ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

C341.1+ C344.1

6 - 3676

В.Г.Чумин

ИЗУЧЕНИЕ АЛЬФА-РАСПАДА ИЗОТОПОВ ДИСПРОЗИЯ, ТЕРБИЯ, ГАДОЛИНИЯ И ХОЛМИЯ С ПОМОЩЬЮ БОЛЬШОГО МАГНИТНОГО АЛЬФА- СПЕКТРОГРАФА.

ТОНКАЯ СТРУКТУРА АЛЬФА- СПЕКТРОВ ИЗОТОПОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

(специальность - 040, экспериментальная физика)

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

В.Г.Чумин

Работа выполнена в Лаборатории ядерных проблем Объединенного института ядерных исследований

Научный руководитель - старший научный сотрудник,

кандидат физико-математических наук К.Я.Громов. Официальные оппоненты: доктор физико-математических наук А.Г.Зеленков, кандидат физико-математических наук Р.Б.Иванов.

Ведущий научно-исследовательский институт: Институт теоретической и экспериментальной физики.

Автореферат разослан 1968 г. Защита диссертации состоится 1968 г. на заседании Учёного совета Лаборатории ядерных проблем Объединенного института ядерных исследований. Г.Дубна, Московской области, Объединенный институт ядерных исследований.

С диссертацией можно ознакомиться в библиотеке ОИЯИ

Учёный секретарь совета кандидат физ.-мат.наук

О.А.Займидорога

5121

ИЗУЧЕНИЕ АЛЬФА-РАСПАДА ИЗОТОПОВ ДИСПРОЗИЯ, ТЕРБИЯ, ГАДОЛИНИЯ И ХОЛМИЯ С ПОМОЩЬЮ БОЛЬШОГО МАГНИТНОГО АЛЬФА- СПЕКТРОГРАФА.

ТОНКАЯ СТРУКТУРА АЛЬФА- СПЕКТРОВ ИЗОТОПОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

(специальность -040, экспериментальная физика)

Автореферат диссертации на соискание учёной стелени кандидата физико-математических наук

THE ASSESSMENT LLABORARY HECEOGODARY

Исследования радиоактивного распада с помощью различных методов ядерной спектроскопии позволяют установить схемы распада и квантовые характеристики состояний атомных ядер. Среди этих методов широкое применение нашел магнитный анализ. При изучении тонкой структуры альфа-спектров основным прибором является магнитный спектрограф, который позволяет определять как энергию альфа-частиц, так и относительные интенсивности альфа-групп.

В диссертации описываются построенный автором большой магнитный альфаспектрограф (часть 1) и результаты исследования с его помощью альфа-распада изотопов Но, Dy, Tb , Gd , Eu (часть II).

1. Методическая часть

Нами построен магнитный альфа-спектрограф с двойной фокусировкой пучка с широкой апертурой^{/1/}. При его создании использовался богатый опыт, накопленный при сооружении аналогичного прибора в Институте атомной энергии им. И.В.Курчатова^{/2/}. Общий вид магнита показан на рис. 1, вакуумной системы - на рис. 2. Угол фокусировки- $\pi\sqrt{2}$. Радиус равновесной орбиты - 154 см. Максимальный телесный угол, который позволяют использовать размеры вакуумной камеры, равен 9.10⁻⁴ от 4π (-7 $\leq \phi_r \leq 2.3^\circ$, $\phi_r = \pm 2^\circ$). Минимальная полуширина альфа-линии ²¹² Ві ($E_a = 6091$ кэв) равна 2.4 кэв при использовании телесного угла 3,7.10⁻⁴ от 4π (-7 $\leq \phi_r \leq 2.3^\circ$, $\phi_r = \pm 0.83^\circ$) и размерах источника 1 х 10 мм². При токах в обмотке электромагнита 160+400 А можно изучать альфа-распал, при котором $E_a = 2+12$ Мэв. Магнитное поле

3

с точностью ~ 0,01% измеряется с помощью ядерного магнитометра. В качестве детектора используются фотопластинки с ядерной эмульсией типа А-2. Энергетический диапазон одновременно регистрируемых альфа-частиц составляет ~ 10%. Точность в определении энергий альфа-частиц изотопов редкоземельных элементов составляет < 5 кэв. Количество альфа-треков на "хвосте" альфа-линии на расстоянии в 150 кэв от E_{amax} составляет ~ 3.10⁻⁶ от количества треков на ее максимуме. Счёт альфа-треков производится с помощью микроскопа МБИ-9.

Радиоактивные источники для альфа-спектроскопических исследований приготавливались двумя способами. При изучении альфа-распада изотопов, для которых период полураспада больше 20 мин, использовался метод возгонки вещества в вакууме. В этом случае мишень, облученная протонами на синхроциклотроне ОИЯИ, подвергалась химической обработке (растворению, отделению редкоземельных элементов от вещества мишени и других элементов, образовавшихся . при облучении.). Разделение самих редкоземельных элементов производилось хроматографическим методом. Для распыления радиоактивного вещества использовалась стандартная установка УВР-2.

Для изучения альфа-распада изотопов, имеющих период полураспада меньше 20 мин, источники приготавливались методом, использующим явление термодиффузии редкоземельных элементов из тантала^{/3/}. В этом случае танталовая мишень, облученная протонами, минуя все химические операции, разогревалась в вакууме до = 2100°C.

При этом атомы редкоземельных элементов диффундируют из толщи тантала, испаряются с его поверхности и конденсируются иа стеклянной подложке. Такой способ позволяет сократить время от конца облучения тантала до начала экспозиции на альфа-спектрографе, до 24 мин.

II. Физические исследования

В области редких земель магнитный анализ альфа-спектров производился практически впервые. В наших работах значения энергий альфа-частиц даются с ошибками ≤ 5 кэв. Используя относительные интенсивности альфа-линий, обнаруженных в одной фракции, и данные работы Барановского и др. ⁴⁴ о сечениях образования ядер изотопов редкоземельных элементов в тантале, облученном протонами с $E_p = 680$ Мэв, мы произвели расчёт парциального периода альфа-распада. Большие ошибки (до 90%) вызваны, главным образом, ошиб-ками в определении сечений. Коэффициент запрета альфа-распада F определялся

из отношения экспериментально определенного парциального периода к вычисленному по формуле Таагепера-Нурмия ^{/5/}:

$$\log T_{\alpha} = 1.61 \left[\frac{z_{d}}{\sqrt{E_{\alpha}}} - z_{d}^{2/3} \right] - 28.9$$
,

где Т_а-парциальный период (в годах), г_а-заряд дочернего ядра, Е_а-энергия альфа-частиц (в. Мэв).

1. Фракция диспрозия. Исследовалась область альфа-спектра от $E_a = 2680$ кэв до $E_a = 4250$ кэв. Результаты сведены в таблице 1. Уточнены значения энергий альфа-частиц основных переходов изотопов с A = 150 + 154. Обнаружена новая слабая альфа-группа, интенсивность которой убывала с периодом полураспада = 6 ч. На основании этого периода и разницы энергий обнаруженных альфа-частиц ($E_a = 3303 \pm 5$ кэв) и частиц из основной альфа-группы ¹⁵⁸ Dy новую группу мы приписываем распаду ¹⁵⁸ Dy на уровень 165 кэв ¹⁴⁹ Сd. О таком уровне (164,5 кэв) сообщается в работе К.Вильского и др. ^{/6/}. Оценены величины доли альфа-распада и парциального периода альфа-распада обнаруженных альфа-переходов.

В работах Тота и Расмуссена⁷⁷⁷ сообщается о существовании альфа-группы ¹⁸⁴ Dy, интенсивность которой изменяется с периодом полураспада = 13 ч. (Е = 3,35±0,05 Мэв). Мы такую линию не обнаружили.

Коэффициенты запрета альфа-распада¹⁵¹ Dy,¹⁵³ Dy и¹⁴⁹ Gd в пределах ошибок совпадают с коэффициентами соседних чётно-чётных изотопов¹⁵⁰ Dy,¹⁵² Dy и¹⁵⁴ Dy. Это обычно означает, что квантовые характеристики основных состояний материнских и дочерних ядер одинаковы. Тогда спины основных состояний¹⁴⁹ Gd и¹⁵⁸ Dy, как и спин¹⁴⁵ Sm⁷⁸⁷, равны 7/2. Чётность отрицательна. Предположив, что спин основного состояния¹⁴⁷ Gd равен 7/2⁻, как и у¹⁴¹ Ce,¹⁴³ Nd и¹⁴⁶ Sm, имеющих тоже 83 нейтрона, мы считаем, что спин основного состояния¹⁵¹ Dy равен 7/2⁻. Основываясь на данных, накопленных при изучении альфа-распада тяжелых деформированных ядер, можно предполагать, что первый возбужденный уровень¹⁴⁹ Gd не является уровнем ротационной полосы основного состояния, так как коэффициент запрета альфа-распада на этот уровень слишком велик (на 2 порядка больше, чем. для основного перехода).

 Фракция тербия. Альфа-спектр изотопов тербия исследовался в области Е а = 2780-4020 кэв. Результаты исследований представлены в таблице 2. Уточнены значения энергий известных ранее альфа-переходов. Оценены величины

5

долей и парциальных периодов альфа-распада. Наблюдается расхождение в величине доли альфа-распада Ть, полученной в работах Тота, Макфарлайна, Кормицкого и др. с одной стороны, и в работах наших и группы Фенеша с другой . По данным первой группы, а 181 = (3-6), 10⁻⁶, второй -(2-10).10⁻⁵. Обнаружена новая слабая альфа-группа, интенсивность которой изменялась с периодом полураспада 3,15+ 0,20 ч. Энергия альфа-частиц равна 3492+5 кэв. В соответствии с периодом полураспада эту группу мы приписали альфа-распаду ¹⁶⁰ Ть. Альфа-группу ¹⁵² Ть обнаружить не удалось. Дается верхний предел доли альфа-распада ¹⁴⁹ Ть из изомерного состояния. Он равен 5.10⁻⁴. Tb u Tb. Приводятся верхние пределы доли альфа-распада для а_-групп Установлено существование тонкой структуры альфа-спектров ¹⁵¹ Ть и ¹⁴⁹ Ть происходит на возбужденные уровни 229 кэв Альфа-распад Ец (рис. 3) и 331 кэв Ец соответственно. На основании имеющихся в литературе данных и величин коэффициентов запрета альфа-распада ¹⁴⁹ Ть и ¹⁵¹ Ть высказывается предположение, что спин основного состояния 101 Ть равен 3/2. а спин первого возбужденного состояния 149 Ть равен 7/2.

При изучении короткоживущих альфа-распадчиков была обнаружена группа альфа-частиц (Е а = 3933±5 кэв, Т_{1/2} ≈ 9 мин), принадлежащих, вероятно, ¹⁵⁴ Но или Но Но.

3. Фракция гадолиния. Альфа-спектр изотопов гадолиния исследовался в области $\mathbf{n}\mathbf{E}_{a}$ = 2630-3200 кэв. Уточнены значения энергий альфа-частиц ¹⁴⁵ Gd, ¹⁴⁹ Gd и накопившегося из гадолиния ¹⁴⁷ Eu. Даны оценки доли альфа-распада, T_{a} ¹⁴⁹ Gd и ¹⁴⁷ Eu. Не удалось обнаружить \mathbf{u}_{a} -линии ¹³⁰ Gd и \mathbf{a}_{1} -линии ¹⁴⁷ Eu. Приводятся нижние пределы их парциальных периодов альфа-распада. Все полученные данные сведены в таблицу 3.

Результаты исследований, вошедшие в диссертацию, докладывались на XVI и XVII Всесоюзных ежегодных конференциях по ядерной спектроскопии и опубликованы в работах

Литература

 Н.А.Головков, К.Я.Громов, Ю.Н.Денисов, Б.С.Джелепов, Ж. Желев, С.А.Ивашкевич, В.М.Лачинов, Б.Махмудов, В.И.Прилипко, Ю.И.Сусов, В.Г.Чумин, П.Т.Шишлянников, Препринт ОИЯИ, Р13-3340, Дубна, 1967 г. С.А.Баранов, А.Г.Зеленков, Г.Я.Шепкин, В.В.Беручко, А.Ф.Малов. Атомная энергия 7, 262 (1959). Изв. АН СССР, сер. физ.XXIII 1402 (1959).
 Andersen M.L., Nielsen O.B., Scharff B. Nucl.Instr.Meth., <u>38</u>, 303 (1965).
 В.И.Барановский, А.Н.Мурин, Б.К. Преображенский. Радиохимия, <u>4</u>, 407 (1962).

5. Taagepera R, Nurmia M., Ann. Acad, Sci. Fennicae, SerA,

VI Physica N 78, 1 (1961).

- К.Вильский, К.Я.Громов, Ж.Т.Желев, В.В.Кузнецов, Г.Музиоль, О.Б. Нильсен,
 О.Скилбрайт. Препринт ОИЯИ, Р6-3128, Дубна, 1967 г.
- Toth K.S., Rasmussen J.O., Nucl. Phys., <u>16</u>, 474 (1960)
 Nucl. Phys., <u>109</u>, 121 (1958).
- 8. Ж.Т.Желев. Диссертация. Дубна, ОИЯИ, 1964.

9. Maciarlane R.D., Seegmiller D.W., Nucl. Phys., 53, 449 (1964).

- Kormicki J., Niewodniczanski H., Stachura Z., Zubek K., Budziak A., Nucl. Phys., <u>A100</u>, 297 (1967).
- 11. Н.А.Головков, К.Я.Громов, Н.А.Лебедев, Б.Махмудов, А.С.Руднев, В.Г.Чумин, Изв.АН СССР, сер.физ.,ХХХІ№ 10, 1618 (1967).
- 12. К.Я.Громов, И.Махунка, М.Махунка, Т.Фенеш, Изв.АН СССР, сер. физ., 29, 194. (1965).
- 13. Hahn R.L., Toth K.S., Handley T.H., Phys. Rev. Let., 19, N 12 (1967)A10.
- В.Г.Чумин, Ж.Т.Желев, К.Я.Громов, Б.Махмудов, Изв.АН СССР, сер.физ.ХХХІ
 № 1, 146 (1967).

 Н.А.Головков, К.Я.Громов, Н.А.Лебедев, Б.Махмудов, А.С.Руднев, В.Г.Чумин, Препринт ОИЯИ, 6-3036, Дубна, 1966, стр.29.

> Рукопись поступила в издательский отдел 22 января 1968 года.

A	d- груп- па	Е ог КЭВ	T 1/2	Интенсив- ность ж)	^T α	Доля «-распада	Коэфф. запрета	Примечание
Ī	2	3	4	5	6	. 7	8	9
150	d.	4232 <u>+</u> 5	6 – 7 мин	-	10 ± 8 мин	0,75 <u>+</u> 0,60	0,8 ± 0,6	_
151	d.	4067 <u>+</u> 5	15 - 17мин	I	4,3 <u>+</u> 3,Iч.	0,07 <u>+</u> 0,05	I,8 ± I,3	-
	di	-	-	≼ 3.10 ⁻⁴	> 170 дн.	<3,6.10 ⁻⁵	-	Е _ы = 3860-4160 кэв
	d,	3630 <u>+</u> 5	2 ,3<u>+</u>0,2 ч.	I	200 <u>+</u> 120 дн.	$(5\pm 3) \cdot 10^{-4}$	2,0 ± 1,2	-
152	di	-		<3.IU ⁻⁴	> 730 лет	< 2,4.10-7	-	Е _с =3500-3600 кэв
				<2.I0 ⁻⁵	>10 ³ лет	< I,6.I0 ⁻⁸	-	Е _{сі} =3150-3500 кэв
	d.	3464 <u>+</u> 5	7,0 <u>+</u> 0,2 ч.	I	24,4 <u>+</u> 3,2r./ 9/	(3,0±0,3).10	-5 4,8±I,0	-
153	dı	3305 <u>+</u> 5	б <u>т</u> І ч.	(3 <u>+</u> 2)I0 ⁻⁴	(8 <u>+</u> 6).10 ⁻⁴ лет	(9 <u>+</u> 6).10 ⁹	770 <u>+</u> 580	-
	d ₂	-		<3.10 ⁻⁵	>7.10 ⁵ лет	< I.10 ⁻⁹	> 120 ^{XX})	Е _{сі} =3000-3 3 00 кэв
1 54	a.	2872 <u>+</u> 5	-		(7,3 <u>+</u> 4,4).10 ⁶ ле) T –	5,4 <u>+</u> 3,4	-

изотопы Dy

Таблица ЖІ

ж) Интенсивность d₁ и d₂ указывается относительно d, того же изотопа жж) Для d₂ - перехода на уровень 352 кэв ¹⁴⁹Gd

Изотопы Т

Таблица №2

A	d- группа	Е _с кэв	^T I/2	Интенсив- ность	Tot		Доля d-распада	коэфф. запрета	Примечание
I	2	3	4	5	6		7	- 8	9
149 ^m 149	ರ ರಂ ರ1 ರ2	- 3967 <u>+</u> 3 3644 <u>+</u> 5 -	_ 4,I0 <u>+</u> 0,05 ч. 4,I <u>+</u> 0,I ч. -	I (3±1).10 ⁻⁴ < 1.10 ⁻⁶ < 1,5.10 ⁻⁵ < 2,5.10 ⁻⁶	> 6 дн. - 9,4 <u>+</u> 3,7 > 3.10 ⁻³ > 230 > I.10 ³	года лет лет лет	$< 5.10^{-4}$ 0,16 $(5\pm2).10^{-5}$ $< 1,5.10^{-7}$ $< 2.10^{-6}$ $< 4.10^{-7}$	> 60 8,7 <u>+</u> 2,3 170 <u>+</u> 67 - -	E _d =3970-4015 кэв - - E _d =2780-3100 кэв E _d =3100-3270 кэв E _d =3270-3640 кэв
150	d. d.	3492 <u>+</u> 5 3409 <u>+</u> 5	3,15 <u>+</u> 0,20 ч. 18 <u>+</u> 2 ч.	- I	94 <u>+</u> 70 34 <u>+</u> 24	лет года	(3,9±3,0)I0 ⁻⁶ (6,2±4,5)I0 ⁻⁶	124 <u>+</u> 92 5 9,5 <u>+</u> 6,7	
151	de	3183 <u>+</u> 5 -	25.24 ч.	$(1,0\pm0,2)$. $\cdot10^{-3}$ $< 1,4\cdot10^{-4}$ $< 2,0\cdot10^{-4}$	(3,4 <u>+</u> 2,5 •10 ⁴ πe > 2,3•10 ⁵ > 1,2•10 ⁵). г лет лет	(6,2 <u>+</u> 4,5).IU <0,9.IO ⁻⁸ < I,0.IU ⁻⁸	9 120 <u>+</u> 90 - -	- Е _d =2780-3100 кэв Е _d =3100-3180 кэв
152	d.	-	-	-	>4.10 ⁵ >2.10 ⁵	лет лет	< 6.10 ⁻⁹ < 1.10 ⁻⁸	-	E _d =2780-3100 кэв E _d =3100-3420 кэв
153	d.		-	-	> 8,5.105	лет	<7,5.10-9	-	Ед=2780-3100 кэв

80

Изотоп		о- груп- Е _о Инт па кэв н		Интенсив- ность	T d	Доля d-распада	коэф. запрета	Примечание	
I	2	3	4	5 .	6	7	8	9	
Gd	148	d. di	3183 <u>+</u> 5	.I ≤ 4.10 ⁻⁴ < 1.10 ⁻⁵	84±9 лет ≥ 2,2.10 ⁻⁵ лет > 9.10 ⁶ лет	I ≤ 4.10 ⁻⁴ < 1.10 ⁻⁵	I,2 <u>+</u> 0,2 - -	- Е _с =2940-3170 кэв Е _с =2630-2940 кэв	
	I49	d.	3018 <u>+</u> 5	I	(5,7 <u>+</u> 4,0)10 ³ лет	(4,3±2,9).10 ⁻⁶	2,6±1,8		
		di	-	≤ 2.10 ⁻² <1.10 ⁻²	≥1,5.10 ⁵ лет >7,5.10 ⁵ лет	≤ 1,7.10 ⁻⁷ < 3,3.10 ⁻⁸	-	Е _≪ =2940-3000 кэв Е _≪ =2630-2940 кэв	
	150	d,	-	-	>5,6.10 ⁶ лет	I	> I,3	Ед=2630-2940 кэв	
Eu	147	d. d1	2908 <u>+</u> 5 -	1_ ≼ 5•10 ⁻³	(6,2±5,0).10 ³ лет >7,2.10 ⁶⁵ лет	(1,1±0,8):10 ⁻⁵ <9,5.10 ⁻⁸	I,I <u>+</u> 0,9 -	E _x =2630-2900 Kab	

MOTORN Gd u 147EU

Таблица З

Рис. 1. Магнит альфа-спектрографа. 1- сердечник; 2 – нижняя "шляпа"; 3 – верхняя "шляпа"; 4 – обмотки возбуждения магнита; 5 – полюсная накладка.

ī

Рис. 2. Схема вакуумной системы спектрографа. 1 - камера; 2 - люки; 3 - фотокассета; 4 - манометрические лампы; 5 - шиберы; 6 - шлюзы; 7 - датчик магнитного поля; 8 - стакан; 9 - вакуумный агрегат ВА-5-4; 10 - балластный форвакуумпый бак; 11 - форвакуумный насос ВН-1; 12 - источник; 13 - подвижная диафрагма.

Рис. 3. Альфа-спектр и схема альфа-распада

¹⁵¹ Tb .

12