ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОВЛЕМ

C 341.1

6 - 4617

Ш.Гуэтх

ИССЛЕДОВАНИЕ РАДИОАКТИВНОГО РАСПАДА ИЗОТОПОВ ²⁰⁷ At,²⁰⁹ At,²¹⁰ At,²¹¹ At ²¹¹ Po

Специальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Дубна 1969

Институт ядерной физики Московского государственного университета

Работа выполнена в Лаборатории ядерных проблем. Объединенного института ядерных исследований.

Научный руководитель: член-корреспондент АН. СССР

Официальные оппоненты:

доктор, физико-математических наук

кандидат физико-математических наук

В.Л.Михеев

А.С.Баранов,

Б.С.Джелепов

Автореферат разослан 1969 г. Защита диссертации состоится 1969 г. на заседании Учёного совета Лаборатории ядерных проблем Объединенного института ядерных исследований, г.Дубна, Московской области.

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Учёный секретарь Совета

кандидат физико-математических наук

О.А.Займидорога

Ш.Гуэтх

6 - 4617

ИССЛЕДОВАНИЕ РАДИОАКТИВНОГО РАСПАДА ИЗОТОПОВ ²⁰⁷ At.²⁰⁹ At.²¹⁰ At.²¹¹ At ²¹¹ Ро

Специальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание учёной , степени кандидата физико-математических наук

Объединенный инстенуу SECTIMAX LICCHEROBSELS **BUS MOTERA**

Введение

Исследование распада радиоактивных ядер дает возможность изучить сущность процессов, происходящих внутри атомного ядра, и расширяет наши знания о его структуре.

Радиоактивный распад изотопов изучается с помощью различных методов ядерной спектроскопии. Из этих методов основным является анализ испускаемых ядром частиц в магнитном поле. В последнее время широко применяются полупроводниковые детекторы для изучения различных типов излучения.

Целью настоящей диссертации явилось исследование распада четырех изотопов астата (Z = 85) и одного изотопа полония (Z = 84) ²⁰⁷At ($T_{1_2} = .106$ мин), ²⁰⁹At ($T_{1_2} = ... = 5,41$ час), ²¹⁰At ($T_{1_2} = 8,6$ час), ²¹¹At ($T_{1_2} = 7,21$ час) и ²¹¹Po ($T_{1_2} = 0,56$ сек). Эти нейтронодефицитные изотопы имеют достаточно короткий период полураспада а, следовательно, являются одними из труднодоступных изотопов. Образуются они в реакциях глубокого расшепления тория протонами высокой энергии.

Вышеупомянутые изотопы распадаются с испусканием альфа-частиц и захватом орбитальных электронов.

Исследования были выполнены при помощи современных полупроводниковых альфа- и гамма-спектрометров, а также прецизионного магнитного альфа-спектрографа.

Исследовались альфа-распад и тонкая структура альфа-^{207,209,210,211} Аt и ²¹¹ Ро и гамма-излучение изотопов ^{209,210,211} Ро . Изучение этих изотопов с точки зрения оболочечной модели ядра представляет большой интерес, т.к. у них число нуклонов близко к дважды магическому числу – 82 протона и 126 нейтронов.

Исследования были выполнены в Лаборатории ядерных проблем ОИЯИ.

Дессертация состоит из введения, пяти глав и заключения.

<u>Глава</u> <u>I</u>, <u>B</u> этой главе описываются основные свойства радиоактивного распада. <u>B</u> отдельных параграфах рассматриваются альфа-распад, бета-распад, гамма-излучение и внутренняя конверсия электронов. Дается короткий обзор экспериментальных данных по названным процессам и теоретических предпосылок, которые использовались при интерпретации и обсуждении полученных нами результатов.

<u>Глава II</u> содержит описание экспериментальной техники, с помощью которой было выполнено исследование. В исследованиях широко использовались современные полупроводниковые спектрометры.

Гамма-излучение, сопровождающее захват электронов при распаде изотопов^{209,210,211} Ро , изучалось при помощи Ge(Li) – гамма-спектрометров с различными чувствительными объемами детектора (0,4; 5,6 и 10 см³) с разрешением 4 +6кэв в зависимости от детектора и от энергии гамма-квантов в диапазоне излучения 60+2700 кэв. Альфа-распад изотопов²⁰⁹ At,

^{209,210,211}At и ²¹¹Ро изучался при помощи полупроводникового альфа-спектрометра ^{/1/}. Альфа-детектор (поверхностнобарьерный, кремниевый) имел чувствительную поверхность 25 мм², его разрешение изменялось в пределах 23-28 кэв в зависимости от режима работы спектрометра и энергии альфачастиц (от 4,5 до 7,5 Мэв).

209,210,211 Тонкая структура альфа-спектров изотолов и 211 Ро исследовалась на большом магнитном альфа-спектро-/2/ графе с двойной фокусировкой который имел очень хорошие параметры: радиус равновесной орбиты 154 см, телесный угол $(4.5 + 8) \times 10^{-4}$ or 4π , paspemente по импульсу $(3 + 5) \times 10^{-4}$ х 10-4. Этот прибор с помощью калибровочной альфа-группы ²¹⁰ Ро (Т ¼ = 138,4 дней, Е = 5304,5 ± 0,5 кэв^{/3/}) позволял определять энергию других альфа-линий с точностью до 1 + 3 кэв. Для каждого прибора были построены калибровочные кривые (по энергии, по эффективности регистрации и т.д.). Радиоактивные препараты нейтронодефицитных изотопов At получались новым способом в реакциях глубокого расшепления тория протонами с энергией 660 Мэв /4/. Альфа-спектроскопические источники приготовлялись на основе самопроизвольного осажления астата из азотнокислотного раствора на поверхность ,/5/ платины

содержит результаты исследований альфа-Глава III 207 At 209,210, 211 At и 211 Ро. С пораспада изотопов мощью полупроводникового альфа-спектрометра уточнялись пери-²⁰⁷At , ²⁰⁹ At H ²¹⁰ At поля оды полураспада изотопов ²¹¹А, энергия и интенсивальфа-распада изотопов ²⁰⁹At , ²¹⁰ At . ²¹¹ Ро. Полученные ре-²⁰⁹At , ность альфа-групп зультаты приведены в таблице 1. Далее даются результаты исследований тонкой структуры изотопов At. 211 At ²¹¹Ро на магнитном альфа-спектрографе, условия проведени ных измерений, а также характерные альфа-спектры. Определялись энергии альфа-групп, присутствующих в спектре. И дентификация альфа-групп проводилась на основе сравнения определенных экспериментально энсргий и периодов полураспада с данными по этим изотопам, приведенными в литературе . Определялись периоды полураспада, относительные интенсивности, парциальные периоды полураспада, коэффициенты запрета альфа-групп изотопов 207 Аt 209,210, 211 и 211 Ро: результаты даются At в таблице 2.

.5

ТАБЛИЦА

Полученные нами результаты при исследовениях распада 207At 209, 210, 211 н 211 ро на полупроводниковом альфа-спектрометре

Изотоп	^T I/2	Доля — распада (*)	≪- груп- па	Е _с (кэв)	Ja (5)
²⁰⁷ At	106 <u>+</u> 3 MNR	~10 *	а,	5759 <u>+</u> 4	-
209 _{At}	5,4I <u>+</u> 0,05 ч.	4 ,I<u>+</u>0, 5	a.	5648 *	
210 _{4t}	8,6 <u>+</u> 0,4 ч.	0 ,1 75 <u>+</u> 0,020†	~ ನ₁ ನ₂	5524 <u>+</u> 5 5442,0 <u>+</u> 4,5 536 I ,0 <u>+</u> 3,5	36,7 <u>+</u> 3,4 34,3 <u>+</u> 5,6 29,I <u>+</u> 5,6
211 _{At}	7,21 час *	41,8 <u>+</u> 0,2	ຊູ ຊຸ	5868 * 5210	99, 98 < 0,02
211 _{P0}	0,56 cer *	100	∝. ∝. ~	7448 6891 <u>+</u> 4 6571 <u>+</u> 4	98,90 <u>+</u> 0,03 0,57 <u>+</u> 0,03 0,53 <u>+</u> 0,03

Примечание:

-литературные эначения

6

получено на магнитном спектрографе.

45,8±0,5 148 ± 35 200 ±100 3245 45430 8704120 16004500 3304 80 3304400 12004400 12004400 350420 1480<u>-</u>110 3170<u>-</u>630 189<u>-</u>38 12<u>+</u>4 L Cex. I7,3<u>4</u>0,2 (1,3<u>4</u>0,3)xI0⁵ (4<u>4</u>2)xI0⁵ $\begin{array}{c} (I, \underline{3}, \underline{2}) \times IO^2 \\ (I, \underline{3}, \underline{0}, \gamma) \times IO^5 \\ (I, \underline{9}, 0, \gamma) \times IO^5 \\ (I, \underline{5}, 0, \gamma) \times IO^4 \\ (I, \underline{1}, \underline{0}, \eta) \times IO^4 \\ (I, \underline{1}, \underline{1}, 0, \eta) \times IO^6 \\ (I, \underline{1}, \underline{0}, \eta) \times IO^6 \\ (I, \underline{0}, 0, \eta) \times IO^6 \\ (I, \underline{0}, 0, \eta) \times IO^6 \end{array}$ 0,5610,04 cer (1,010,2)x102 (1,010,2)x102 Парциаль-ный Т1/2 (час) 1845 I00 (I, 3<u>+</u>0,2)xI0⁻² (4<u>+</u>2)xI0⁻³ I00 0,10,05 100 26,2 95,6 14,2 83,6 1,5,0,5 0,57±0,05 r B 00 10 8 7450<u>+</u> 3 6892**,**5<u>+</u>2,5 6570**,0**<u>+</u>2,5 5759<u>-</u>3 5647<u>-</u>2 5116<u>-</u>2 5116<u>-</u>2 5165,0<u>1</u>,5 5165,0<u>1</u>,5 5186<u>-</u>1 5131<u>-</u>2 5131<u>-</u>2 5866<u>+</u>2 52I0,0<u>+</u>I,5 5I4I<u>+</u>2 E a (K3B) 5,2+0,3 5,4-0,5 7,9-0,5 7,9-0,6 8,4-0,6 8,4-0,5 8,4-0,5 8,4-0,5 8,5-1,0 7,2<u>+</u>0,2 7,1<u>+</u>0,6 7,5<u>+</u>1,0 7,1<u>1</u>0,2 7,0<u>10</u>,3 7,0<u>1</u>0,3 TI/2 (asc) ž **ช ช ช ช** ชี ช่ช้ช้ช้ชชัชชัช้ ช้ชัช้ od-rpynuu лучатель Альфа-из. N30TOIL 207At 2II_At 209_{At} 2I0At $^{2II}_{P0}$

7

-rpynn

б

- ОТНОСИТЕЛЬНАЯ ИНТЕНСИВНОСТЬ

-коэффициент запрета

- Период полураспада альфа-групп.

بخ

энергия альфа-групп.

.

ч ч ч

Примечание:

2x10-3

5880 - 6430

1

209, 210, 211_{Åt}

•

Результаты исследовений тонкой структуры альфа-распада изотопов и ²¹¹¹Ро на магнитном спектрогрефе

TABJARA 2

на магнитном спектрографе

207_{At}

<u>Глава IV</u> посвящена обсуждению результатов исследования альфа-распада изотопов²⁰⁷ Аt,^{209,210,211} Аt и.²¹¹ Ро. Для каждого изотопа дается краткий обзор литературы по альфа-распаду; результаты, полученные автором, сравниваются с результатами других работ. У изотопа²⁰⁹ Аt впервые была обнаружена тонкая структура альфа-спектра в виде одной

а -группы с энергией 5116 кэв и интенсивностью 10^{-3} от интенсивности главной группы. Установлено, что альфа-группа $E_a = 5116$ кэв осуществляет переход на возбужденное состояние дочернего ядра ²⁰⁵Ві ($T_{12}' = 15,3 \text{ g}^{/6/}$) с энергией 541±3 кэв, в предположении, что спин и чётность этого уровня I ^π = 7/2⁻ (состояние f_{7/2} по оболочечной модели). Дается предполагаемая схема альфа-распада ²⁰⁹At (рис. 1).

В работе при исследовании тонкой структуры альфаспектра изотопа At обнаружено три.альфа-группы: их энергии и интенсивность 5519 кэв (32%). 5437 кэв (31%) и 5355 кэв (37%). Кроме вышеперечисленных нами было найдено еще три ранее неизвестных, более слабых альфа-группы с энергиями 5465 кэв, 5386 кэв и 5131 кэв. Найденная а -группа с Е = 5386 ков указывает на существование нового возбужденного уровня ²⁰⁶ Ві (Т 1/2 = 6,3 д.) с энергией 140+2 кэв. Существование уровня 140 кэв Ві позволило уложить между уровнями ²⁰⁶Ві (140.6 → 0 кэв). (140.6 → → 59.9 кэв) и (398.3 → 140.6 кэв) три ранее не интерпретированных гамма-перехода с энергией 140,6; 106,1 и 258,7 кэв, полученные в работе при исследовании распада (Т¼ = 8,8 дня)^{Э,3,206}Ві. На рис. 2 дается предполага-²¹⁰ At с уточненными значениями емая схема альфа-распала пяти возбужденных уровней ²⁰⁶Ві .

При исследовании тонкой структуры альфа-распада ²¹¹At на магнитном ^{*а*} -спектрографе, помимо основной группы, нами было обнаружено еще две новые группы с энергиями 5210 кэв и 5141 кэв; их интенсивности составляли 1,3 х 10⁻⁴ и 4 х 10⁻⁵

от интенсивности основной группы. Эти альфа-группы 5210 кэв и 5141 кэв осуществляют альфа-переход на известные возбужденные уровни ²⁰⁷Ві (Т $\frac{1}{2}$ = 30 л) 669,8 и 742,9 кэв^{/6/}. Дается схема альфа-распада ²¹¹At (рис. 3).

Изотоп ²¹Ро ($T_{\frac{1}{12}} = 0,56$ сек) практически не отделим от материнского изотопа ²¹¹At , из которого первый возникает при захвате электронов. В данной работе, как в исследованиях на полупроводниковом спектрометре, так и на магнитном спектрографе, было обнаружено три альфа-линии, причем результаты при определении энергии и интенсивности хорошо согласовывались между собой. Их энергия и интенсивность равны соответственно 7450 кэв (98,90%), 6892,5 кэв (0,57%) и 6570 кэв (0,53%). Верхний предел интенсивности альфа-линии в интервале 5,88+6,43 Мэв был установлен $\approx 2 \times 10^{-3}$ %.

<u>Глава V</u>. В этой главе описывается исследование с помощью Ge(Li) - спектрометров гамма-излучения, сопровождающего захват электронов в распаде изотопов ²⁰⁹ At , ²¹⁰ At и ²¹¹At. Описываются измерения и приводятся полученные результаты. Обсуждаются полученные результаты при изучении гамма-переходов, сопровождающих электронный захват

209,210,211 At по изотопам. Для каждого изотопа дается краткий обзор исследований, проведенных другими авторами.

При исследовании гамма-спектра 209 At обнаружено 7 новых гамма-переходов с энергией 104,3; 238,7; 744; 982; 1102; 1170 и 1581 кэв, кроме известных $4-x^{/9/}$, а гамма-линия 780 кэв оказалась дуплетом (784 и 792 кэв). В схеме распада

²⁰⁹ At путем захвата электронов было уложено два гаммаперекода с энергией 982 и 744 кэв между уровнями (980 - $\rightarrow 0$ кэв) и (1525 $\rightarrow 784$ кэв) ²⁰⁹ Po ($T_{1/2} = 103$ г.).

Рис. 2. Схема альфа-распада ²¹⁰ At.

9/(-) 2²¹¹At 7,214. 1 3.3. X41,8±0,2% Q-5.979 Мэв Fα Ja (Кэв) (отн.) Е (Кэв) (4±2)×10 200 5141±2 (13±02)×10-2 148 5210±15 100 45,8 5866±2 669.8 $n \frac{(9/2)}{2}$ ^{.207}Bi . 30 n 211 At.

Рис. 3. Схема альфа-распада

Уточнены энергии возбужденных уровней дочернего ядра ²⁰⁹ Ро. На рис. 4 приводится схема распада ²⁰⁹ Аt захватом электронов. В гамма-спектре ²¹⁰ At подтверждено существование 12-ти *У*-переходов, наблюдаемые ранее в работах ^{/10-12/}, с энергией 116,5; 245; 404; 496; 700; 819,5; 856; 1179; 1435; • 1481; 1597 и 2249 кэв; обнаружен новый гамма-переход с энергией 2269,0±2,5 кэв, а также впервые определена интенсивность *у*-линий 819,5±2,5 и 856±2 кэв. Уточнена энергия и относительная интенсивность 10 ранее известных гамма-переходов. На основе этих данных уточнялись энергии возбужденных состояний дочернего ядра ²¹⁰ Ро

В гамма-спектре, принадлежащем к распаду ²¹¹ At и его дочернего изотопа ²¹¹ Po, подтверждается присутствие γ -линий с энергией 569+2 кэв, 668+2 кэв и 896+3 кэв, которые были обнаружены в работе ^{/10/}. Определены их относительные интенсивности, равные, соответственно, 100, 85 и 60. На рис. 5 дается общая уточненная схема распада ²¹¹ At и ²¹¹ Po (0,56 сек).

В заключении диссертации кратко суммируются основные результаты данной работы по изотопам.

Изотоп 207 At . Уточнены период полураспада 207 At = = 106+3 мин и энергия главной альфа- группы = 5759+3 кэв. Изотоп ²⁰⁹At . Уточнены его период полураспада - Т½= = 5.41+0.05 час и поля альфа-распада. составляющая 4.1+0.5% от общего числа распадов. Впервые обнаружена тонкая струк-²⁰⁹ At. Обнаружены новые гамтура альфа-распада изотопов ма-переходы (всего 8). Даются их схемы распада (рис. 1.4). Изотоп ²¹⁰ Аt . С помощью полупроводникового альфаспектрометра определен период полураспада - 8,6+0,4 час, а также доля альфа-распада ²¹⁰ At - 0,175+0,020%. Найдено три новых слабых альфа-группы ²¹⁰At с энергией 5131, 5386 и 5465 кэв. Дается схема альфа-распада ²¹⁰At (рис. 2) с указанием гамма-переходов между возбужденными уровнями дочернего изотопа ²⁰⁶ Bi образующегося при а - распаде.

Рис. 4. Схема распада²⁰⁹ At при захвате электронов.

Обнаружен новый гамма-переход; уточнены энергии и относительные интенсивности 12-ти гамма-переходов.

<u>Изотоп</u>²¹¹At . Определялась доля альфа-распада²¹¹At; она равна 41,8±0,2%. Впервые обнаружено две группы тонкой структуры альфа-распада²¹¹At . Дается его схема альфараспада (рис. 3). Подтверждается присутствие трех гамма-переходов при распаде²¹¹At и его дочернего изотопа²¹¹Po.

<u>Изотоп</u>²¹¹ Ро<u>подтверждается существование трех аль-</u> фа-групп распада²¹¹Ро и дается верхний предел интенсивности альфа-линий в интервале 5,88-6,43 Мэв - 2 х 10⁻⁵ от интенсивности основного а - перехода.

Энергия альфа-групп определялась с большой точностью - от одного до трех кэв.

Основные результаты диссертации были доложены на XVIII и XIX Всесоюзных совещаниях по ядерной спектроскопии и структуре атомного ядра, а также на Международном симпозиуме по структуре ядра в Дубне в 1968 г. и опубликованы в работах

Литература

1. I.Mahunka, T.Lakatos, T.Fényes. Atomki Közl., V,65(1963).

2. Н.А.Головков и др., Препринт ОИЯИ Р13-3340, Дубна 1967.

3. A.H.Wapstra, Nucl. Phys., 57, 48 (1964).

4. Ю.В.Норсеев. Диссертация, ОИЯИ - ЛГУ, 1965.

5. Ю.В.Норсеев, Чао Тао-нань, В.А.Халкин. Радиохимия, <u>8</u>, 487 (1966).

6. C.M.Lederer, J.M.Hollander and I.Perlman. Table of Isotopes, J.Wiley a Sons, N.Y. 1967.

7. R.W.Hoff. Report UCRL-2325 (1953).

8. E. Arbman Nucl. Phys., 3, 625 (1957).

9. A.W.Stoner, Report UCRL -3471 (1956).

10. J.W.Mihelich, A.W.Schardt and E.Segree. Phys. Rev., 95, 1508 (1954).

- R.W.Hoff and J.M.Hollander. Phys.Rev. <u>109</u>,447(1958).
 F.Schima, E.G.Funk, Jr.and J.W.Mihelich. Phys. Rev., 132, 2650 (1963).
- 13. Ш.Гуэтх, Б.С.Джелепов, Ю.В.Норсеев, В.А.Халкин, Программа и тезисы докладов XVIII ежегодного совешания по ядерной спектроскопии и структуре атомного ядра. Изд. "Наука" Л. 1968, стр. 98.
- 14. Ш.Гуэтх, Б.С.Джелепов, Ю.В.Норсеев, В.А.Сергиенко, В.И.Фоминых, В.А.Халкин. Программа и тезисы докладов XVIII ежегодного совещания по ядерной спектроскопии и структуре атомного ядра. Изд. "Наука", Л. 1968 стр. 96.
- Л.Гуэтх, Ш.Гуэтх, Э.Дороци, Б.С.Джеленов, Ю.В.Норсеев,
 В.А.Халкин. Препринт ОИЯИ Р6-4079, Дубна 1968.
- 16. Н.А.Головков, Л.Гуэтх, Ш.Гуэтх, Э.Дороци, Б.С.Джелепов, Ю.В.Норсеев, В.А.Халкин, В.Г.Чумин. Сообщения участников международного симпозиума по структуре ядра, Дубна, СССР, 1968, стр. 56.
- Н.А.Головков, Ш.Гуэтх, Б.С.Джеленов, Ю.В.Норсеев,
 В.А.Халкин, В.Г.Чумин. Программа и тезисы докладов ежегодного совешания по ядерной спектроскопии и структуре атомного ядра. Изд. "Наука", Л. 1969. Препринт ОИЯИ,
 Р6-4452, Дубна, 1969. Направлено в Изв. АН СССР. сер. физ.

17

Рукопись поступила в издательский отдел 24 июля 1969 года.