02	2,2 <u>+</u> 0,5	5,5 <u>+</u> 2,I	MI,E2,E3
163	268I,5 ^a	0,027 <u>+</u> 0,003	~0,7	~6,7	E3
I 64	2694,0	0,055 <u>+</u> 0,006	~0,8	~12	M3
I65 .	2698,5 ^a	0,10 <u>+</u> 0,01	3,3 <u>+</u> 0,4	5,2 <u>+</u> I,I	MI,E3
I 66	2707,5ª	~ 0,03	2,3+0,2		F2
I 67	2711,0	0,05 <u>+</u> 0,0I	L		
I68	2720,0	0,10 <u>+</u> 0,02	3,4 <u>+</u> 0,4	5,I <u>+</u> I,4	MI,E3,E2
169	2734,0 ^a	0,024 <u>+</u> 0,003	~0,5	~8,3	M2
170	274 I ,5 ^a	0,025 <u>+</u> 0,007	~0,3	~14	M3
171	2746,0	~0,0I			10 77
172	2754,5°	0,043 <u>+</u> 0,006	I,I <u>+</u> 0,2	6,8 <u>+</u> 1,7	M2,E3
173	2780,0 ^a	0,0I2 <u>+</u> 0,002	0,4 <u>+</u> 0,2	5,2 <u>+</u> 2,8	M1,E3
I 74	2788,0ª	0,007 <u>+</u> 0,002	0,8±0,I		
175	2790,7ª	0,014 <u>+</u> 0,006	L	1. O.T. O	117 177
I76	2796,0	0,022±0,002	0,8 <u>+</u> 0,1	4,8 <u>+</u> 1,0	MI,ES
177	2807,4ª	0,009 <u>+</u> 0,003	~0,2	~/,8	M2
I 78	2812,0	0,006 <u>+</u> 0,002			
179	2825,0 ^a	0,008 <u>+</u> 0,002	1		

№е пп	Еперех. (кэв)	I,	I _r	X. 104	Мультипольн.	
I80	2831,0 ^a)	0,009 <u>+</u> 0,002	~0,2	~7,8	M2	•
I8I	2837,4 ^a)	0,007 <u>+</u> 0,002				
I82	2862,0 ^a)	0,0I5 <u>+</u> 0,002	0,4 <u>+</u> 0,I	6,5 <u>+</u> 2,I	M2,E3	
I83	2870,4	0,023 <u>+</u> 0,002				
I84	2878,0 ^a	0,009 <u>+</u> 0,002	-			
I85	2885,0 ^a	0,020 <u>+</u> 0,003	I,I <u>+</u> 0,I	3,2 <u>+</u> 0,7	E2	
186	2894	0,013	0,9 <u>+</u> 0,I	~2,5	E2, (EI)	
I87	2902	0,014				,
188 ·	2908 ^a	0,009 <u>+</u> 0,002	0,3 <u>+</u> 0,I	5,2 <u>+</u> 2,2	E3,MI	
I89	2916 ^a	0,007				
I9 0	2923	0,011	0,3 <u>+</u> 0,1	~6,4	E3,MI	
191	2930 ^a	0,011	-			
192	2936	0,010				
193	2942 ,3^{a)}	0,030 <u>+</u> 0,006	0,9 <u>+</u> 0,2	5,8 <u>+</u> I,9	E3,MI	
194	2950	0,0II <u>+</u> 0,002	•			• • •
195	2983	•	0,6 <u>+</u> 0,I			
196	3000		0,6 <u>+</u> 0,I			
197	3048 ^a)		1,1 <u>+</u> 0,1			
198	3064		0,6 <u>+</u> 0,I			
199	3164		0,8 <u>+</u> 0,2			
200	3172 ^a		0,9 <u>+</u> 0,3			
201	3212		0,5 <u>+</u> 0,1			
202	3234 ^a		0,5 <u>+</u> 0,I	-	-	
203	3278	· · · · ·	0,4 <u>+</u> 0,I			
204	3335		0,6 <u>+</u> 0,I			
۰.			-			
1	1					

а) Переходы не размещены в схеме распада;

в) значения указанных величин взяты из работы /14/;
с) З- рассчитан из З- в предположении, что переход с энергией 969,6 кэв типа EI;

d) линии конверсионных электронов сложные.

18

- совпадений а / - / -	ктров В ⁺ - ^f ⁺ считани из спектре	итивалась из спе-	Я на распад) рассч с энергией I3I8,6 и энергий I320 кэв	+- компонентов (в итронов на уровни - лучами в област	сивность В ние доли позі дений с У	ж)Интен жж) Значе совпа
					(1314,7)	
7,8±0,2	0 , 8	I4,2	I5 <u>±</u> 5 ##)	 . .	1318 , 6	I480
7,7±0,2	2 , 0	ŝ	34 - I0	37 <u>±</u> 12	8,6011	I690
≽ 8,3	0,3	< 7,5	ζ2	ر ۲	6 ⁴ 2 ⁴⁰ I	I750
7,9±0,2	1 , 6	32,5	I5, 3±4,5	28±6	93I,I	I870
		< I0	۲5 د	 V V 	755,6	2044
8,5 <u>+</u> 0,I	1,0	16 , 7	I4,5±4,4	18 ₁ 4	615,6	2 I 85
8,4 <u>+</u> 0,2	2 , I	50	3 11 13	38±8	344,4	2460
8,3	5,5	001	001	001	0	2800
0	(%)	padoru/Hzobaq	е-у -совпад.	р⁺-∦ -совпад.		

lgfr

Интенсивность^{ж)} р*-компонентов

позитронов

ROMIOHEHTOB

плод 9 Ù

Относительные

MAI52

Энергия Уровня КЭВ)

Е р. гр(кав)

g

152 مرال

N,

TABJIJIA

о позитронах

Данные

15

- у -совпад. спектров

-совпад. спектра

Ланные

ТАБЛИЦА З

приведенных вероятноотей для переходов, и ламия-вибрационной полос в ядрах отношений разряжающих уровни бета-вибрационной Сравнение экспериментальных

	152 G	d. ¹⁵⁰ 5m.	154 Crd N 152 Sm			
Отношение приведенных вероятностей	152 Gd	150 Sm	154 Gd	152 Sm	Правила	Алаги
$B(E2,2^{\dagger}_{\beta} \rightarrow 4^{+}_{\beta})$ $B(E2,2^{\dagger}_{\beta} \rightarrow 2^{+}_{\beta})$	2 , I	<3,2	2,5 /20/ 3,0 <u>1</u> 0,6 /21/	2,6±0,8 /21/	I,8	
$B(B2,2^{+}_{B} \rightarrow 4^{+}_{9})$ $B(B2,2^{+}_{A} \rightarrow 0^{+}_{9})$	001	38,3	17 /20/ 17±3 /21/	13 <u>4</u> 4 /21/	2,57	
$B(E2,2^{+}_{A} \rightarrow 2^{+}_{3})$ $B(E2,2^{+}_{A} \rightarrow 0^{+}_{3})$	48,4	> 12	6,9 /20/ 5,6±I,2 /2I/	5,00 <u>+</u> 0,I5 /2I/ (2,38 <u>+</u> 0,73)/22/	I ,43	K _i = 0
$B(E2,4^{+}_{\beta} \rightarrow 4^{+}_{g})$ $B(E2,4^{+}_{\beta} \rightarrow 2^{+}_{g})$	~ 18	55	I6,8 /20/			
$B(E2,2^{+}_{2} \rightarrow 2^{+}_{3})$ $B(E2,2^{+}_{3} \rightarrow 0^{+}_{3})$	4 6	<4,6	(2,02 <u>+</u> 0,19)/ ^{20/} 2.56+0.20 /21/	2,7±0,3 /21/ /1 80±0 641/22/	I,43	K;= 2

20

Рис. 1. Схема распада ¹⁵² Tb→¹⁵²Gd. 21

Рис. 4. Расположение энергетических уровней ядер гадолиния.