4-139

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ALTHDIX RPOKATAN

AAE OPAGOBAS

Пубна:

6 - 4396

24/0-69

А.А.Абдуразаков, Р.Арльт, Р.Бабаджанов, Г.Байер, В.А.Морозов, Г.Музиоль, Х.Тырроф, Х.Штрусный

НОВЫЕ ИЗОТОПЫ ¹³³ Pr, ¹³⁴ Nd И ¹³⁵ Nd СХЕМА РАСПАДА ¹³⁴ Pr ¹³⁵ Pr

6 - 4396

А.А.Абдуразаков, Р.Арльт, Р.Бабаджанов, Г.Байер, В.А.Морозов, Г.Музиоль, Х.Тырроф, Х.Штрусный

78022 up.

НОВЫЕ ИЗОТОПЫ ¹³³ Pr, ¹³⁴ Nd и ¹³⁵ Nd СХЕМА РАСПАДА ¹³⁴ Pr ¹³⁵ Pr

Направлено в Известия АН СССР

Работа выполнена совместно сотрудниками Объединенного института ядерных исследований и Ташкентского государственного университета

1. В ведение

В настоящее время большое внимание уделяется изучению распада радиоактивных ядер переходной области между сферическими и сильнодеформированными ядрами.

В данной работе изучались короткоживущие (период полураспада меньше 30 минут) нейтронодефицитные ядра неодима и празеодима с массовыми числами A < 140, которые можно отнести к ядрам переходной области.

Изотопный состав неодима и празеодима очень сложен, вследствие чего возникают большие экспериментальные трудности при их изучении методами ядерной спектроскопии. Идентификация изотопов этих элементов особенно затрудняется при использовании радиоактивных источников, полученных в результате реакций глубокого расшепления без последуюшего применения масс-сепаратора. Этими трудностями можно объяснить разногласия литературных данных в идентификации изотопов неодима Для изучения распада короткоживущих изотопов неодима и празеодима, полученных в реакциях глубокого расшепления гадолиния, нами была применена более быстрая экспериментальная методика выделения неодима и празеодима из облученной мишени ¹8-101 и последующего изучения гамма-спектров их изотопов.

До наших исследований были известны цепочки распада нейтронодефицитных изотопов неодима и празеодима, приведенные в таблице 1.

з

Таблица 1

Цепочки распада изотопов неодима и празеодима с массовыми числами A < 140

¹⁴⁰ Nd $\xrightarrow{3,3 \text{ д.}}_{\beta^+, \epsilon}$ ¹⁴⁰ Pr $\xrightarrow{3,4 \text{ мин}}_{\beta^+, \epsilon}$ ¹⁴⁰ Ce CTa6. ¹³⁹ Nd $\xrightarrow{5,5 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁹ Pr $\xrightarrow{4,92 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁹ Ce $\xrightarrow{140 \text{ d.}}_{\epsilon}$ ¹³⁹ La ¹³⁸ Nd $\xrightarrow{5,2 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁸ Pr $\xrightarrow{2,2 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁸ Ce CTa6. ¹³⁷ Nd $\xrightarrow{5,2 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁸ Pr $\xrightarrow{2,2 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁷ Ce $\xrightarrow{34,4 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁷ La ¹³⁸ Nd $\xrightarrow{5,2 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁶ Pr $\xrightarrow{76 \text{ Muh}}_{\beta^+, \epsilon}$ ¹³⁷ Ce $\xrightarrow{34,4 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁷ La ¹³⁶ Nd $\xrightarrow{55 \text{ Muh}}_{\beta^+, \epsilon}$ ¹³⁶ Pr $\xrightarrow{13,5 \text{ Muh}}_{\beta^+, \epsilon}$ ¹³⁶ Ce CTa6. ¹³⁵ Nd $\xrightarrow{?}_{\beta^+, \epsilon}$ ¹³⁵ Pr $\xrightarrow{27 \text{ Muh}}_{\beta^+, \epsilon}$ ¹³⁵ Ce $\xrightarrow{17,2 \text{ vac}}_{\beta^+, \epsilon}$ ¹³⁵ La ¹³⁴ Nd $\xrightarrow{?}_{\beta^+, \epsilon}$ ¹³⁴ Pr $\xrightarrow{17 \text{ Muh}}_{\beta^+, \epsilon}$ ¹³⁴ Ce $\xrightarrow{72 \text{ vac}}_{\beta^+, \epsilon}$ ¹³³ La ¹³³ Pr $\xrightarrow{?}_{\beta^+, \epsilon}$ ¹³³ Ce $\xrightarrow{97 \text{ Muh}}_{5,4 \text{ vac}}$ ¹³³ La

2. Экспериментальная часть

Нейтронодефицитные изотопы празеодима и неодима были получены по реакциям глубокого расшепления при облучении мишени гадолиния в форме порошкообразного комплекса (NH₄)₂ [Gd DTПA]* на внешнем пучке протонов синхроциклотрона ОИЯИ с энергией 660 Мэв. Вес мишени составлял 0,5+0,7 г., время облучения – 5+15 минут, интенсивность пучка – 4.10¹¹ пр/сек. Для транспортировки мишени с места облучения в химическую лабораторию была применена пневматическая почта ^{/8/}. Отделение продуктов ядерных реакций от материала мишени производилось по методике, описанной в работе ^{/10/}.

Облученный комплекс растворяли в воде из расчета 25 мл. на один грамм комплекса в присутствии 10 мг. катионита Дауэкс 50 x8 с размером зерна (20+5) мкм. Радиоактивные продукты ядерных реакций, стабилизированные в форме трехвалентных ионов, в течение 1,5-2 мин сор-

бировали на смоле, которую отделяли центрифугированием. Затем смолу промывали водой и переносили в микрохроматическую колонку (h =90 мл, $\phi = 2$ мм), заполненную катионитом Дауэкс 50 х8 с размером зерен (20±5) мкм в NH⁺₄-форме. Элюирование редкоземельных элементов из колонки производили раствором *a*-оксиизобутирата аммония (*a* - ОИБ) с pH = 4,75. При использовании 0,28 М раствора *a* - ОИБ чистый препарат неодима получается через 15-17 минут после конца облучения в объеме 4 капель (рис. 1), а в случае применения 0,30 М раствора элюента, через 13 минут в объеме одной капли (выход около 50%, примеси соседних элементов меньше 3%). Для выделения празеодима использовали 0,30 М и 0,33 М раствора *a* - ОИБ.

Для исследования генетической связи изобаров применялся метод, подробно описанный в работе ^{/9/}. Радиоактивные изотопы редкоземельных элементов (РЗЭ) предварительно включаются в комплекс ДТПА в водном растворе. При их распаде дочерние продукты по эффекту Сцилларда-Чалмерса выходят из состава комплекса и стабилизируются в форме трехвалентных ионов, которые затем адсорбируются сильнокислотным катионитом (Wofatit – KPS, Dowex – 50) и отделяются фильтрованием. Процесс отделения может быть повторен многократно через заданные интервалы времени.

Для идентификации новых изотопов неодима этот метод отделения дочерних продуктов был применен в варианте, когда разделение продуктов ядерных реакций на отдельные элементы не требовалось. Это значит, что сразу после конца облучения можно производить накопление и отделение дочерних продуктов. Для этого 2г комплекса (NH₄)₂ [Gd ДТПА] растворенного в воде (2 мл) с известным избытком ДТПА облучали на выведенном пучке протонов. После облучения раствор разбавляли до 75 мл. и добавляли определенное количество гадолиния. При этом избыток комплексообразователя полностью ликвидируется, и с этого момента дочерние продукты начинают стабилизироваться в ионной форме (начало накопления). Потом дочерние продукты выделялись по вышеописанному методу. Таких накоплений производили пять, время накопления – три минуты. Малый интервал накопления был выбран для того, чтобы предотвра-

Рис. 1. Обычная хроматограмма для получения чистого неодима из (NH 4)2[Gd ДТПА] мишени.

тить накопление большого количества изобаров ¹³⁵ Pr и ¹³⁴ Pr . Изотопы церия, образовавшиеся в последовательно выделенных фракциях, отделяли путем экстракции Ce⁴⁺ /11/ через четыре часа после начала накопления, когда изобары ¹³⁵ Pr и ¹³⁴ Pr практически полностью распались.

Для измерения гамма-спектров изотопов неодима и празеодима и дочерних продуктов их распада использовался гамма-спектрометр с детектором типа Ge(Li) с чувствительным объемом 6,3 см³ и энергетическим разрешением 4,2 кэв при энергии 1332 кэв. Измерительная техника, а также методика сложения и обработка спектров подробно описаны в работе /12/.

3. Новый изотоп 59 Рг 74

При изучении гамма-спектров изотопов празеодима нами был обнаружен гамма-переход с энергией 133 кэв, интенсивность которого убывает с периодом полураспада $T_{4} = (7+3)$ мин. Активность с данным периодом полураспада не принадлежит к распаду ранее известных радиоактивных изотопов празеодима. Эта активность может быть идентифицирована как новый изотоп празеодима, или как изомерное состояние в одном из изотопов празеодима или церия.

Рассмотрим воэможности идентификации этой активности. Предположим, что обнаруженная активность с. $T_{\frac{1}{2}} = (7+3)$ мин определяет изомерное состояние в одном из изотопов церия, которое образуется при распаде соответствующего изобара Pr . Чтобы проверить это предположение, наряду с изучением спектров гамма-лучей изотопов празеодима в идентичных условиях облучения и химического разделения были изучены спектры гамма-лучей изотопов церия. В этих спектрах мы не обнаружили гамма-лучей с энергией 133 кэв и с $T_{\frac{1}{2}} = (7+3)$ мин, что отвергает предположение о существовании изомерного состояния с $T_{\frac{1}{2}} = (7+3)$ мин в изотопах церия.

Если $T_{\frac{1}{2}} = (7+3)$ мин – период полураспада изомерного состояния одного из известных изотопов празеодима, то такими ядрами его могут быть: ¹³⁷ Pr , ¹³⁶ Pr , ¹³⁵ Pr , ¹³⁴ Pr.

Допустим, $T_{\frac{1}{2}} = (7+3)$ мин – период полураспада ¹³⁷ Pr . В таком случае возможное изомерное состояние должно быть выше основного состояния ¹³⁷ Pr ($T_{\frac{1}{2}} = 76,6$ мин) и иметь энергию $E_{yp,2} \ge 133$ кэв. Тогда изомерное состояние $E_{yp,2} \ge 133$ кэв должно разряжаться в основное или возбужденное состояния ¹³⁷ Pr , или ¹³⁷ Се , что будет требовать выполнения следующих условий:

 Мультипольность гамма-перехода с энергией 133 кэв и с Т ;; =
= (7+3) мин, разряжающего изомерное состояние E ур. ≥ 133 кэв, должна быть типа ЕЗ или более высокого порядка, так как мультипольности более низкого порядка не могут объяснить значения периода полураспада возможного изомерного состояния.

2. Полная начальная интенсивность гамма-перехода с энергией
133 кэв и с Т_{1/2} = (7+3) мин не должна превышать значения полного числа распадов на уровни¹³⁷ Се.

То есть:

J norm. 133 < J + J
t=0
$$\Sigma \beta_{t=0}^+ \Sigma \epsilon_{t=0}^+$$

В спектре гамма-лучей изотопов празеодима мы наблюдаем гаммапереход с энергией 161,0 кэв и с $T_{1/2} = 76,6$ мин, который идет с первого возбужденного состояния на основное в ядре 137 Се $^{/3/}$. Из схемы распада 137 Рг $^{/3/}$ известно, что интенсивность гамма-лучей с энергией 161,0 кэв составляет около одного процента от полного числа распадов 137 Рг . Поэтому условие 2 можно переписать в виде

 $J_{\substack{\text{полн. 133} \\ t=0}} \leq 100 \quad J_{\gamma-161} \qquad (2)$

(1)

Предполагая гамма-переход с энергией 133 кэв типа E3 (условие 1), мы рассчитали полную интенсивность этого перехода и гамма-лучей с энергией 161,0 кэв. Интенсивности переходов были приведены к моменту времени t = 0 (конец облучения). Значение начальной полной интенсивности гамма-перехода 133 кэв намного превышает начальную интенсивность гамма-лучей 161,0 кэв J полн.133 = 1300 Jy 161,0 , что

противоречит условию 2. Таким образом, предположение о существовании в ядре ¹³⁷ Pr изомерного состояния с $T_{1/2} = (7+3)$ мин можно отвергнуть.

Аналогичные рассуждения и расчеты, проведенные для ядер ¹³⁶ Pr, ¹³⁵ Pr, ¹³⁴ Pr также позволяют исключить возможность существования изомерного состояния с $T_{1/2} = (7+3)$ мин в этих ядрах. Остается единственная возможность приписания обнаруженной активности с $T_{1/2} =$ = (7+3) мин новому изотопу празеодима. Этими изотопами могут быть изотопы празеодима с массовыми числами $A \leq 133$.

В спектре гамма-лучей фракции празеодима нами были обнаружены гамма-лучи, принадлежащие к распаду ¹³³ Се (Т. $_{1/2} = 97$ мин ^х, $T_{1/2} = 5,4$ часа) и ¹³² Се ($T_{1/2} = 4,5$ часа). Это известные гамма-лучи с энергией 97,1 кэв ^{133*} Се ; 130,0 кэв ¹³³ Се; 132,0 кэв ¹³² Се . Гамма-линий, принадлежащих к распаду изотопов церия с массовым числом $A \leq 131$, в спектре фракции празеодима не обнаружено. Значит, гаммалинии ¹³³ Се и ¹³² Се могут появиться только за счет распада соответствующих изобаров празеодима – ¹³³ Рг и ¹³² Рг.

Предположим, что активность, убывающая с Т_{1/2} = (7+3) мин, определяет период полураспада нового изотопа ¹³² Pr . При этом должны возбуждаться уровни ¹³² Ce , и гамма-лучи с энергией 133 кэв должны идти с одного из этих уровней.

Авторы работы ^{/14/} изучали возбужденные состояния ¹³² Се. При этом не было обнаружено гамма-перехода с энергией 133 кэв. Из схемы уровней ¹³² Се ^{/14/} известно, что самым интенсивным переходом является гамма-переход с энергией 325,4 кэв. В изученном нами спектре гамма-лучей мы не обнаружили гамма-линии с таким эначением энергии. Поэтому активность с $T_{1/2} = 7 \pm 3$ мин не может определять период полураспада ¹³² Pr.

Последней возможностью идентификации новой активности с T_{1/2} = = (7+3) мин является приписание ее к распаду изотопа ¹³³ Pr . Приведем еще один аргумент в пользу такой идентификации.

В разделе 2 этой статьи описан метод накопления и выделения дочерних продуктов распада неодима из комплексного соединения в раст-

вор. Таких выделений было проведено 5, время накопления составляло 3 мин. В дальнейшем из этих растворов выделялись вторичные дочерние изотопы церия в виде Ce⁴⁺ и изучался их гамма-спектр с помощью полупроводникового гамма-спектрометра. В гамма-спектрах церия были обнаружены гамма-линии, принадлежащие к распаду¹⁸³ Ce (97,1 кэв и 130,0 кэв). Определение периода полураспада материнского изобара по интенсивности гамма-линий 97,1 кэв и 130,0 кэв последовательно накопленных препаратов церия, приводит к значению $T_{1/2} \approx 6$ мин. Данная активность несомненно обязана распаду материнских изобаров ¹⁸³ Ce, а именно ¹³³ Pr или ¹³³ Nd.

Активности с $T_{1/2} \approx 6$ мин, известные во фракции неодима, приписаны к распаду изотопов неодима с $A \ge 134$. Предполагается, что ¹³³ Nd имеет период полураспада $T_{1/2} \ge 1$ мин. То есть, активность с $T_{1/2} \approx 6$ мин относится к распаду ¹³³ Pr.

Совокупность приведенных аргументов позволяет заключить, что обнаруженная новая активность с T_{1/2} = (7+3) мин определяет период полураспада нового изотопа ¹³³ Pr , при распаде которого излучаются гамма-лучи с энергией 133 кэв.

4. Схема распада ¹³⁴ Рг

Распад ¹³⁴ Рг с $T_{1/2} = (17 \pm 2)$ мин изучался в работе ^{/7/}. Были обнаружены гамма-переходы с энергиями 409,0; 640,0 и 960,0 кэв и определена граничная энергия β^+ -распада.

В реакции ¹²² Sn (¹⁶0, 4n) ¹³⁴ Се возбуждались уровни ¹³⁴ Се ^{/14/}. При этом было установлено существование квазиротационной полосы с $I^{''} K = 2^+0; 4^+0; 6^+0; 8^+0.$ Авторы работы ^{/14/} определили энергии и относительные интенсивности гамма-переходов, разряжающих эти состояния.

В данной работе продолжено изучение распада ¹³⁴ Pr . В спектре гамма-лучей изотопов празеодима были обнаружены гамма-лучи, которые по периоду полураспада приписаны к распаду ¹³⁴ Pr . Экспериментальные данные, полученные нами, сравниваются с данными других авторов ^{/7,14/} (таблица 2).

Таблица 2

Значения энергий и относительных интенсивностей гамма-лучей, возникающих при распаде ¹³⁴ Pr

$E_{\gamma}(\kappa_{\beta}E)^{/7/}$ $E_{\gamma}\kappa_{\beta}E^{/14/}$		Данная работа		
		^Е _{у.} (кэв)	Ј _у (отн.ед)	
		383,0	' .8	
409,0	409,2	409,2	100	
_	-	556,7	22	
640,0	639,3	639,0	36	
_	813,9	-	_	
-	,907,0	1	- -	
-	946,5	_	-	
960	-	965,6	14	

Как видно из таблицы 2, гамма-переходы с энергией 383,0 и 556,7кэв в данной работе обнаружены впервые. На рис. 2 приведена дополненная нами схема уровней ¹³⁴ Се.

На основе энергетического баланса и учета высокой интенсивности гамма-переходов 556,7 и 965,6 кэв, можно ввести в схему уровней ¹⁸⁴ Се новый уровень с энергией $E_{yp} = 965,6$ кэв. Этот уровень разряжается как в основное состояние $I^{\pi}K=0^{+}0$,так и на уровень с энергией $E_{yp} = 409,2$ кэв и квантовыми характеристиками $I^{\pi}K = 2^{+},0$. Поэтому, уровню с энергией 965,7 кэв можно приписать квантовые характеристики $I^{\pi} = 2^{+}$. Кроме того, сильная заселенность этого уровня поэволяет предположить, что он является "квази-гамма-вибрационным" уровнем с $I^{\pi}K = 2^{+}2$. Аналогичные уровни были интерпретированы в ядрах: ${}^{132}_{54}$ Хе₇₈, ${}^{134}_{58}$ Ва₇₈, ${}^{136}_{58}$ Се₇₈, ${}^{132}_{58}$ Ва₇₆.

Рис. 2. Схема уровней ¹³⁴ Се.

ней же приведены аналогичные расчеты для ядер: 132 Xe , 134 Ba , 186 Ce 132 Ba .

Таблица 3

Отношения приведенных вероятностей гамма-переходов, идущих с "квази-гамма-вибрационных" уровней ($I^{\pi} K = 2^{+}2$) на уровни $I^{\pi} K = 2^{+}0$ и $I^{\pi} K = 0^{+}0$

Ядра ^{/1,5/}	Энергия Переход квази-гам- между ма-вибр. уров- состоя- ня І ^π К=2 ⁺ 2 ниями 2 ⁺ 2→0 ⁺ 0		Переход между состоя- ниями 2 ⁺ 2 → 2 ⁺ 0		$\frac{B(E2)[2^+2 \rightarrow 0^+ 0]}{B(E2)[2^+ 2 \rightarrow 2^+0]}$	
	Е кэв ур	Е _у кэв	ľγ	Е _у кэв	Iγ	
¹³² Xe 78	1298,0	1298,0	5.	630,0	95	680
¹³⁴ Ba 78	1168,0	1168,0	1,8	56 3, 0	6,0	180
¹³⁶ Ce 78	1090,4	1090,4	36	538,9	100	95
$^{132}_{56}$ Ba 76	1032,0	1032,0	10	567,8	20	40
¹³⁴ Ce 58 76	965,6	965,6	14	556,7	22	25

Отношение приведенных вероятностей $\frac{B E2 (2^+2 \rightarrow 0^+0)}{B E2 (2^+2 \rightarrow 2^+0)}$ меняется от бесконечности до $\approx 0,7$ при переходе от фононной модели сферических

ядер к модели сильнодеформированных ядер. По мере удаления ядер от заполненных оболочек (Z = 50 и N = 82), отношение приведенных вероятностей должно в таком случае уменьшаться, что и наблюдается в таблице 3.

Таким образом, можно считать введенный нами уровень с энергией 965,6 кэв "квази-гамма-вибрационным" уровнем с I ^п K = 2 + 2.

5. Схема распада ¹³⁵ Рг

Изотоп ¹³⁵ Pr с периодом полураспада $T_{1/2} = 22$ мин был открыт в 1954 году ^{/13/}. Установлено, что при распаде ¹³⁵ Pr излучаются позитроны с граничной энергией E = 2500 ± 100 кэв и гамма-лучи с энергией ≈ 80 кэв, ≈ 290 кэв и ≈ 300 кэв

Нами были обнаружены еще два гамма-перехода при изучении спектра гамма-лучей изотопов празеодима, принадлежащих к распаду ¹³⁵ Pr. Уточнены энергии ранее известных гамма-переходов и впервые определены их интенсивности. Также уточнено значение периода полураспада ¹³⁵ Pr . Период полураспада, определенный по спаду интенсивности гам-

ма-лучей ¹³⁵ Pr , оказался равным Т_{1/2} = (27+3) мин. Экспериментальные данные о гамма-переходах ¹³⁵ Pr приведены в таблице 4.

Таблица 4

Энергии и относительные интенсивности гамма-лучей, возникающих при распаде ¹³⁵₅₉ Pr 76

Е _{у кэв}	•	I _у отн. ед.		Примечание
83,5		40 + 5		
214,0		40 + 5		
297,0		100 ^x		Интенсивность принята за 100 ел.
485,0		4,2+0,8		
678,0	1. (A)	7,0+1,5	1.1	
974,0		слабая		

Используя эти данные, мы предложили фрагмент схемы распада¹³⁵ Рг (рис. 3). При построении этой схемы исходили из баланса энергии и интенсивностей гамма-переходов.

К сожалению, имеющихся экспериментальных результатов недостаточно для интерпретации возбужденных состояний ¹³⁵ Се . Но можно предположить, что квантовые характеристики первого возбужденного состояния E_{yp} = 83,5 кэв, очевидно, будут I^{π} = 3/2⁺. Действительно,

Рис. 3. Схема распада 135 Pr .

из систематики свойств основных и первых возбужденных состояний ядер: ${}^{129}_{52}$ Tl₇₇ , ${}^{131}_{54}$ Xe₇₇ , ${}^{133}_{56}$ Ba₇₇ , близких к ядру ${}^{135}_{58}$ Ce₇₇ , видно (рис. 4), что первое возбужденное состояние должно иметь энергию E ~ 100 кэв и квантовые характеристики I^π = 3/2⁺.

6. Новые изотопы ¹³⁴ Nd и ¹³⁵ Nd

При изучении гамма-спектра неодимовой фракции, помимо гаммапереходов, возникающих при распаде известных изотопов неодима, были обнаружены гамма-переходы, интенсивность которых убывает с периодом полураспада порядка нескольких минут.

В первом эксперименте для определения массовых чисел новых активностей через 12 часов после конца облучения из радиоактивных препаратов неодима выделялся образовавшийся церий. Хотя в неодимовой фракции примеси празеодима были меньше 1%, в гамма-спектре выделенного церия были обнаружены гамма-переходы, принадлежащие к распаду ¹³⁵ Се ($T_{1/2} = 17,2$ час). Это явно свидетельствует о наличии ¹³⁵ Nd в его фракции. О наличии ¹³⁴ Nd во фракции неодима в этом же опыте трудно было получить достоверные сведения, ибо период полураспада ¹³⁴ Се составляет 72 часа, и к тому же в гамма-спектре наиболее интенсивный гамма-переход, возникающий при распаде ¹³⁴ Се с энергией 604 кэв, не разрешается от более интенсивного гамма-перехода с энергией 605 кэв, относящегося к распаду ¹³⁵ Се.

Для окончательной идентификации новых активностей неодима и определения их периода полураспада нами изучались нарастание и убывание интенсивностей гамма-переходов, возникающих при распаде изотопов неодима и празеодима в препаратах, полученных методом накопления. В одном из опытов, результаты которого мы приводим на рис. 5 и θ, мишень облучалась 10 мин.

Идентификация изотопа неодима с массовым числом 134 и определение его периода полураспада производилась по наиболее интенсивным гамма-переходам распада ¹³⁴ Pr (T_{1/2} = (17+2) мин)с энергиями 409,2 и 639,0 кэв. На рис. 5 изображены нарастания и убывания интен-

Рис. 4. Сравнение разностей энергий между состояниями S 1/25 d3/2 для ядер с N =77 .

гией 295 кэв в у -спектре неодимовой фракции.

сивности гамма-перехода с энергией 409,2 кэв ¹³⁴ Pr . Период полураспада, определенный по разностной кривой К1-К2, оказался равным (8,5±1,5) мин. При таком же способе определения периода полураспада по разностной кривой гамма-перехода с энергией 639,0 кэв, было получено значение (9±2) мин. На рис. 5 приводится также кривая спада интенсивности гамма-перехода с энергией 405,0 кэв, возникающего при распаде изомера ^{139 m} Nd с периодом полураспада (29±1) мин ^{/4/}. Наблюдается хорошее согласие полученного в нашем опыте значения периода полураспада со значением, полученным в работе ^{/4/}.

Идентификация ¹³⁵ Nd производилась по двум способам. В одном из опытов, как и в случае ¹³⁴ Nd , изучались нарастание и спад интенсивности гамма-перехода с энергией 297,0 кэв, воэникающего при распаде ¹³⁵ Pr . Определенный по разности кривых К1 и К2 период полураспада ¹³⁵ Nd оказался равным (5,5+0,5) мин (рис. 6). В другом опыте применялся описанный в разделе 2 метод идентификации нуклидов по вторичным дочерним активностям, обходящий необходимость разделения фракций элементов редких земель до накопления. Период полураспада ¹³⁵ Nd , определенный по убыванию интенсивности гамма-перехода с энергией 265 кэв, воэникающего при распаде ¹³⁵ Се , в последовательно выделенных препаратах церия равен (6+1) мин.

Заключение

В результате наших исследований в таблицу изотопов неодима и празеодима введены следующие цепочки:

¹³⁵ Nd <u>5,5 мин</u>, ¹³⁵ Pr; ¹³⁴ Nd <u>8,0 мин</u>, ¹³⁴ Pr; ¹³³ Pr <u>7,0 мин</u>, ¹³³ Ce

Кроме того, предложен фрагмент схемы уровней ¹³⁵ Се , а в схему уровней ¹³⁴ Се введен "квази-гамма-вибрационный" уровень с энергией 965,6 кэв и квантовыми характеристиками I^π K = 2⁺2.

В заключение авторы приносят свою благодарность студенту-дипломнику М. Каримову за помощь при обработке экспериментальных результатов по изотопам празеодима.

гией 405 и 409 кэв в гамма-спектре неодимовой фракции.

- 1. C.M.Lederer, J.M.Hollander, J.Perlman. Table of Isotopes New York, 1967.
- K.Gromov, V.Kalinnikov, V.Kusnetsov, N.Lebedev, G.Mysiol, E.Herrmann, Zh.Zhelev, B.Dzhelepov, A.Kudryavtseva, Nucl. Phys., 73, 65 (1965).
- 3. J.R.Van Hise, B.H.Ketelle, A.R.Brosi. Phys. Rev., 153 (1967).
- 4. Ж.Т. Желев, В.Г. Калинников, Я. Липтак, Л.К. Пекер. Препринт ОИЯИ Р6-3468, Дубна (1967).
- 5. Ж.Т. Желев, В.Г. Калинников, Я. Липтак, Л.К. Пекер. Препринт ОИЯИ Р6-3823, Дубна (1968).
- 6. Р. Арльт, Г. Байер, Г. Музиоль, Л.К. Пекер, Г. Пфреппер, Х. Штрусный, Д. Христов. Препринт ОИЯИ Р6-3540, Дубна (1967).
- 7. J.E.Clakson, R.M.Diamond, F.S.Stephens, I.Perlman. Nucl. Phys., <u>A93</u>, 272 (1967).
- 8. Р. Арльт, В. Быстров, Г. Музиоль, П. Паатеро, Х. Штрусный. Препринт ОИЯИ 13-3922, Дубна (1968).
- 9. Г.Ю. Байер, В.А. Халкин, Х. Гроссе-Рюкен. Препринт ОИЯИ Р12-3886, Дубна (1968).
- Г.Ю. Байер, В.А. Халкин, Х. Гроссе-Рюкен, Г. Пфреппер. Препринт ОИЯИ Р12-3887, Дубна (1968).
- 11. D.F.Peppard, G.W.Mason, S.W.Moline, J.Inorg. Nucl. Chem., <u>5</u>, 141 (1957).
- Р. Арльт, С. Кадыкова, А. Калинин, В. Моисеева, Г. Музиоль, М. Омельяненко, Ю. Прокофьев, Б. Семенов, А. Синаев, Н. Чистов, Х. Штрусный, Г. Эльснер. Препринт ОИЯИ Р6-3773, Дубна (1968).
- 13. T.Handley, E.Olson. Phys. Rev., 96, 1003 (1954).
- 14. David Ward, R.M.Diamond, F.S.Stephens. Nucl. Phys., <u>A117</u>, 309 (1968).

Рукопись поступила в издательский отдел З апреля 1969 года.