

6 - 4157

В.И.Кузин, В.Д.Нефедов, Ю.В.Норсеев, М.А.Торопова, В.А.Халкин, П.Гроз

ИЗУЧЕНИЕ ХИМИЧЕСКИХ ИЗМЕНЕНИЙ ПРИ ПРОЦЕССАХ ЭЛЕКТРОННОГО ЗАХВАТА ¹²⁵ Хе в некоторых неорганических Системах

6 - 4157

В.И.Кузин, В.Д.Нефедов, Ю.В.Норсеев, М.А.Торопова, В.А.Халкин, П.Гроз

409/3 np

ИЗУЧЕНИЕ ХИМИЧЕСКИХ ИЗМЕНЕНИЙ ПРИ ПРОЦЕССАХ ЭЛЕКТРОННОГО ЗАХВАТА ¹²⁵ Хе в некоторых неорганических системах

Направлено в. "Радиохимию"

В настоящее время интенсивно изучаются методы получения и реакции заряженных атомных и молекулярных образований. К таким образованиям приводят процессы β^{\pm} - распада, изомерного перехода и захват орбитального электрона в составе атомных и молекулярных систем. Значительный интерес при этом представляет мало изученный вопрос о свойствах и реакциях многократно заряженных атомных образований.

Исследованию химических процессов, являющихся следствием электронного захвата в атомах, входящих в состав различного рода молекул, посвящены работы $^{1-5/}$. Данные этих работ свидетельствуют о том, что атомы дочернего элемента могут стабилизоваться в химических формах, отвечающих разным валентным состояниям. Электронный захват в атоме, находящемся в составе элементоорганического соединения, приводит к полному разрушению материнской молекулы и переходу дочерних атомов в неорганическую форму.

Изучение поведения многократно заряженных атомных ионов было выполнено на примерах исследования форм стабилизации ¹²⁵ J , образующегося при электронном захвате в ¹²⁵ χ_e /6,7/ , а также изучения ион-молекулярных реакций "продуктов распада" газообразного ¹²⁵ χ_e с метаном /8/.

Из работы ^{/8/} следует, что 40% атомов ¹²⁵ J , образующихся при К – захвате в ¹²⁵ Хе , оказывается в состоянии J⁺ (${}^{1}S_{2}$) и 18% – в форме сильно возбужденных атомов иода или ионов J⁺ (${}^{3}P_{1}$) . Данные работ ^{/6/} и ^{/7/} противоречивы. Если в ^{/7/} весь дочерний ¹²⁵ J был найден в форме J⁰₂ , то в работе ^{/6/} около 20% радиоактивного иода было обнаружено в форме иодид-иона.

Данная работа посвящена изучению химического состояния ¹²⁵ J, образующегося в результате К – захвата в ¹²⁸ Xe в следующих системах:

1. 125 Хе - ксенон. при давлении 2-3 атм.;

 ¹²⁵ Хе - атмосфера насыщенных паров воды над бидистиллятом или водными растворами щелочей;

3. ¹²⁵ Хе - водород;

4. ¹²⁸ Хе - кислород.

Опыты проводились как с добавлением носителей на предполагаемые формы образующегося иода, так и без них х).

Экспериментальная часть

Радиоактивные препараты ксенона (¹²⁵ Xe) получались или облучением нейтронами элементарного спектрально-чистого ксенона, или в результате гидролитического разложения облученных нейтронами препаратов Xe F₂ xx).

Для приготовления реакционных смесей и выделения элементарного ксенона из XeF₂ использовалась установка, изображенная на рис. 1. Ампула с облученным XeF₂. предварительно охлажденная жидким азотом, вскрывалась и помещалась в пробирку 1, содержащую 3М раствор

х) Соли КЈ и КЈО₃, используемые в качестве носителя, были химически чистыми. Элементарный иод получался окислением КЈбихроматом калия и очищался двукратной возгонкой.

хх) При облучении естественной смеси изотопов ксенона, наряду с ¹²⁶ Хе возникает целый ряд других изотопов этого элемента, распад которых приводит к стабильным продуктам. Исключение составляют ¹⁸⁶ Хе и

¹³⁷ Хе, распад которых приводит, соответственно, к ¹³⁵ Сs с периодом 2.10⁶ лет и ¹³⁷ Сs с Т₁₆ ~ 30 лет. Специальными опытами установлено, что активность последних в условиях проводимых нами опытов пренебрежимо мала.

или Н₂; адсорбционный насос; 9 - кран для вскрытия ампул с облученным ксенона в систему; 5-7 - ампулы для накопления; 8 - угольный кальций и губчатый титан, 3 - кран для напуска радиоактивного 11 - ртутный манометр; 12 - печи; 13 - медная стружка для элементарным Xe ; 10 - колба для хранения газов 0 ₂ 125 125 Xe OT очистки

№ 0Н , замороженный жидким азотом. Пробирка присоединялась к установке и откачивалась. По мере оттаивания раствора щелочи проходил гидролиз Xe эF₂ . Выделяющийся ксенон очишался от кислорода металлическим кальцием и губчатым титаном, нагретыми соответственно до температур 400° и 800°.

При работе с облученным элементарным ксеноном вскрытие ампулы и очистка ксенона проводились следующим образом. К ловушке подсоединялся массивный стеклянный кран 9 с боковой трубкой, в которую помещалась кварцевая ампула с радиоактивным ксеноном. Вскрытие ампулы осуществлялось поворотом крана. Для очистки от дочернего ¹²⁸ J ксенон пропускался через слой медных стружек, нагретых до температуры 300°. Циркуляция газа осуществлялась путем попеременного охлаждения ловушек "а" и "в" жидким азотом.

Очищенный таким образом ксенон переводился через эвакуированную до 10⁻⁴ мм рт. ст. гребенку в ампулы 5-7, помещенные в жидкий азот, в которых смешивался с другими компонентами ^{x)} (вода помещалась в ампулу до введения ксенона, газообразные компоненты – после). Ампулы отпаивались и проводилось накопление ¹²⁵ J в отсутствие света в течение 5 дней. Общее количество ксенона в системе составляло 1,5-7см³ при нормальных условиях. Удельная активность к моменту начала накопления ¹²⁶ J составляла 2-3 мкюри/мл. (рис.2).

Идентификация и определение выхода различных форм иода осуществлялись методами электрофореза /9-12/, ионообменной /13-15/ и тонкослойной хроматографии /16/, предварительно отработанными на модельных опытах. При этом изучение различных валентных состояний иода проводилось с использованием в качестве исходного препарата ¹²⁵ J , находящегося без носителя в 0,1М растворе сульфита натрия. Остальные формы получались по методикам, описанным в литературе /12,17,18/. К сожалению, нам не удалось получить без носителя иод в форме ¹²⁶ J0⁻. Все попытки получить эту форму неизменно приводили к образованию иодид-иона.

^{X)} Кислород и водород использовались из баллонов после предварительной осушки над Р₂ О₄.

Рис.2. 1 - ампула объемом 5-7 см³ для проведения накопления ¹²⁵ ј в системе ^{II} . 2 - ампула объемом 25-27 см³ для проведения накопления ¹²⁵ ј в системах ^{III} и ^{IV} . а - ампулка, содержащая дегазированную воду для обмывания стенок ампул после проведения накопления.

Для изучения электрофоретического поведения ультрамикрокСличеств иода нами использовалась установка типа 0E-201 "Labor". Миграция ионов проводилась в 0,1М растворе сульфата натрия при градиенте потенциала 50 в/см в течение 30 минут на бумаге "Ватман-1". Типичкая электрофсреграмма, полученная при последовательном нанесении на бумагу различных форм иода, приведена на рис. 3.

Разделение форм изда с помощью ионообменной хроматографии проводилось по методике, описанной в работе /14/. Для анализа методом тонкослойной хроматографии нами была разработана методика, основанная на использовании в качестве закрепленного слоя Kieselgel F₂₅₄. Элк,ирование проводилось смесью 1:1 6М раствора NH, OH и ацетона. Од-

нако, в отличие от электрофоретического и ионообменного методов, тонкослойная хроматография не позволила провести разделение восстановленных форм иода (J⁰ и J⁻).

Для изучения форм иода, образующихся при распаде в цепочке ¹²⁶ Хе-+ ¹²⁸ J , стенки ампул обмывались водой или растворами шелочей (предварительно дегазированными)^X), после чего ампулы вскрывались и производился анализ полученных форм иода. В случае накопления в атмосфере ксенона для анализа восстановленных форм иода в отдельных опытах стенки ампул обмывались СС1₄ , тщательно очищенным от следов восстановителей, а также разбавленными растворами иода в СС1₄ (1 мг/мл). Это обеспечивало удаление той части ¹²⁵ J , которая находилась в форме элементарного иода. Остальная часть ¹²⁶ J смывалась со стенок разбавленными растворами КЈ (1 мг/мл).

Выход различных форм¹²⁵ J определялся измерением активности аликвотных частей растворов на сцинтилляционном счетчике с учетом поправок на поглощение. Результаты анализа форм иода, образующихся при распаде¹²⁵ X_е в указанных выше системах, представлены в таблицах 1-3.

Таблица 1

Формы иода, образующиеся при распаде ¹²⁵ Хе в атмосфере ксенона

Условия удаления 125 Ј со	выход форм ¹²⁵ Ј в %		
стенок реакционных ампул	J ⁰ ₂	1_	
CCI 4	80 + 5	20 ± 3	
ртрЈ ₂ в ССІ4 (1 мг/мл)	90 + 5	10 + 2	
1 М раствор NaOH	20 ± 2	80 + 5	

x)

Форма ампул (см. рис. 2) позволяла проводить обмывание стенок без предварительного их вскрытия.

Таблица 2

Формы нода, образующнеся в результате распада

Состав жидкой фазы, находя-	дополн. обработка жидкой фазы	наличие но- сителей в жидкой фазе	выход форм 125 ј в \$			
ле в ампу-			J	ل 0 2	J 0	-10-
	I) нет 2) озонирова-	HeT	100	-	-	-
бидистиллят (~Імл)	ние в течение ЗОмин и продув ние гелием в т	e- Het	100	-	-	-
	чение 1 часа	4,2.10 3 KI	100	-	-	-
	4) нет	3.10-3 KIO3	99	-	следы	-
	I) нет 2) озониров.	нет	·100	-	-	-
ЗМ раствор КОН (~Імл)	теч.30мин. и продув.гелием в течение Іча-	Het	100	-	-	-
	3) нет 4) нет	50 мг/мл I ₂ 5•10 ⁻³ м кI	33±3	6 7 ±5	-	-
		5.10-3 KIO	99	-	следы	-

125 Хе в атмосфере паров воды

Таблица 3

Формы иода, образующиеся в результате распада 125 Хе

в атмосфере кислорода и водорода

Состав газовой фазы (давл.в мм.рт.ст.)			выходы форм ¹²⁵ ј в З			
Xe	02	Н ₂ .	J-	10 2	JO ²	J0-4
72 96 132	160 224 228	-	81±5 77±5 82±5	7±3 13±5 5±2	12±3 10±3 13±5	
132 132	-	89 156	100 100	-	-	-

Обсуждение результатов

Известно, что процессы орбитального захвата электронов приводят к возникновению на первой стадии атомов, ионизованных в соответствующих внутренних оболочках. Заполнение вакансий в этих оболочках с помощью переходов Оже приводит к спектру ионов с высокими положительными зарядами /19,20/х). Второй стадией является процесс нейтрализации многозарядных ионов электронами окружающих частиц.

В изученных нами системах наиболее вероятной формой нейтрализаими является J^+ . Это объясняется тем, что потенциалы ионизации молекул среды, в которой происходит распад ¹²⁵ Хе (Хе – 12,13 эв, H₂O – 12,60 эв, O₂ – 14,01 эв, H₂ – 15,43 эв), выше первого и ниже второго потенциала ионизации иода (10,45 эв) и (19 эв). Исключение составляют ионы иода с зарядом +1, находящиеся на различных возбужденных уровнях /8/, которые могут взаимодействовать с атомами ксенона по реакциям:

> J⁺ (¹ S₂) + Xe → Xe⁺ + J (² P_{3/2}) +56,3 ккал J⁺ (¹ S₂) + Xe → Xe⁺ + J (² P_{1/2}) + 32,9 ккал

Дальнейшие изменения химического состояния иода связаны с взанмодействием J⁺¹ и элементарного иода с частицами окружающей среды, свободными электронами или стенками реакционного сосуда (поскольку работа выхода электрона из материала стенок реакционных сосудов меньше первого потенциала ионизации иода: для SiO₂ - 5 эв).

Если средой является атмосфера ксенона, то, как показывают данные таблицы 1, образование форм иода с высокими степенями окисления

x)

По данным этих работ, зарядовые состояния ¹²⁵ Те , возникающего в результате К-захвата в ¹²⁶ ј в составе СН₃ ¹²⁵ ј и С₂ H₅ ¹²⁶ ј , изменяются ог +1 до +18; при этом максимальный выход наблюдается для ионов с зарядом +9. Зарядовые состояния иода, образующиеся в результате ионизации L – оболочки рентгеновскими лучами, изменяются от +1 до +11; при этом максимальный выход падает на ион с зарядом +5.

не имеет места, а выход восстановленных форм в сильной степени Зависит от характера растворителя, используемого для обмывки стенок ампул. Обмывка ССІ₄ приводит к обнаружению 80-90% иода в форме J_2^0 и в 10-20% – J⁻. Обработка стенок ампул раствором щелочи приводит к значительному увеличению выхода J⁻ в результате протекания реакций:

$$H_2 + H_2 O \rightarrow HJO + HJ$$

HJO $\rightarrow HJ + 1/2 O_2$

Как видно из данных таблиц 2 и 3, при распаде¹²⁵ Xe в парах воды и в атмосфере водорода единственной формой стабилизации иода является ^J. Вероятно, в первом случае это также связано с разложением иодноватистой кислоты, образующейся как непосредственно в результате распада оксониевых ионов:

$$J^{+}({}^{1}S_{2}) + H_{2}O \rightarrow \begin{bmatrix} H \\ H \end{bmatrix} O^{+} -J] \rightarrow H_{2}O^{+} + J^{0} + 43,5 \text{ KKAR}$$

$$J^{+} + H_{2}O \rightarrow \begin{bmatrix} H \\ H \end{bmatrix} O^{+} -J] + H_{2}O \rightarrow \begin{bmatrix} H \\ H \end{bmatrix} O^{+} -J \\ \vdots \\ O \\ H \end{bmatrix} \rightarrow H_{3}O^{+} + HJO + 26,2 \text{ KKAR},$$

так и в результате взаимодействия элементарного иода с водой. Что касается накопления в атмосфере водорода, то возможным процессом, приводящим к получению J⁻, является образование иодониевых ионов [J⁺ $\xi_{\rm H}^{\rm H}$] с последующей передачей протона молекуле водорода, а также нейтрализация этих ионов свободными электронами или гидролиз следами воды, адсорбированными на стенках ампул.

Более сложным является спектр химических форм иода в системе ¹²⁵ Xe - 0₂ (см. табл. 3). Наличие кислорода приводит в данном случае к образованию 10% окисленной формы иода - J0₃⁻. Наиболее вероятным процессом, приводящим к образованию иодата, по-видимому, является присоединение J⁺ к одной из неподеленных пар кислорода с образованием J0₂⁺:

$$J^{+} + O_{2} \rightarrow [J^{+} - O = O_{2}] \rightarrow JO_{2}^{+}$$

Этот ион, как и в предыдущем случае, может взаимодействовать со следами адсорбированной на стенках воды:

$$JO_{2}^{+} + H_{2}O \rightarrow JO_{3}^{-} + 2 H^{+}$$
.

Следует отметить, что приведенные схемы качественно отражают лишь наиболее вероятные процессы, происходящие с иодом, образующимся при распаде ¹²⁵ Хе в различных системах и не позволяют дать строгое объяснение результатов опытов.

В заключение авторы считают своим приятным долгом выразить глубокую благодарность заведующему лабораторией Центрального Института Физических Исследований ВНР в Будапеште Ф. Молнару за интерес и большую помощь при проведении данной работы.

Выводы

Исследованы процессы взаимодействия атомных ионов
 образующегося при распаде путем электронного захвата
 Xe в среде Xe, H₂, O₃ и паров воды.

2. Показано, что при распаде ¹²⁵ Хе в системах ¹²⁸ Хе-Н₂ и ¹²⁵ Хе-Н₂ 0 практически весь ¹²⁵ Ј находится в форме J⁻.

3. Накопление ¹²⁵ ј в атмосфере ксенона (2-3 атм) приводит к следующему распределению дочерних атомов: $J_2^0 - 80\%$; J - 20%, а в атмосфере кислорода: J - 80%; $J_2^0 - 10\%$; $J_3^0 - 10\%$.

 Предложена схема качественного объяснения полученных результатов.

Литература

- В.Д. Нефедов, Г.П. Лепнев, Е.Н. Синотова, М.А. Торопова. Журнал физической химии. <u>31</u>, 353 (1957).
- А. Хальперн. Журнал неорг. химин. <u>4</u>, 1205 (1959).
- 3. E.Merz, H.I. Riedel, Radiochimica Acta, 3, 1/2, 35 (1964).

- 4. R. Margraff, J.P. Adloff, Radiochimica Acta, 6, 3, 138 (1966)
- 5. В. М. Зайцев, И.С. Кирин, В.И. Тихонов. Радиохимия. 10, 3 (1968).
- M. Bresesti, F. Capellani, A.M. Del Turco, E. Orvini, I. inorg. Nucl Chemistry. <u>26</u>, 1, 9 (1964)
- 7. T. Lengyell, J. Pavlishek, Magyar Kemiai Folyoirat, <u>71</u>, 2, 54 (1965).
- 8. F. Schroth, J. P. Adloff, I. Chim. Phys, 6, 10, 1373 (1964).
- 9. J. B. Belling, R.E. Underdoron, Anal. chim Acta, <u>22</u>, 2, 203 (1960).
- 10,B.M. Gordon, I. inorg Nucl. Chemistry 29, 2, 287, (1967)
- 11. S.K. Shukla, M. Bacher, J. P. Adloff, I. Chromatography <u>10</u>, 1, 93 (1963).
- N.G. Ägnes, V.A.Halkin, J. V.Horszejev, Magyar Kemiai Folyoirat 73, 5, 191 (1967)
- M.L.Good, M.B. Purdy, T. Hoering, I. inorg. Nucl Chemistry, <u>6</u>, 1, 73 (1958)
- 14. Н.Г. Зайцева, Ло Вэн-чжун. Раднохимия 2, 5, 514 (1960).
- 15. А.Н. Мосевич, Н.П. Кузнецов, Ю.К. Гусев. Раднохимия 6.7,678 (1965).
- 18. R. Naemann, I. Chromatography <u>18</u>, 2, 385 (1965)
- 17. H.H. Willard, L.L. Merritt, Ind. Eng. Chem. Anal. Ed. <u>14</u>, 489 (1942)
- И.С. Кирин, В.К. Исупов, В.И. Тихонов, Н.В. Иванникова, Ю.К. Гусев, Г.Г. Селиков. Журнал неорг. химин, <u>12</u>, 4, 1088 (1967).
- 19. T.A. Carlson, I. Chem. Physics 38, 2930 (1963)
- 20. T.A. Carlson, R.M. White, Chem. Effects Nuclear Transformation v.1, p. 23, Vienna (1965).

Рукопись поступила в издательский отдел 19 ноября 1968 года.