С 341.1 А-281 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

6 - 4441

И.Адам

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СВОЙСТВ НЕКОТОРЫХ ЯДЕР В ПЕРЕХОДНОЙ ОБЛАСТИ (А = 145 - 149)

Специальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук .

Дубна 1969

Работа выполнена в Лаборатории ядерных проблем Объединенного института ядерных исследований

Научный руководитель: кандидат физико-математических наук Ж.Т.Желев Официальные оппоненты: доктор физико-математических наук Я.А.Смородинский, кандидат физико-математических наук Е.П.Григорьев

Ведущее научно-исследовательское учреждение: Всесоюзный научно-исследовательский институт метрологии имени Д.И.Менделеева, Ленинград.

Автореферат разослан 1969 г. Защита диссертации состоится 1969 г. на заседании Учёного совета Лаборатории ядерных проблем Объединенного института ядерных исследований, г.Дубна, Московской области.

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Учёный секретарь Совета кандидат физико-математических наук,

О.А.Займидорога

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СВОЙСТВ НЕКОТОРЫХ ЯДЕР В ПЕРЕХОДНОЙ ОБЛАСТИ (А = 145 - 149)

И.Адам

Специальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Сбъснавенный паслануя прорада всследовалай БИЗЛИСТЕНА До настоящего времени свойства атомных ядер не удается понять и объяснить полностью. Это связано, во-первых, с недостаточностью наших знаний о природе сил, действующих между нуклонами в ядре, и, во-вторых, с отсутствием точного решения гамильтониана ядерной системы многих тел. В связи с этим теоретики предлагают ряд весьма существенных упрощений: метод самосогласованного поля, адиабатичность коллективного движения, выбор определенной равновесной формы ядерной поверхности - сферической или эллипсоидальной и ряд других.

Естественно, что определить насколько эти упрошения способствуют уходу от действительности могут лишь экспериментаторы. В настоящей работе изучался ряд ядер с A = 145-149, которые характерны тем, что имеют число нейтронов (83-87), близкое к магическому числу N = 82, и число протонов (60-61), удаленное от магического. Эти ядра находятся в переходной области между сферическими и сильнодеформированными ядрами. Можно предположить, что изучение именно этой области ядер позволит также детально выяснить характер и природу деформируемости атомных ядер.

Были исследованы следующие цепочки радиоактивного распада: ρ^+

¹⁴⁵ Eu
$$\frac{\beta^{+}}{T_{1/2}^{\pm}}$$
 $\stackrel{\circ, \Im A \times B_{\bullet}}{\to}$ $\stackrel{145}{\to}$ Sm

¹⁴⁶ Gd
$$\frac{\beta^+}{T_{1/2} = 50} \frac{\beta^+}{\pi_{H^+}}$$
 $\frac{\beta^+}{T_{1/2} = 4,6} \frac{\beta^+}{\pi_{H^+}}$ $\frac{\beta^+}{T_{1/2} = 4,6} \frac{\beta^+}{\pi_{H^+}}$ $\frac{\beta^+}{T_{1/2} = 22} \frac{\beta^+}{\pi_{H^+}}$ $\frac{\beta^+}{T_{1/2} = 22} \frac{\beta^+}{\pi_{H^+}}$ $\frac{\beta^+}{T_{1/2} = 54} \frac{\beta^+}{\pi_{H^+}}$ $\frac{\beta^+}{\pi_{H^+}}$ $\frac{\beta^+}{\pi_{H^+}}$

Радиоактивные изотопы гадолиния и европия получались хроматографическим выделением из продуктов реакции глубокого расщепления тантала или эрбия протонами с энергией 660 Мэв. Мишени облучались от 2 до 15 часов на внутреннем пучке синхроциклотрона Лаборатории ядерных проблем ОИЯИ. В некоторых экспериментах также было использовано разделение изотопов по массам.

Диссертация состоит из введения, трех глав и заключения. Первая глава посвящена методическим вопросам, связанным

с построением и эксплуатацией магнитного бета-спектрометра. Нами был создан <u>бесфоновый бета-спектрометр</u> с двукратной и двойной фокусировкой на угол $\pi\sqrt{2}$ /1/. Радиус его равновесной орбиты равен 15 см. Разрешение прибора составляет 0,2% при телесном угле \approx 0,1%. Число фоновых совпадений, зарегистрированных в течение 24 часов, равно нулю. При этом источник

¹⁶⁶ Tm[•], интенсивностью порядка ²m[°]Cu[•], находился на равновесной орбите спектрометра, и величина магнитного поля соответствовала фокусировке электронов с [/]энергией, большей граничной энергии распада данного изотопа тулия.

В этой главе более подробно рассмотрен построенный нами <u>стабилизатор тока</u> обмоток магнита^{/2/}. Он представляет собой собранную на транзисторах двухконтурную систему, состоящую из стабилизатора напряжения с коэффициентом стабилизации ≈ 1000. Второй контур системы стабилизации передает усиленный разностный сигнал на вход усилителя первого контура. В системе сравнения в качестве нуль-элемента применяется фотоэлектрический усилитель Ф 117/1, отлично подавляющий длительный дрейф стабилизатора. Принципиальная схема прибора показана на рис. 1. Длительные испытания показали, что ток магнита в течение одного часа изменяется не более, чем на ±1 · 10⁻⁵. При изменении температуры в помещении на 10^oC ток обмоток изменяется на 5 · 10⁻⁵. Нами была непосредственно проверена стабильность напряженности магнитного поля на равновесной орбите спектрометра. Показано, что $\frac{\Delta H_o}{H_o}$ / 2 часа = (1+4) 10⁻⁵ и $\frac{\Delta H_0}{H_o}$ /24 часа = 1,6 10⁻⁴.

Произведена автоматизация измерений спектра конверсионных электронов на нашем приборе^{/3/}. Блок-схему установки см. на рис. 2. Система позволяет производить автоматическое монотонное изменение тока обмоток магнита на 256 дискретных значений - "шагов". Начальные значения тока обмоток магнита, направление его изменения и величина "шага" выбираются оператором так же, как и время измерения каждой "точки". Автоматически производится запись количества счёта первого детектора и тройных совпадений. Показано, что точность реализации линейного закона изменения $H_0(1_M)$ и изменения величины шага

 $\frac{\Delta I_M}{I_M}$ вполне достаточна, чтобы при интерполяции H_0 по числу шагов этими неопределенностями можно было пренебречь, когда полное число шагов не превышает 64, а их относительная величина равна или меньше 0,04%.

<u>В Главе II</u> диссертации дано краткое описание экспериментальных установок, методов обработки результатов, а также приведены результаты измерений.

В таблице 1 для наглядности приводится перечень применяемых методик и исследуемых ядер. "Да" обозначает, что для изучения распада данного ядра нами был использован соответствующий экспериментальный метод.

6

3

٦.,

Рис. 2. Блок-схема стабилизации токи магнита бета-спектромет ра и системы автоматического измерения спектров конверсионыых электронов.

Таблица І									
Измерено	Распад								
	¹⁴⁵ Eu	146 Gd	^{I₩6} Eu	147 Gd	147 Eu	¹⁴⁸ Eu	149 Gd	149 Eu	
Спектр конвер- сионных электронов	да	-	да		да			да	
Спектр гамма- излучения	да	да	да		да	да	да	да	
е-у- совпадения	Дa.	да	да		да		-	да	
β ⁺ , β ⁺ -у- совпадения	1 8	да	да	да	да		да		

В области средних энергий (от 500 до 1500 кэв) и высоких энергий (выше 1500 кэв) для измерения спектров конверсионных электронов был использован наш магнитный бета-спектрометр типа $2 \times \pi \sqrt{2}$: Шестизазорный магнитный бета-спектрометр с разрешающей способностью 1,2 и 0,5% при используемом телесном угле 8 и 1,2% применялся для измерения спектров в области низких энергий электронов (ниже 500 кэв). Эти эксперименты проводились в Институте Нильса Бора в Копенгагене.

Исследования спектров гамма-излучения выполнялись с помощью Се(Li) - детекторов: двух плоскопараллельных с раз мерами 2 мм х 2,5 см² и 7 мм х 0,7 см² (разрешения 8 и 7 кэв для энергии гамма-квантов ≈ 1 Мэв) и одного коаксиального объемом 9,5 см³ с разрешением ≈ 6 кэв для той же области энергий гамма-квантов. Эти измерения проводились в Институте Датской Комиссии по атомной энергии в Рисо. Спектры $e - y[NaJ(TI)], e - y[Ge(Li)], \beta^+ - y[NaJ(TI)] совпаде$ ний изучались с помощью двух шестизазорных бета-спектрометров (Рисо и Копенгаген). При этом NaJ(TI) – детектор имед $длину 7,5 см и диаметр 7,5 см, разрешение <math>\approx$ 7%, объем Ge(Li) детектора – 2,1 см³, разрешение \approx 9 кэв для энергий гаммалучей \approx 1 Мэв.

Основные результаты этой части работы состоят в том, что:

1. С помощью бесфонового спектрометра $2 \times \pi \sqrt{2}$ впервые проведены измерения спектров конверсионных электронов в области энергий выше 750 кэв для распада ¹⁴⁵ Еu, выше 1550 кэв для ¹⁴⁶ Eu и выше 600 кэв для ¹⁴⁷ Eu. Обнаружено свыше ста новых переходов/4,5,6/.

2. Впервые с помощью Ge(Li) – детекторов для распада ¹⁴⁵ Eu, ¹⁴⁶ Eu и ¹⁴⁷ Eu исследованы спектры гамма-излуче-_{ния}/7,8,9/. Следует заметить, что обнаруженные нами в спектрах конверсионных электронов новые переходы в подавляющем большинстве случаев идентифицированы также в спектрах гаммалучей: найдено несколько новых переходов.

3. Для распада ¹⁴⁶ Gd, ¹⁴⁸ Eu, ¹⁴⁹ Eu и ¹⁴⁹ Gd исследовалось их гамма-излучение с помощью Ge(Li) – детекторов. Результаты наших измерений сравниваются с ранее опубликованными данными и в ряде случаев их дополняют и уточняют/10,11/12/.

4. Методом е-у совпадений впервые исследован распад 145,146,147,149 Еи и¹⁴⁶ Сd. На основе части этих измерений полностью подтвержден ряд результатов разных авторов по гамма-гамма-совпадениям/8,9,10,12,13/.

5. С помощью наших измерений по е-у совпадениям установлена последовательность каскада 111 → 542 → 894 кэв и отсюда определена энергия второго возбужденного уровня ¹⁴⁵ Sm.

6. Нами впервые наблюдались совпадения ^K 894 - 1079 (¹⁴⁵ Sm) , ряд гамма-квантов, совпадающих с K271, K297, K411. K430, K522, K533 (¹⁴⁶ Sm). Впервые указано на су-

9

ществование совпадений К121 с у-1351 ; 1429 и, вероятно, 942, 1 107 кэв. К 197 су-809 . 1275 кэв и обнаружено, что переходы с энергией 799, 1077, 1180, 1319 и 1450 кэв идут прямо на основное состояние 147 Sm.

145 Eu ¹⁴⁶Eu Eu . Gd. 7. Позитронный распад . 147 Gd и ¹⁴⁹ Gd исследовался впервые с помощью $\beta^+ \gamma$ -совпадений, когда позитроны анализировались магнитным спектрометром. На основе этих измерений существенным образом уточнена энергия распада ¹⁴⁷ Еч и ¹⁴⁷ Gd. Обнаружен позит-¹⁴⁶ Gd и, вероятно, также ¹⁴⁹ Gd. Измерены ронный раслад интенсивности позитронных переходов, во многих случаях установлен их предел.

8. Нами вычислены экспериментальные отношения интенсивности К -захвата к интенсивности позитронов для неуникальных переходов первого порядка запрещения. В некоторых случаях эти отношения, несмотря на их значительную неопределенность, существенно отличаются от теоретического значения (таблица II). Это можно объяснить влиянием тензор-Для детального анализа необходимы теоретические расчёты рассматриваемых переходов.

9. Используя замкнутые циклы энергий распада, основанные на результатах измеренных нами энергий позитронных переходов и энергий альфа-распада, определенных в работах других авторов, удалось вычислить энергию распада ядер (см. рис. 3). Накопление новых данных по энергиям распада ядер и их уточнение важно для проверки полуэмпирических формул масс ядер, на основе энергий распада нескольких ядер можно вычислить парные энергии, и отсюда константы парного взаимодействия, которые используются при учёте сверхтекучих свойств ядер. Следующей важной физической величиной, которая определяется также из нескольких разностей масс ядер, является величина нейтрон-протонного взаимодействия.

К ИНТЕНСИВНОСТИ Отношение интенсивности К-захвата \sim 4 Ħ F ц A E

	op. $\left(\frac{\varepsilon_{k}}{b^{*}}\right)^{3\text{KCII}}$.	6I 1 66	,I 5,5	,02 7±6	•5 24±8	300 <u>+</u> I00	260 <u>+</u> I00	260 <u>+</u> 140	3 22 <u>+</u> I0	4 60±30
	$\left(\frac{\varepsilon_{\star}}{\beta^{\star}}\right)_{\rm pa}^{\rm Te}$	42+3	3 , 3 <u>+</u> 0	I,5I±0	I4,0 <u>+</u> 0	171 <u>+</u> 12	104 <u>+</u> 6	53±3	7,4±0,	I4,0 <u>+</u> 0,
S+K	Erp. (K3B)	794±I5	I688 <u>+</u> I5	2I58 <u>+</u> I5	I096 <u>+</u> I5	548±I0	624 <u>+</u> I0	745 <u>+</u> I0	I344 <u>+</u> I5	1115 <u>+</u> 15
ерехода	ΔΙ,Δπ	І,да	I ,да	2,да	2,да	І,да	0,да	І,да	І,да	0,да
озитронного п	Переход	5/2 ⁺ -> 3/2 ⁻	5/2 7/2	4 2 ⁺	4- → 6+	5/2 ⁺ → 3/2 ⁻	5/2 ⁺ - 5/2 ⁻	5/2 ⁺ → 7/2 ⁻	7/2 → 5/2 ⁺	7/2 - 7/2+
эп	Распад ядра	I45 _E u		146 _{Eu}		I47 _{Eu}			147 _{6d}	

<u>Глава III</u> посвящена построению схем распада и сравнению экспериментальных результатов с теорией. Основные результаты этой главы перечислены ниже:

 На основе результатов наших измерений интенсивностей К – конверсионных электронов и интенсивностей гамма-лучей были вычислены коэффициенты внутреншей конверсии на К -оболочке. Там, где известны результаты других авторов, вычислялись а_k по средним значениям соответствующих интенсивностей. Сравнением экспериментальных значений а_k с теоретическими удалось для десятков переходов определить их мультипольность, причём для большинства из них – впервые.

2. В схему распада ¹⁴⁵ Eu , ¹⁴⁶ Eu , ¹⁴⁷ Eu на основе наших экспериментов по $e-\gamma$ - совпадениям и анализа сумм-разностей энергий переходов введено около 20 новых уровней (см. рис. 4,5,6).

3. Из данных об интенсивностях γ – и β –переходов рассчитан баланс их интенсивностей, определены величины log ft электронного захвата, идушего на возбужденные уровни Sm (рис. 4,5,6).

4. Определены спины и чётности для многих возбужденных уровней 145 Sm , 146 Sm II 147 Sm (рис. 4,5,6).

5. Обнаружены возбужденные состояния с положительной чётностью в ¹⁴⁵ Sm : 1436 кэв – $3/2^+$ или $5/2^+$, 1548 кэв – $3/2^+$, 1629 кэв – $3/2^+$, $5/2^+$, $7/2^+$, 1806 кэв – $5/2^+$ или $7/2^+$, 2277 кэв $5/2^+$ или $7/2^+$. Все эти состояния не были обнаружены в ¹⁴⁴ Sm(d,p) – реакции. Однозначно определить их природу невозможно ввиду отсутствия детальных теоретических расчётов для этого ядра. Однако возможно, что некоторые из них являются членами септета уровней, возникающих при расшеплении октупольных вибраций и одночастичного состояния со спином $7/2^-$.

6. Проведено сравнение возбужденных уровней¹⁴⁶ Sm с теоретической схемой уровней, вычисленной на основе учёта промежуточного взаимодействия между остовом ядра и двумя

12

(47_{Eu}

внешними нейтронами/13/. Показано, что для этого ядра использовать теорию Давыдова и Филиппова/14/ не удается и что также невозможно использование систематики Сакай, Пекера/15,16/.

7. Предложенная нами схема возбужденных уровней сравнивается с результатами (d,d') и (d,t) реакций/17/. На основе наших результатов и результатов ядерных реакций можно предположить, что в ¹⁴⁷ Sm взаимодействие между одночастичным и коллективным движением значительно сильнее, чем в сферических ядрах.

Диссертационная работа выполнена в Отделе ядерной спектроскопии и радиохимии Лаборатории ядерных проблем Объединенного института ядерных исследований в Дубне и в Институте Нильса Бора в Копенгагене, а также в Институте Датской Комиссии по атомной энергии в Рисо.

Результаты исследований, описанных в диссертации, доложены на VIII Совещании по ядерной спектроскопии нейтронодефицитных изотопов и теории деформированных ядер (Дубна, 1965), на XV, XVI, XVIII, XIX ежегодных Всесоюзных совещаниях по ядерной спектроскопии и структуре атомного ядра (1965, 1966, 1968, 1969 г.г.), на Международном симпозиуме по структуре ядра (Дубна, 1968), на конференциях американского Физического общества (Вашингтон, 1967, 1968), а также опубликованы в печати/1-12/.

Литература

 И.Адам, В.Г.Чумин, Ю.Н.Денисов, М.Фингер, К.Я.Громов, М.Я.Кузнецова, Лу Си-тин. Препринт ОИЯИ 2494, Дубна 1965.

 И.Адам, Ю.Н.Денисов, С.А.Ивашкевич, М.Фингер. Приборы и техника эксперимента. №2, (1965) 136. Препринт ОИЯИ, 1589, Дубна 1964.

- И.Адам, Ю.Н.Денисов, А.Кокеш, В.Г.Чумин, П.Т.Шишлянников. Изв. АН СССР, сер. физ., XXIX (1965) 2147. Препринт ОИЯИ 2169, Дубна 1965.
- И.Адам, Ж.Т.Желев, М.И.Кривопустов, М.Фингер. Препринт ОИЯИ 2412, Дубна 1965, стр. 53.
- 5. И.Адам, Ж.Т.Желев, М.Я.Кузнецова, Лу Си-тин, Н.А.Лебедев, М.Фингер, Преприит ОИЯИ 2412, Дубна 1965, стр. 58.
- 6. И.Адам, Ж.Т.Желев, Лу Си-тин, Э.Херманн, В.Г.Чумин. Препринт ОИЯИ 2412, Дубна 1965, стр. 61.
- И.Адам, К.Вильский, Ж.Желев, М.Йоргенсен, М.Кривопустов, В.Кузнецов, О.Б.Нильссен, М.Фингер, Изв. АН СССР, сер. физ.,XXXI (1967) 122. Препринт ОИЯИ Р-2581, Дубна 1966.
- 8. I. Adam, O.B.Nielsen, K.S.Toth, J.Zylicz, Contributions Int. Symp. on Nuclear Structure, Dubna 1968.
- I.Adam, K.S.Toth, R.A.Meyer. Phys. Rev., <u>159</u>, 985 (1967). Bull. Amer. Soc., Phys., <u>12</u>, 566 (1967).
- 10. I.Adam, K.S.Toth, R.A.Meyer, E.V.Hungerford, Preprint, Oak Ridge 1969, Bull. Amer. Phys. Soc., 13, 626 (1968).
- И.Адам, К.С.Тот. Программа и тезисы докладов XIXежегодного совещания по ядерной спектроскопии и структуре атомного ядра, Ереван 1969.
- 12. I.Adam, K.S.Toth, R.A.Meyer, Nucl. Phys., A106, 275(1968).
- 13. K.Heyde, T.J. Brussaard, Nucl. Phys., A104, 81 (1967).
- 14. А.С.Давыдов, Г.Ф.Филиппов. ЖЭТФ 35, (1958), 440.
- 15. M.Sakai, Nucl. Phys., A104, 301 (1967).
- 16. Л.К.Пекер. Изв. АН СССР, сер. физ., <u>31</u> (1967) 1584.
- 17. E.Veje. Nucl. Physics, A103, 188 (1967).

Рукопись поступила в издательский отдел

22 апреля 1968 года.